2015 Summer School on Polymers in Biology # DNA mechanics and structural diversity of DNA KIAS, 22 Jun – 3 July Seok-Cheol Hong Korea University - Hierarchy of biological organization - Biomolecules: 1D polymers - Examples of Polymers in Biology: DNA, RNA, Proteins, and Polysaccharides - DNA: genetic material; double helix - Central Dogma - DNA thermodynamics #### Hierarchy of biological organization Cells in the human body organize themselves into increasingly complex structures and systems. (From Premkumar K. *The Massage Connection Anatomy and Physiology.* Baltimore: Lippincott, Williams & Wilkins, 2004.) Figure 2.15 Physical Biology of the Cell, 2ed. (© Garland Science 2013) ## Biomolecules are polymeric. Figure 1.1 Physical Biology of the Cell, 2ed. (© Garland Science 2013) Figure 1.2 Physical Biology of the Cell, 2ed. (© Garland Science 2013) ### Polymers in Biology - Proteins: hetero-polymer of 20 amino acids - DNA: double-stranded (anti-parallel) polymer of 4 deoxyribo-nucleotides (A, T, C, and G). - RNA: single-stranded (or double-stranded) polymer of 4 ribonucleotides (A, U, C, and G). Polysaccharides: polymer of sugars (-ose) (glucose, galactose, ...) | | Letter | Word | Sentence | |---------------|-------------------|-------------------|--| | Nucleic acids | A, T, C,
and G | Triplet (codons) | Genes | | Proteins | 20 amino
acids | Specific
motif | Folded,
biologically
active
enzymes | ## DNA: bases, nucleotides, pairing, and double helix Figure 1.3a Physical Biology of the Cell, 2ed. (© Garland Science 2013) - A: Adenine - T: Thymine - · G: Guanine - C: Cytosine - A pairs with T - G pairs with C - DNA is highly (negatively) charged. Figure 1.3b Physical Biology of the Cell, 2ed. (© Garland Science 2013) # Proteins: amino acids and polypeptides ### Advantages of Polymers - Restricted set of building blocks - Nucleic acids 4 nucleotides - Proteins 20 amino acids - Limited set of (bio)chemical reactions: removal of water; phosphodiester bond for DNA; peptide bond for protein - Huge diversity of (a small distinct classes of) macromolecules - DNA: 10 nucleotides \rightarrow 4¹⁰ ~ 10⁶ - Protein: 10 amino acids \rightarrow 20¹⁰ ~ 10¹³ - Small building blocks (~ nm or less) - Large, complicated macromolecules #### DNA (deoxy-ribonucleic acid) - Discovery: Friedrich Miescher (1869) - Collected white blood cell from pus - Lysed cells and isolated nuclei - Found a substance he called nuclein - Found nuclein in every cell type he tested - o Rich in Phosphor - Genetic material - o Griffith (1928) - Avery-MacLeod-McCarty (1944) - Hershey & Chase (blender experiment) (1952) ## Hershey-Chase experiment (b) The experiment showed that T2 proteins remain outside the host cell during infection, while T2 DNA enters the cell. #### Critical information for DNA - Erwin Chargaff (1948): discovered the ratio of A and T = 1:1 & the ratio of G and C = 1:1 by utilizing then newly developed paper chromatography and UV spectrophotometry. - X-ray scattering from DNA fiber (Franklin (~1952)): Rosalind Franklin Photo 51 - The world famous x-ray that established DNA as a helix ## DNA: right-handed double strand Watson & Crick: determine double helical structure of DNA 0.34 nm minor groove major groove A·T base pair G·C base pair 2 nm ## Central Dogma Information flow from DNA to protein #### Thermodynamics of DNA - Interactions that stabilize DNA - Calculation of free energy of DNA # Double helix formation by oligonucleotides without loops Nonself-complementary $[A_0] = [B_0] = C_T / 2$ $$A + B \rightleftharpoons AB$$ $$K = \frac{[AB]}{[A][B]} = \frac{2\alpha}{(1-\alpha)^2 C_T}$$ ← Derive this. α : fraction in duplex C_T : total strand concentration T_m : melting temperature (defined as T at which $\alpha = 0.5$) $$K = \frac{2 \times 0.5}{(0.5)^2 C_T} = \frac{4}{C_T}$$ $$\Delta G = -RT \ln K = \Delta H - T \Delta S$$ $$\frac{1}{T_m} = \frac{R \ln(C_T / 4)}{\Delta H} + \frac{\Delta S}{\Delta H}$$ ## Nearest neighbor (NN) model The stability of a helix depends on the nearest neighbor interactions. - $\Delta G_{tot} = \Delta G_{init} + \Delta G_{sym} + \Sigma \Delta G_{NN} + \Delta G_{TERM} = 1.96 + 0 + (...) + 0 = 1.96 6.59 = -4.63 \text{ kcal/mol}$ - (...) = ${}^{5'}$ 6 6 6 ${}^{5'}$ 6 6 7 ${}^{5'}$ 7 8 7 8 ${}^{$ Look for a more reliable, up-to-date method to calculate thermodynamic quantities for DNA ### Estimation of melting T - $\Delta H = 0.2-9.8-8.5-7.2-7.2-8.4=-40.9 \text{ kcal/mol}$ - $\Delta S = -5.6-24.4-22.7-20.4-21.3-22.4=-116.8$ eu - R = 8.3 J/K/mol = 1.987 cal/K/mol - o eu = cal/K/mol - \circ 1 cal = 4.19 J - $C_T = 10^{-6} M$ - $T_m = 278.22 \sim 5^{\circ}C$ cf. IDT: ~ 10°C Table 8.4 Thermodynamic Parameters for Helix Initiation and Propagation in 1*M* NaCl | | | | RNA^a | | | DNA ^b | | RNA/DNA ^c | | | | |-------------------------|--|----------------------|---|--|-------------------------|---|--|----------------------|---|------|--| | Propagation
Sequence | ΔH° (kcal mol ⁻¹) | Δ <i>S</i> °
(eu) | ΔG_{37}° (kcal mol ⁻¹) | ΔH° (kcal mol ⁻¹) | ΔS° (eu) | ΔG_{37}° (kcal mol ⁻¹) | ΔH° (kcal mol ⁻¹) | ΔS°
(eu) | ΔG_{37}° (kcal mol ⁻¹) | | | | RNA | DNA | | | | | | | | | | | | →
GC
CG
← | | -14.88 | -36.9 | -3.42 | -9.8 | -24.4 | -2.24 | -8.0 | -17.1 | -2.7 | | | →
GG
CC
← | | -13.39 | -32.7 | -3.26 | -8.0 | -19.9 | -1.84 | -12.8 | -31.9 | -2.9 | | | | | | | | | | | -9.3 | -23.2 | -2.1 | | | →
CG
GC
← | | -10.64 | -26.7 | -2.36 | -10.6 | -27.2 | -2.17 | -16.3 | -47.1 | -1.7 | | | → GA CU ← | →
GA
CT
← | -12.44 | -32.5 | -2.35 | -8.2 | -22.2 | -1.30 | -5.5 | -13.5 | -1.3 | | | • | • | | | | | | | -8.6 | -22.9 | -1.5 | | | → GU CA ← | →
GT
CA
← | -11.40 | -29.5 | -2.24 | -8.4 | -22.4 | -1.44 | -7.8 | -21.6 | -1.1 | | | ← | <u> </u> | | | | | | | -5.9 | -12.3 | -2.1 | | | →
CA
GU | →
CA
GT | -10.44 | -26.9 | -2.11 | -8.5 | -22.7 | -1.45 | -9.0 | -26.1 | -0.9 | | | ← | ← | | | | | | | -10.4 | -28.4 | -1.6 | | | Propagation
Sequence | | | RNA" | | | DNA ^b | | RNA/DNA ^c | | | | |------------------------------|--------------------|--|--------------|---|----------------------------------|------------------|---|-------------------------------|-------------|---|--| | | | ΔH° (kcal mol ⁻¹) | ΔS°
(eu) | ΔG_{37}° (kcal mol ⁻¹) | ΔH°
(kcal mol ⁻¹) | ΔS°
(eu) | ΔG_{37}° (kcal mol ⁻¹) | ΔH° (kcal mol ⁻¹) | ΔS°
(eu) | ΔG_{37}° (kcal mol ⁻¹) | | | →
CU
GA
← | →
CT
GA
← | -10.48 | -27.1 | -2.08 | -7.8 | -21.0 | -1.28 | -7.0 | -19.7 | -0.9 | | | | | | | | | | | -9.1 | -23.5 | -1.8 | | | →
UA
AU
← | →
TA
AT
← | -7.69 | -20.5 | -1.33 | -7.2 | -21.3 | -0.58 | -7.8 | -23.2 | -0.6 | | | →
AU
UA
← | →
AT
TA
← | -9.38 | -26.7 | -1.10 | -7.2 | -20.4 | -0.88 | -8.3 | -23.9 | -0.9 | | | →
AA
UU | →
AA
TT | -6.82 | -19.0 | -0.93 | -7.9 | -22.2 | -1.00 | -7.8 | -21.9 | -1.0 | | | ← | ← | | | | | | | -11.5 | -36.4 | -0.2 | | | | ılar Association | | 1.6 | 4.00 | 0.2 | | 1.06 | 1.0 | 2.0 | 2.1 | | | Initiation
Each termina | 1 All or AT | 3.61
3.72 | -1.5
10.5 | 4.09
0.45 | 0.2
2.2 | -5.6
6.9 | 1.96
0.05 | 1.9 | -3.9 | 3.1 | | | Symmetry co | | 3.12 | 10.5 | 0.43 | 2.2 | 0.9 | 0.03 | | | | | | (self-compler
Symmetry co | nentary) | 0 | -1.4 | 0.43 | 0 | -1.4 | 0.43 | | | | | | (nonself-com | | 0 | 0 | 0 | 0 | 0 | 0 | | | | | ^aXia et al., (1998). ^bAllawi and SantaLucia (1997). ^cSugimoto et al., (1995). For RNA/DNA hybrids with two sets of parameters, the top set corresponds to the top strand as RNA and the bottom set corresponds to the bottom strand as RNA. For example, ΔH° $\frac{5' \text{rGG3}'}{3' \text{dCC5}'} = -12.8 \text{ kcal mol}^{-1}$ and ΔH° $\frac{5' \text{dGG3}'}{3' \text{rCC5}'} = -9.3 \text{ kcal mol}^{-1}$. Alternative analyses of the RNA/DNA data base have also been presented (Gray, 1997b). #### Hairpin - Free energy increment for loop formation is unfavorable. - The stability of hairpin depends on loop size, the loop sequence, and the base pair closing the loop. - CG closing loop: very stable - H-bond and stacking within loop probably make contribution - ΔH (see below); $\Delta S = -(S_{loop} + S_{duplex})$ - $\Delta G_{37, \text{loop}} = \Delta G_{37, \text{length}} + \Delta G_{37, \text{mm}} 0.8$ if first mismatch is GA or UU. - $\Delta G_{37, \text{ length}}(n) = \Delta G(n_{\text{max}}) + 1.75 RT \ln (n/n_{\text{max}})$ Unimolar $$\Delta H = 4RT_m^2 \left(\frac{\partial \alpha}{\partial T}\right)_{T=T_m}$$; α : fraction of single strand $$K = \frac{\alpha}{1 - \alpha}$$; van't Hoff equation: $\ln K = -\frac{\Delta H}{RT} + \frac{\Delta S}{R}$ # Interactions determining duplex stability - Conformational entropy: S associated with propagating a single strand stacked helix by 1 additional nucleotide was estimated as -11 eu. - o For duplex, $S = 2 \times -11 = -22 \text{ eu}$ → account for most of observed ΔS . #### Stacking Stacking free energy = favorable interaction + unfavorable int. → fav. Int. = stacking G – unfav. Int. as large as (-1.7 kcal/mol – 1.9 kcal/mol (empirical) = -3.6 kcal/mol) Max value from Table #### Hydrogen bonding The effect of hydrogen bonds is due to the difference between hydrogen bonding in a base pair and hydrogen bonding of the separated bases with water. ## Hydrogen bonding (RNA) - In $(GCCGGC)_2$, ΔG_{37} for each terminal base pair = $[\Delta G_{37}(GCCGGC) \Delta G_{37}(CCGG)]/2 = -3.3 kcal/mol$ - Stacking of each 3' dangling end in (CCGGC): $[\Delta G_{37}(CCGGC) \Delta G_{37}(CCGG)] = -0.4 \text{ kcal/mol}$ - Effect of each 5' terminal G in (GCCGG): $[\Delta G_{37}(GCCGG) \Delta G_{37}(CCGG)] = -0.2 \text{ kcal/mol}$ - Free energy gained from pairing the terminal G and C: Δ G_{37,p}=-3.3-(-0.4-0.2+1.9)=-4.6 kcal/mol/HB Table 8.5 Thermodynamic Parameters for Unpaired Terminal Nucleotides in RNA at 1 M NaCl $^{\circ}$ | Propagation | X=A | | | X=C | | | X=G | | | X=U | | | |-------------------|---------|-------|-------------------------|------|-------|-------------------------|-------|-------|-------------------------|-------|--------------------|-------------------------| | Sequence | ΔH° | ΔS° | ΔG_{37}° | ΔH° | ΔS° | ΔG_{37}° | ΔH° | ΔS° | ΔG_{37}° | ΔH° | ΔS° | ΔG_{37}° | | 3' Unpaired Nucle | eotides | | | | | | | | | | | | | →
AX
U
← | -4.9 | -13.2 | -0.8 | -0.9 | -1.2 | -0.5 | -5.5 | -15.0 | -0.8 | -2.3 | -5.4 | -0.6 | | →
CX
G
← | -9.0 | -23.4 | -1.7 | -4.1 | -10.7 | -0.8 | -8.6 | -22.2 | -1.7 | -7.5 | -20.4 | -1.2 | | GX
C
← | -7.4 | -20.0 | -1.1 | -2.8 | -7.9 | -0.4 | -6.4 | -16.6 | -1.3 | -3.6 | -9.7 | -0.6 | | →
UX
A
← | -5.7 | -16.4 | -0.7 | -0.7 | -1.8 | -0.1 | -5.8 | -16.4 | -0.7 | -2.2 | -6.8 | -0.1 | | 5' Unpaired Nucle | eotides | | | | | | | | | | | | | →
XA
U
← | 1.6 | 6.1 | -0.3 | 2.2 | 7.9 | -0.3 | 0.7 | 3.4 | -0.4 | 3.1 | 10.6 | -0.2 | | →
XC
G
← | -2.4 | -6.0 | -0.5 | 3.3 | 11.8 | -0.3 | 0.8 | 3.4 | -0.2 | -1.4 | -4.3 | -0.1 | | →
XG
C
← | -1.6 | -4.5 | -0.2 | 0.7 | 3.1 | -0.3 | -4.6 | -14.8 | 0.0 | -0.4 | -1.2 | 0.0 | | →
XU
A
← | -0.5 | -0.7 | -0.3 | 6.9 | 22.8 | -0.1 | (0.6) | (2.7) | (-0.2) | (0.6) | (2.7) | (-0.2) | [&]quot;Turner et al., (1988). The parameters ΔH° and ΔG° (in kcal mol⁻¹); ΔS° (in eu). Values in parentheses are estimated. #### Environmental effects on helix stability: #### salt concentration (experimental) - Na+ up to 1 M: increase stability - Na⁺ up to 0.2 M, T_m increases linearly with log[Na⁺] - o Rate of increase depends on base composition - o $dT_m/d\log[Na^+] = 18.3 7.04 F_{GC}$ or 19.96-6.65 F_{GC} - Above 1 M, addition of salt lowers T_m of DNA. - o The lowering is relatively independent of cation but is strongly dependent on anion with CCl₃COO⁻ > SCN⁻ > ClO₄⁻ > CH₃COO⁻ > Br⁻, Cl⁻ - o correlate with the effect of ions on the solubility of the bases (better denaturants are more effective in base solubility) - Mg^{2+} up to 1 10 mM: increase T_m . - Beyond it, addition of Mg^{2+} lowers T_m . #### Environmental effects on helix stability: #### solvent effects - Addition of cosolvent to aqueous solutions of nucleic acids destabilizes the ordered form. - Urea: T_m decreases at 2.5°C/M - Favorable interactions between bases and cosolvent favor denaturation. - The cosolvent concentrations required for 50% denaturation correlate well with enhancement of base solubility. #### Environmental effects on helix stability: #### pH - The stability of duplex is insensitive to pH between 5 and 9. - At low pH, bases in ssDNA bind more protons than in duplex, thus favoring ssDNA. - At high pH, G, T, and U are deprotonated, thus precluding normal H bonding and increasing charge repulsion. - Some sequences such as poly(dC) form duplex at low pH (C.C+). - Watson-Crick base pair - Effects of chemical factors on DNA stability - DNA sequence vs. charged polymer - Mechanical models: Freely Jointed Chain model - Persistence length, end-to-end extension, radius of gyration, force response - Mechanical models: Worm Like Chain model - DNA supercoils: definition (sign, magnitude) - Linking number, twist, writhe - Călugăreanu-White-Fuller theorem - Energy associated with DNA supercoiling - Non-canonical DNA structures (induced by SC) - Single molecule methods (revisit) - Hybrid single molecule technique of smFRET & MT - Case studies: DNA mechanics via single-molecule methods - Case studies: Non-canonical DNA and its dynamics via single-molecule methods