

Compelling reasons to stay away from sugars:

- Glycans are metabolic products without direct link to DNA
- Glycans are compositionally and structurally complex
- Glycans are difficult to isolated in pure form
- Glycans cannot be amplified
- Glycans are difficult to sequence
- Glycobiology is a nanoscale problem

The nanoscale dimension of "glycobiology"

• Carbohydrates (or glycans) exert their functions over length scales far beyond those of their individual building blocks.

• The study of glycobiology necessitates material science approaches

Part I. Polysaccharides – structural motifs that shape life

Polysaccharides: Nature's structural materials

The basic building blocks of polysaccharides

or Sialic acid (Sia)

HO

HO

HO

HO

AcHN

OH

O

OH

OH

OH

(GlcA)

ΟН

The bonds that hold sugars together

 α -glucopyranosyl-(1,4)-glucopyranoside Glc α 1-4Glc, maltobiose

HO¹ HO

 β -glucopyranosyl-(1,4)-glucopyranoside Glc β 1-4Glc, cellobiose

Branching out: it's a wild world out there

How does Nature make polysaccharides?

How does Nature break polysaccharides?

How do people make polysaccharides?

 de novo chemical synthesis is challenging due to lack of chemo-, regioand stereoselectivity of glycosidic bond formation:

- Isolation from natural sources via partial hydrolysis (acidic conditions)
- chemoenzymatic synthesis (running glycosidases in reverse or with engineered glycosynthases)

Polysaccharide synthesis using glycosynthases

Mackenzie, Wang, Warren and Withers JACS 120, 5583 (1998)

Characterization of polysaccharides: challenges

- Structure of polysaccharides is not encoded by genes.
- Polysaccharides are compositionally complex and often branched, polydisperse, high molecular weight polymers.
- Polysaccharide chains can be partially organized but are mostly amorphous.
- Polysaccharides form higher order supramolecular assemblies (semi crystalline or amorphous aggregates, gels, etc.).

Characterization of polysaccharides: methods

• <u>Composition</u>:

IR spectroscopy (identification of functionality , e.g., amido or carboxy groups Chemical or enzymatic hydrolysis to monosaccharide building blocks followed by LC/MS or MS analysis.

• <u>Size</u>:

Size exclusion chromatography or gel electrophoresis

Sedimentation analysis

Light scattering

Characterization of polysaccharides: methods

• <u>Molecular structure</u> (atom connectivity, anomeric configuration, conformation):

Nuclear magnetic resonance (¹H and ¹³C NMR, COSY, NOSY)

X-ray and neutron diffraction of simple well defined oligosaccharides

• <u>Supramolecular structure and interactions</u> (crystal packing, hydrogen bonding):

Small angle x-ray scattering

Small angle neutron scattering

Solid state NMR techniques

AFM and EM imaging

Computational approaches (molecular dynamics)

Polysaccharide classes to be discussed

• NEUTRAL

cellulose, hemicelluloses, starch

• POLYCATIONIC chitin, chitosan

- POLYANIONIC
- glycosaminoglycans

Cellulose

 β -(1,4)-glycosidic bond

glucan = glucose polymer

- Main component of plant cell wall
- Most abundant organic molecule on Earth (1.3x10⁹ tons biosynthesized annually)
- One tree generates ~ 14g of cellulose/day
- 100-200 x 10⁶ tons processed annually for industrial use (paper, textiles)
- Natural cellulose is never pure and is typically contaminated with hemicelluloses, pectin and lignin.
- Cotton fiber consists of 94% cellulose.

Structure of the plant cell wall

lignin

cellulose

fibril

- Primary cell wall: ~ 8% cellulose the rest are hemicelluloses, lignin and proteins
- Secondary cell wall: ~ 95% cellulose

Cellulose biosynthesis

Molecular structure of cellulose

OH

 All substituents are in equatorial positions around a ring in a stable ⁴C₁ chair conformation:

Considerably rigid chain with restricted rotation

around diequatorial β -(1,4) glycosidic bonds

Cellulose has an extended helical structure

- Single 2-fold helix
- 10.36 Å periodicity
- Stabilized through hydrogen bonding:

 O_3H-O_5 H-bond 2.75 Å

gt

HO

.OH

OH

gg

2 ,OH

3

ΟH

gt

Three low energy conformations of C₆ hydroxyl group :

ЮH

 O_2H-O_6 H-bond (2.87 Å) in a *tg* conformation

OH

tg

tg

Supramolecular structure of cellulose

- Crystalline segments interrupted by amorphous regions
- Degree of native cellulose crystallinity ~ 60% (cellulose I)

cellulose helices form sheets stabilized by H-bonding:

Microfibril

Allomorphs of natural cellulose I, α and β

Cellulose Ia:

- monoclinic unit cell
- two parallel chains
- close packing
- 2-fold screw
- O_6H in tg
- intrachain O₃-O₅ H-bonds
- inter-chain H-bonding
- no inter-sheet H-bonds

Cellulose I_β:

- triclinic unit cell
- two parallel chains
- different confromations
- 2-fold screw
- all O₆Hs in tg
- intrachain O₂-O₆ H-bonds
- inter-chain H-bonding
- no inter-sheet H-bonds

Nishiyama, Langan, Chanzy JACS 2002, 124, 9074–9082.

Polarity of cellulose crystallites (I_{β})

<u>(110) β</u>

<u>(1-10) β</u>

<u>(110)</u>

rough with exposed

OH groups

hydrophilic

<u>(200)</u>

smooth with exposed C-H groups <u>hydrophobic</u>

Supramolecular interactions with cellulose surfaces

Molecular mechanics program, Assisted Model Building with Energy Refinement (AMBER) Woodcock et al *Biopolymers* 1995, 36, 201

Interactions of cellulose in biological settings

- <u>Water</u>
 - MD simulation, Gronengen Molecular Simulation System (GROMOS) force field.
 - Only the surface layer of the crystalline phase interacts in water.

- Water becomes ordered at the crystal surface.
 - Similarly the upper most cellulose
 molecules become disorganized due to
 loss of intra-chain hydrogen bonding.

Heiner and Teleman Langmuir 1997, 13, 511

Interactions of cellulose in biological settings

Houtman, C.; Atalla, R.J. *Plant Physiol*. 1995, 107, 977

Chemical modification of cellulose

exhibit lower propensity for chemical modification

Cellulosic nanomaterials: tunicate whiskers

Tunicate

crystallinity of nanowhiskers decreases with diameter due to increase in the proportion of disordered surface chains high aspect ratio ~ 26 nm x 2 μm

Mechanically adaptive cellulose materials

Tensile storage modulus of dry PVA/ whisker film as a function of temperature: Tensile storage modulus of PVA/whisker film in cerebrospinal fluid at 37°C:

Hemicelluloses of terrestrial plants

<u>Pectin</u> is a major component of the middle lamella and the primary cell wall of terrestrial plants. It helps bind cells together and allows for growth.

Hemicelluloses of terrestrial plants

Hardwood: e.g., birch, alder, balsa, hickory, mahogany, maple, oak, teak, or walnut.

<u>Softwood</u>: e.g., cedar, fir, juniper, pine, redwood, spruce, or yew.

Hemicelluloses of marine algae

Starch

HO

 2/3 of carbohydrate calories come from starch

OH

НÒ

HO

Ο

Amylopectin-branched polymer

OH

HO

HO

OH

HO.

Ιнό

OH

HO

HÒ

m

HÒ

HO.

Slow breakdown

 α -(1,6)-glycosidic branch

ЭН

n

ΗÓ

Amylose/Amylopectin ratio (~ 1:3) is characteristic for different grains:

	% amylose
Potato	18-23
Rice	16-30
Rye	24-26

Amylose and amylopectin form helical structures

- amylose helices contain six α -Glc units per unit cell (helical turn) and three to four molecules of water of hydration
- left-handed helices being slightly more energetically favorable

Prof. Robert J. Lancashire, The Department of Chemistry, University of the West Indies,

Amylopectin structure

Chains in amylopectin:

- A = no branches and linked via reducing end
- B = contains branches but no reducing end
- C = contains reducing end

Starch granule

Sizes and shapes of granule range from < 1 μ m to > 100 μ m and depend on grain.

positive birefringence due to a radial organization of the crystallites

alternating crystalline and amorphous layers

Starch granule and supramolecular structure

Gelatinization of starch of different botanical origin

Charles J. Knill and John F. Kennedy

Gelatinization of starch

(GuelphCerealLab, https://youtu.be/L6vYxYE1jOg)

Enzymatic depolymerization of starch

Ismaya et al, DOI: 10.5772/51325. www.intechopen.com/

Cationic polysaccharides chitin and chitosan

- Chitin is the second most abundant organic molecule on Earth
- but only 10k tons produced annually

- Copolymers of glucosamine (GlcN) and *N*-acetylglucosamine (GlcNAc)
- Acetyl groups provide hydrophobic character
- Amino groups (especially when protonated) impart hydrophilic character
- Chitosan is an amphiphilic polymer

Stiffness of chitosan is a function of F_A

Affinity of chitosan for metal ions

• Selectivity of chitosan toward metals:

$$Cu > Hg > Zn > Cd > Ni > Co = Ca$$

Applications in: floculation/water treatment

biomineralization and fabrication of hybrid nanomaterials

magnetic nanoparticle/chitin composite:

Siglreitmeier et al. Beilstein J. Nanotechnol. 2015, 6, 134–148.

Applications of chitosan in wound healing and drug delivery

- Polycationic chitosan can serve as a bioadhesive and has coagulant properties.
- Syvek trademarked material for surgical sutures and pads.
- Biodegradability and drug loading can be tuned by optimizing F_A and through chemical modification of free NH₂ groups.
- Drug delivery to negatively charged mucosal membranes

Applications of chitosan in non-viral gene delivery

Chitosan:

C(15, 190): $F_A - 0.15$, Mw 190 KDa C(49, 98): $F_A - 0.49$, Mw 98KDa

increasing charge ratios and lower F_A provide more effective DNA packing

0 0.6 1.2 1.8 2.4 3.0 3.6 4.2

Charge ratio (+/-)

Chitosan with $F_A = 0.15$ effectively delivers the chloramphenicol acetyl transferase (CAT) gene in HEK293 cells.

Artursson and co-workers Gene Therapy (2001) 8, 1108

Anionic polysaccharides – glycosaminoglycans Mammalian Extracellular Matrix (Cartilage): Aggrecan Proteoglycan Hyaluronan **Protein fibers** (Collagen)

Copyright @ 2011 Wolters Kluwer Health | Lippincott Williams & Wilkins

Aggrecan (and our cartilage) degrades with age

Buckwalter et al Bone Joint Surg Am, 1997 Apr; 79 (4): 600 -11

Structure of hyaluronic acid (HA)

• Extensive intramolecular H-bonding.

charge repulsion provides extended chain conformations

- Mw ranges from several kDa to 10's of MDa
- Biological activity of HA depends on Mw (or DP).
- Low Mw HA fragments have pro-inflammatory properties.
- High Mw HA provides mechanical support and water homeostasis in tissues.
- Tumor cells secrete hyaluronidase enzymes to break down the matrix and allow for their invasion and tumor growth.

Sulfated glycosaminoglycans

In neural tissues, CS either promotes or inhibits neural growth depending on sulfation pattern:

Surface proteoglycans modulate biological functions

Proteoglycans, through their glycosaminoglycan chains, regulate growth factor signaling

Sequences of HS glycans encode binding information

Figure stolen from Esko

GAG on proteoglycans organized receptor complexes

FGFR1 membrane Schlessinger *et al Mol. Cell* (2000)

Yayon *et al Cell* (1991) Rapraeger *et al Science* (1991)

HS GAGs are essential in vertebrate development

Johnson *et al Stem Cells 25*, 1913 (2007) Kraushaar, Yamaguchi, and Wang J. Biol. Chem. (2010)

Synthesis of neoproteoglycans and their interactions with FGF2

Neoproteoglycans engage FGF2 in a sulfate-dependent manner

Lipid-terminated neoproteoglycans remodel the glycocalyx of *Ext1^{-/-}* mESCs

Neoproteoglycans enhance FGF2 binding and activate Erk1/2 phosphorylation

Neoproteoglycans induce neural differentiation

Huang, Smith, Trieger, Godula JACS (2014)

Cyclodextrins - cavitands with tunable sizes

http://unam.bilkent.edu.tr

Cyclodextrins form inclusion complexes

http://unam.bilkent.edu.tr

Polymers can be threaded through the cavity of CDs

Harada et al Chem. Soc. Rev., 2009,38, 875-882

α , β -Alternating supramolecular polymers of cyclodextrin

Harada et al Chem. Soc. Rev., 2009,38, 875-882

Helical supramolecular cyclodextrin polymers

Masahiko et al J. Am. Chem. Soc. 2005, 127, 2984-2989.