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PREFACE 

The main purpose of this monograph is to present a theoretical analysis 
of the property of polyeleetrolytes. Polyeleetrolytes exhibit various 
interesting phenomena because of their dual character as highly charged 
electrolytes and flexible chain molecules. Very low ionic activity and 
extreme sensitivity of molecular conformation to the ionic condition, for 
example, have strongly attracted people in the field of physical chemistry 
of electrolytes and polymers. 

. 

In the past twenty years, most of those phenomena have become 
theoretically understandable. Idealized treatment based on the simplest 
model has been found to be very useful to extract essential features of 
polyeleetrolytes. In this sense, the theory of polyelectrolytes yields an 
excellent example in which the theory is highly evaluated in its intrinsic 
function. 

Therefore, in this monograph I have tried to draw a unified picture of 
"the polye!cetrolytes" on the ba&is of fundamental laws of statistical 
thcrmodynamics without complex mathcmatics and dctailed chemistry. 
Expcrimental data arc choscn only ror this purpose and elTorts arc made 
for visualizing the theoretical results. Grcat carc is given to making up a 
consistent framcwork of the theory for comprehending polyelcctrolytes 

as a whole. 
Accordingly, this monograph is far from a full description of past 

experimental and theoretical works on polyelectrolytes. As shown in the 

Contents, the problems treated arc very limited. Emphasis is placed on 

thermodynamic equilibrium properties. Dynamic behaviors of poly-
••• 
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electrolytes arc not much discussed except in  a few sections. Nevertheless, 
i t  is hoped that this monograph can give enough basic knowledge on the 
possible sources of various characteristics of polyelectrolytes. 

Biological systems such as muscle, membranes, and protoplasm in  
general may be regarded as organized polyelectrolytes. Some of their 
properties can be understood from this standpoint, and others can not. 
The theory of polyelectrolytes must be extended in  this direction. This 
monograph is expected to present a base for such extension. 

Description of this monograph is made mainly along the line of the 
study developed in the group of polymer physics and molecular biology in  
Faculty of Science of Nagoya University. I wish to express sincere 
thanks to all colleagues in this group, particularly to Dr. N. Imai for his 
long collaboration. Stimulating discussions with him have enabled me 
to continue the work on polyelectrolytes. Drs. S. Asakura, A. Ikegami, 
and A. Minakata in this group also have made fine contributions in this 
field and given me useful suggestions. 

I was originally initiated into the field of polyelectrolytes by Professor 
1. Kagawa i n  Faculty of Engineering of this University, who made pioneer­
ing works on polyeleetrolytes in  Japan and proposed very early the idea 
of the counter ion condensation. Professor M. Nagasawa in  the same 
Faculty has led me to theoretical analyses by giving beautiful experi­
mental results. To these researchers I wish to express sincere thanks. 

Publication of this monograph was made possible by critical reading 
of the manuscript by Professor J. Marinsky. I am very grateful to him. 

Nagoya, Japan FUMIO OOSA WA 
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Chapter 1 

INTRODUCTION 

I. CHARACTERIZATION OF POLYELECTROLYTES 

Polyelectrolytes are macromolecules having many ionizable groups. In 
solution they are dissociated into polyvalent macroions (polyions) and 
a large number of small ions of opposite charge (counter ions). The high 
charge of the macroion produces a strong electric field which attracts 
these counter ions. This strong electric interaction between the polyvalent 
macroion and counter ions is a source of the characteristic properties of 
polyelectrolytes. The activity coefficient of counter ions is very low even at 
low concentrations of polyelectrolytes, and the die1ectric constant of 
polyelectrolyte solutions is extremely large. 

The electrical effect of the highly charged macroion is expected to be 
screened when an increasing concentration of small ions is introduced, 
e.g., by the addition of simple electrolytes. Experiments, however, lead to a 
simple empirical law which describes the thermodynamic and transference 
properties of polyelectrolyte simple electrolytes mixtures as a .super­
position of the contributions of ions from polyelectrolyte and the simple 
electrolytes. This result is also attributable to the characteristic interaction 
between the polyvalent macroion and small ions. 

As in the case of nonelectrolytic macromolecules, the morphology of 
polyvalent macroions is one of the central problems of polyelcctrolytes. 
Most of the macroions are long flexible chains having a large extension in 
solution. Their size and shape depend on the charge and the interaction 
with counter ions. With increasing charge, the flexible chain changes its 
shape from a contracted random coil to a fully extended one. This cor-
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relation between the shape or the conformation and the electric state is 
another source of the characteristic properties of polyelectrolytes. Some of 
the maeroions can form regular sstructures, for example, helical ones, by 
specific intrachain and/or interchain binding. In this case, the idea of the 
discrete states of macroions is introduced and the transition between them 
can be analyzed as another example of the morphology of polyelectrolytes. 

The coupling bctween the conformation and the electric state at the 
molecular level is organized into typical systems of energy transformation 
or information transduction when polyeleetrolytes make higher order 
structures. The polyelectrolyte gel, as is well known, can be a trans­
former of chemical energy to mechanical work. 

The effect of i nteractions among ionized groups, counter ions, and 
solvent molecules is amplified by the high charge density of the maeroion. 
A small difference in the interaction may have great influence on the 
propertics of polyelectrolytes. Therefore, polyelectrolyles are most 
sensitive to structure and environment. The complete selective binding of 
polyvalent counter ions by the macroion and the sensitive insolubilization 
of the macroion by specific small ions are examples of the result of such 
amplification. The analysis of structure- and enviro-sensitive properties 
from this standpoint is a method of approaching the complicated problem 
of the origin of polyelectrolyte specificity. 

Systematic studies of synthetic polyelectrolytes, whose chemical 
structures are well defined through their -controlled construction from 
repeating units, have been made. A simplified model, a flexible chain with 
many charges, is in most cases an appropriate base for the theoretical 
interpretation of properties common to various polyelectrolytes. The main 
purpose of this monograph is to develop the theory by using a simplified 
model to which idealization and approximation will be freely applied, 
if they appear to be useful, in order to reach an understanding of the 
fundamental nature of polyelectro!ytes. It is intended here to treat the 
electrostatics, thermodynamics, and morphology of polyelectrolytes 
systematically. A consistent picture of polyelectrolytes will  be obtained by 
elucidating the interrelation among various characteristic properties. 
Limited reference to experimental and theoretical results obtained with 
different polyeJectrolytes by various researchers will be made only to 
facilitate this objective. 

Another aim of this monograph is to provide insight with regard to the 
biological functions of natural polyelectrolytes such as proteins and 
nucleic acids (biopolymers). The polyelectrolyte properties of biopolymers 
are expected to be in the background o f variolls biological phenomena. 
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1I. CHEMICAL STRUCTURE 
Several examples o f  the chemical Rtructure of the simplest polyelcctro­

lyles arc given in Fig. I. The first of these, polyvinyl sulfonic acid, is shown 
to be completely dissociated i nto macroions having many negative 
charges and hydrogen ions when dissolved in water. In thc second example, 
polyacrylic acid, a macromolecule most frequently uscd in experimental 
investigations of polyelectrolytes, the degree of dissociation orthe carboxyl 
groups is small in pure water. On the addition of alkali, e.g., sodium 
hydroxide, the carboxyl groups arc dissociated and the macroion gains an 
increasing number of negative charges, producing sodium counter ions. 
The number of dissociated groups or charges depends on the amount of 
added alkali and is reflected in the pH value of the solution. Accordingly, 
the chemical structure of the maeroion in the solution may be expressed 
as a copolymer of monomers having COOH groups and COO- groups. 
At a given pH value and concentration of macroions, only the average 
proportion of these groups is determincd and the solution is a mixture of 
macroions that have different distributions of two thermally fluctuating 
groups. When alkali equimolar to the acidic groups is added, the sodium 
polyacrylatc macroions in the resulting solution arc almost fully dis­
sociated. 

The third example in Fig. I is a copolymer of two kinds of monomers, 
vinyl alcohol and acrylic acid. The latter monomer is charged by the 
addition of a sufficient amount of alkali. The number of charges per 
macroion is regulated by the ratio of the two kinds of monomer in the 
copolymer. In this case the distribution of charged groups in each 
copolymer is determined by its original chemical structure. 

The stereoregularity coming from the arrangement of neighboring 
monomers is also a factor in polyelectrolytes; e.g., in the case of poly­
methacrylic acid, isotactic, syndiotactic, and atactic potyacids are \, II J • 

distinguished by their structure and properties. 
The fourth example of chemical structure presented in Fig . I is the 

polybase. polyvinyl-N-II-butylpyridiniumhydroxide, which is positively 
charged by the addition of acid 

-

The next two examples in Fig. I arc the polypeptides, polyglutamic acid 
and polylysine. They contain optically active carbon and can be composed 
of lwo kinds of monomer, I-amino acid and d-amino acid. As a conse­
quence, poly-I-am ino acid must be distinguished from the copolymer 
poly-d-l-amino acid. Proteins are generally copolymers of various kinds of 
[-amino acids. They have both positive and negative charges on side 
chains. 
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FIG. I. Examples of the chemical structures of polyelectrolytes. (a) Polyvinyl sulfonic 
acid; (b) Polyacrylic acid partially neutralized by sodium hydroxide; (c) Copolymer of 
acrylic acid and vinyl alcohol; (d) Poly-Non-butyl pyridinium hydroxide; (e) Poly. 
glutamic acid and polylysine; (f) Deoxyribonucleic acid neutralized. 



1. INTRODUCTION 5 
The last example in Fig. 1 presents the chemical structure of a natural 

polyelectrolyte, deoxyribonucleic acid (DNA), a polynucleotide in which 
the main chain is formed from the repetition of a definite unit and each 
side chain has one of four kinds of base. 

The degree of polymerization, i.e., the number of monomers in a 
polyelectrolyte molecule, is usually 102 to 104 but may be more. In some 
cases the degree of polymerization i s  continuously controlled from the 
monomer limit to almost infinity. With syn�hetic polyelectrolytes, however, 
it  is almost impossible to obtain a solution of polyelectrolyte in which all 
macroions have the same degree of polymerization and the same chemical 
structure. On the other hand, with natural polyelectrolytes, such as 
purified protein, all solute macroions may have the same chemical 
structure. 

The length of each monomer along the chain is about 2.5 A in the first 
example of Fig. 1 .  Since the radius of each atom in  the main chain is of the 
order of  1 A, the main chain is apparently a flexible cylinder as shown in  
Fig. 2 for models of polyacrylic acid and DNA. When the side chain of 
ionizable groups is short, the maeroion looks like a cylinder having many 
charges on its surface. When i t  is long, the macroion looks like a cylinder 
having short branches from the surface, the ends of which are charged. 

III. PHYSICAL MODEL 
The flexibility of the macroion comes from the freedom of the internal 

rotation of bonds in the main chain. In  the first example of Fig. I each 
bond, as is well known, can rotate around the neighboring bond, keeping 
the bond angle constant. The intrinsic free energy of the rotation is a 
function of  the relative position of three neighboring bonds. Usually 
there are three energy minima, one at the trailS (T) position and two at the 
gauche (G) positions. The difference in energy between the trailS position, 
corresponding to the stretched form of the chain, and the gauche positions, 
corresponding to the contracted form, is a most important factor on 
determining the flexibility of  the chain. 
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FIG" 2. Examples of three-dimensional structures of polyelcctrolytcs. (a) Po]yacrylic 
acid; (b) Deoxyribonucleic acid. 



1. INTRODUCTION 7 

In polypeptides the four neighboring atoms along the main chain 
must lie in the same plane. Rotation is possible only around the two kinds 
of bonds. The polypeptides are regarded as a series of planes linearly 
connected with two freedoms of rotation. 

The macroion as a flexible chain thus has an extremely large number of 
possible conformations that arc specified by a series of variables designating 
the rotation .angles of neighboring bonds. The free energy of each con­
formation is determined not only by the intrinsic free energy of the 
rotation but also by the interaction among side chains, main chains, 
and solvent molecules or ions. The conformation of such a chain has two 
classifications, random coil and helix. In the random coil the series 01 
rotation angles of successive bonds specifying the conformation has no 

long range regularity, i.e., there is no regular repetition of a certain any-Ie 
or angles. The mean square of the end-to-end distance of the chain is 
proportional to the number of monomers if the number is sufficiently 
large, independent of the flexibility of the chain. In the helix, the series of 
rotation angles has a long range regularity; there is a repetition of an angle 
or angles. The mean end-to-end distance is directly proportional to the 
number of monomers. 

In the case of the random coil, there are usually a number of con­
formations having equal or approximately equal free energies. Each chain 
assumes these conformations from time to time. The two kinds of eon-• 

formation, random coil and helix, arc illustrated in Fig. 3a, b, and c. The 
random coil in Fig. 3a is only one of the many equally possible con­
formations. The rapid transformation among these conformations is an 
essential property of the random coil. The number of equally possible 
conformations and the rate of the transformation are determined by the 
structure of the chain and the environmental condition. 

The random coil conformation does not necessarily refer to a spherically 
contracted state of the chain. Extended and contracted states fit in the 
random coil category if there are no regularly repeated structures. Actually 
charged macroions can assume various random coil conformations over 
a wide range of extension, depending on the charge and the environment. 
At extremely high charges they may take a rodlike or cylindrical con­
formation. At low charge or in the absence of charge, they take a spherical 
conformation. The spherical random coil can have a wide range of the 
apparent radius. For example, polyaerylie acid, whose degree of poly­
merization is 1000, takes a spherical random coil form with a rajius of 

about 200 A at low pH. With increasing pH, the macroion extends 
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first spherically and then becomes rod like. Its eventual length i s  2500 A 
in its most stretched form. The average local curvature of the chain 
decreases gradually, as shown in Fig. 3d. 

(0) 

(b) 

(1) 

(2) (3) 
(e) 

• • 

(2) 
(3) 

(d) 

FIG. 3. Different conformations of linear chainl ike macroions. (a) Random coil; (b) 
Helix; (e) Different helical conformations expressed by sequences of internal rotation 
angles; (1) TIT . . . , (2) TGTG ... , (3) TGGTGG ... ; (d) deformation of contracted random 
coil to extended one. 
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1 V. ELECTRICAL POTENTIAL AROUND THE MACROION 

Let us consider a macroion in the spherical random coil conformation. 
Many discrete charges are distributed on the macroion as shown in 
Fig. 4a. Each of them is the source of an electric field. The resultant field 
in and around the macroion is given by the superposition of contributions 
from these charges, if the contribution from counter ions is neglected. 

(a) 

I I 
I 

I 
I 

I 
I 

I 

(2) 
I I 

.....'-------(1) 
I 

I 
I 

I 
I I 

I 
I I 

(e) 

(b) 

• 

(2) 

(d) 
FIG. 4. (0) A spherical macroion with charged groups. (b) The potential profile along a 
line crossing the volume occupied by the spherical macroion. (c) A cylindrical macroion 
wilh charged groups. (d) The potential profiles along the lines crossing the volume 
occupied by the cylindrical macroion; (1) perpendicular to the cylinder. (2) along the 
cylinder. 

The profile of the potential along a line passing through the macroion 
is shown in Fig. 4b. At a point where the line passes a charge, the potential 
curve has a deep and sharp hole. The potential curve in and near the region 
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occupied by the random coil has the form of a trough as a result of the 
superposition of many such holes. The slope of the curvc in the trough is 
rather gradual. Beyond thc region occupied by the random coil there is a 
sharp rise in the potcntial. The potential profile is well represented by a 
trough with many holes. 

The potential profile of an extended rodlike macroion of Fig. 4c is 
shown in Fig. 4d. Along a line parallel to the rod, the potential takes the 
form of a trough with sharp holes; along a line perpendicular to the rod 
it has a deep valley at the position of the rod. 

Let us suppose that a random coil occupies a spherical volume v of 
radius a. If n ionized groups of the charge -eo are uniformly distributed 
in this volume, the potential drop at the edge is given by neo/soa, where 
So is the dielectric constant of the solvent. The ratio of the potential energy 
of a charge +co at the edge to the kinetic energy kT is neo2/soakT. If the 
fully neutralized polyacrylic acid ion with a degree of polymerization of 
1000, the length of which is about 2500 A in the most stretched state, is 
coiled into a sphere with a radius,1 of 200 A, the value of the above ratio 

, 

is of the order of 35 in water at ropm temperature. Many counter ions are 
consequently forced to enter into the spherical region of the potential 
trough. As counter ions enter into the sphere, the potential drop is 
decreased by the cancellation of the charge. However, even with 90% 
of the counter ions in the sphere and 10% of the charge remaining 
uncancelled, the potential drop is still larger than the kinetic energy, the 
value of the ratio being about 3.5. The number of counter ions in the 
central region of the spherical trough is larger than the number at the 
peripheral region. The base of the potential trough thus becomes flatter 
and the potential drop at the edge becomes better defined when the 
presence of counter ions is taken into account. 

A similar examination can be made of the rodlike macroion. If n 

charged groups are uniformly distributed on a rod oflength / and radius a, 
the potential drop from the distance R to the surface a of the rod is given 
by 2(neo/so/) In (RIa), if / > R � a. The ratio of the potential energy to the 
kinetic energy is equal to 2(ne02/sokTI) In (R/a). If 1l = 1000, 1= 2500 A, 
and RIa = 100, this ratio is about 26 in water at room temperature. Most 
of the counter ions must be bound to the rod. 

For a macroion in the coiled conformation, the most realistic features 
of the potential which is derived from the model are as follows. Each 
charged group makes a sharp and deep potential hole at its position. 
Each linear part of the chain makes a sharp and deep potential valley 
along its length, as shown in Fig. 5. The coiled chain as a whole makes a 

• 



L INTRODUCTION 1 1  

(spherical) potential trough in its apparent volume. The whole volume of 
the solution is divided i nto four potential regions; holes at charged groups, 
the cylindrical valley along the chain of the macroion, the spherical 
trough in  the apparent volume occupied by the macroion, and thc region 
outside the macroion. A macroion in the extended conformation has no 
spherical potential trough. 
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FIG. 5. Three regions for counter ions bound in and around the macroion. (1) The 
potential hole at charged groups; (2) the potential valley along the cylindrical region 
occupied by the chain of the macroion; (3) the potential trough in the region apparently 
occupied by the macroion as a whole. The area marked by (4) is the outside region for 
free counter ions. . 

Counter ions are distributed in these four regions. Counter ions in the 
first thrce regions can be defined as bound to the macroion. However, they 
are mobile in the cylindrical potential valley and in the spherical potential 
trough. When trapped by the sharp potential holes, they are localized at 
charged groups, forming ion pail'S. The binding of counter ions to the 
macroion may be classified as localized and mobile as shown in  Fig. 5. 

If the assembly of charged groups and counter ions in  the potential 
valley or trough is  regarded as a closed system of an electrolyte solution, 

• 
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the relation between the two kinds of bound counter ions, localized and 
mobile, is analogous to that between free ions and ion pairs in simple 
electrolyte solutions. In the case of n charged grou ps uniformly distributed 
in � spherical volume v, the concentration of charged groups is given by 
nlv which, in the previous numerical example, is equal to 0.06 mole/liter. 
At this concentration the degree of ion pair formation , i.e., localized 
binding, is small in the case of strongly dissociative groups. In the potential 
vaHey along the chain, however, the concentration of counter ions is 
much higher than the above value, 0.06 mole/liter, for the uniform 
spherical distribution. Some of counter ions in the potential valley are 
then localized at holes. 



Chapter 2 

DISTRIBU'IlON OF COUNTER IONS 

1. EQUILIBRIUM BETWEEN BOUND AND FREE COUNTER IONS 

According to the previous discussion, counter ions in a polyelectrolyte 
solution are classified into three categories: counter ions freely moving 
outside the region occupied by macroions, those bound but mobile in this 
region, and those bound to individual charged groups of the macroion. 
The second category may be further divided to distinguish counter ions 
bound but mobile in the potential valley along the chain and those in the 
potential trough made by the coiled macroion as a whole. The equilibrium 
between free counter ions and bound but mobile ones is most important in 
determining the thermodynamic properties of polyeJectrolytes. The 
essential feature of this equilibrium can be extracted by using the following 
two-phase approximation proposed by the author (1). 

In a polyelectrolyte solution each macroion has a large charge. The 
repulsive force acting between them, as long as the charge is not completely 
cancelled by bound counter ions, tends to prevent their overlap during 
their movement. The whole solution can be divided into two regions. One 
region is occupied by macroions, the total volume of which is equal 
to Nv, where N is the total number of macroions and v is the apparent 
(effective) average volume occupied by each macroion, as shown in 
Fig. 6. The other region is the space free of macroions; its volume is equal 
to V - Nv, where V is the total volume of the solution. 

In the absence of simple electrolytes the total number of counter ions 
of charge eo in the solution is equal to the total number of charges of the 
macroions. Some of the counter ions, the number of which is denoted by 

13 
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II', move in each volume v and the remaining counter ions, the number of 
which is liN-II' N, move in  the volume V -Nv. If the average potential 

a 

R.. I 

�' , , 

I 

FIG. 6. Spherical macroions in a solution. 

difference between the two regions is denoted by 81/1, the distribution 
equilibrium between bound counter ions and free <tounter ions i s  given by 
the equation 

(II-II*)(V = II*N(V-Nv) exp (-eo81/1(kT) (1) 

or 

In (I  -fJ)(fJ = In cfiI( l - ¢)-eo81/1/kT (2) 
where 11* = II-II', P = 11*/11, and the apparent volume concentration 
Nv/V is denoted by ¢. The quantity -n*eo defines the apparent charge 

, 
of each macroion, and fJ is  the apparent degree of dissociation of the 
macroion. The average potential difference iNI is a function of 11* and the 
size and shape of the macroion. 

On the basis of this two-phase approximation, two typical cases are 
analysed below. 

• 

II. SPHERICAL MACROIONS 

Let us consider macroions occupying spherical volume v of radius a 
in a solution, the dielectric constant of which is  Co (Fig. 6). If the average 
distance between centers of two neighboring macroions is  denoted by 
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2R, the average potential difference between the inside and the outside of 
the macroion is approximately given by 

(jl/l = -(n*eo/6o) (l/a-I/R) (3) 

Since R is equal to the radius of the volume of the solution per macroion, 
namely (4x/3) R3= V/N or (a/R)3=Nv/V=ljJ, the equation for the 
distribution equilibrium may be rewritten as 

(4) 

where P = ne/ /tokTa, which is a nondimensional quantity giving a 
measure of the intensity of the potential of the macroion. The product 
fJP is proportional to the apparent macroion charge n*eo• At low con­
centrations, the above equation is reduced to 

In (1-fJ)/ fJ = In ljJ + fJP (5) 

The relation between the apparent degree of dissociation f3 and the 
apparent volume concentration ljJ for a = 200 A at different values of the 
number of charges (200 and 450) or of P (8 and 16) is shown in Fig. 7a. 
The apparent degree of dissociation increases with decreasing concen­
tration, tending to unity at zero concentration. The value of P is smaller 
for larger values of n or P. The number of free counter ions increases 
very slowly with II, as shown in Fig. 7b. Equation (4) shows that for large" 
values of P, the value of fJP or n* is insensitive to the increase of P or n. 

In this approximation of the distribution equilibrium, the activity of 
counter ions must be proportional to the molar concentration of free 
counter ions n*NJ(V-Nv) in the volume outside of the macroions. 
Since the total molar concentration of charged groups or counter ions in 
the solution cp is equal to nN/V, the activity coefficient y is given by 

y = (n*N/IlN)(V/(V-Nv)) = fJ/(I-I/J) 
I 

(6) 

This approximation also requires that the osmotic pressure of the solution 
against the solvent (water) be proportional to the concentration of free 
counter ions outside of: the macToion, and the osmotic coefficient g be 

• 

equal to the activity coefficient p. The quantity /1/(1- ifJ) is obtained from 
Eq. (4) as a function df the volume concentration <p and the charge P. 
This result is includeq. in Fig. 7a. With decreasing concentration of 

, 

macroion the activity coefficient slowly decreases at high concentrations, 
reaching a minimum at about I/J = 0.05, and then increases at low con-, 
centrations, approaching unity at zero concentration. 

, 
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FIG. 7. (a) Relations of the apparent degree of dissociation of counter ions p and the 
activity coefficient of counter ions y to the apparent volume concentration ? at various 
values of the charge density P in solutions of spherical macroions. (I) P = 8 and (2) 
P= 16. ( ): The activity coefficient y; (- -): the degree of dissociation P(1). 
(b) Relations of the apparent degree of dissociation P or the number of the effective 
charge n* to the charge density P or the total number of charged groups n at various 
concentrations c, of macroions in solutions of spherical maeroions. The radius of the 
macroion a = 350 A. GokT/eo' = 1.4 X 107 cm-I and the concentration of macroions 
c. is expressed in monomer -molc/liter( 4).( c) Theexperimental relation between the osmotic 

, 

coefficient. g. and the concentration of macroions. c. (2). (1) Sodium carboxymethyl 
amylose (linear polymer); (2) todium carboxymethyl amylopectin [branched (spherical) 
polymer]; (3) sodium carboxymethyl glycogen. 

-
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It is generally expected that the activity coefficient of the solute should 
become unity at extreme dilution and should decrease with increasing 
concentration. The above change of the activity of counter ions with 
dilution that is predicted by the present approximation is thus reasonable. 
As is shown in Fig. 7c (2), this behavior of y has indeed been observed in 
the casc of a kind of branched chain macroion, which probably takes a 
spherical form in the solution over a wide range of concentration. 

It must be pointed out, however, that small values of the molar 
(weight) concentration of polyelectrolytes correspond to fairly large values 
of the apparent volume concentration because of the extension of the 
macroion. The radius of the free volume R is related to the concentration 
cp (mole/litcr) of charged groups or counter ions in the solution through the 
equation 

(7) 
For example, when 11 = 1000, the concentration cp = 0.1 mole/liter 
corresponds to R = 150 A and c p = 0.001 mole/liter to R = 700 A. If the 
macroion is sufficiently coiled, its radius a can be considerably smaller than 
the above values of R and the apparent volume concentration will be small. 
However, if it is somewhat extended and the radius a is as large as 230 A, 
about 1/10 the length of the most stretched form of the macroion of 
II = 1000, the apparcnt volume concentration is 0.04 at cp = 0.001 mole/ 
liter and attains a value of unity at c p = 0.03 mole/liter. The correspon­
dence of such low values of cp to large values of 4> suggests that the isolated 
spherical random coil model for chainlike macroions is applicable only in 
a very limited condition, because at large 4> it is not reasonable to divide 
the solution into spherical volumes occupied by macroions and outside 
volumes unless the macroions are compact spheres of a fixed radius. More­
over, the highly charged macroions at low concentrations are in a more 
stretched conformation. In other words, at such low concentrations of 
macroi01.1s and counter ions where the spherical free volume model may be 
applied, most real chainlike macroions can not be in the spherical form. 

III. RODLIKE OR CYLrNDRICAL MACRO/ONS 
Macroions as flexible chains having many charges are usually in the ex­

tended conformation. The end-to-end distance of each chain is longer than 
the average distance between neighboring chains, except in the extremely 
dilute solution. In such circumstances the rodlike or cylindrical model 
of macroions is preferable to the spherical model (Fig. 8). Let us suppose 
that each macroion is stretched to a cylindrical shape and the charged 

• 
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groups are distributed in a cylindrical region of vol ume v and radius a in 
which the potential profile is of the form shown in Fig. 4d. The average 

R ...... 

• 

FIG. 8. Cylindrical macroions in a solution. 

potential dilTerence b", betwecn the inside and the outside of this volume 
is given approximately by 

bt/l = -2(n*coleol) In (Ria) (8) 

where 2R is the average distance of two neighboring rodlike macroions or 
R is thc radius of the cylindrical free volume of each macroion, and 
1 is the end-to-end distance of the macroion. Accordingly, 1r:R21 = V/N 
and rr.a21 = v; therefore a2/R2 = Nv/ V = <p. If the average distance between • 

neighboring charges on the macroion along the cylinder is denoted by 
d == lIn, the potential difference is expressed as 

(9) 

Strictly speaking, this expression is valid only for a rod of infinite 
length in a cylindrical free volume. For rods of finite length I, a term of the 
order of ([3('o/�od)(2/f)(R2 _a2) must be added. However, the influence of 
such a correction is small enough to be neglected if the condition 
2(R2 W)(I - <p) < (1/1» is satisfied. For example, at .p = 0. 1, i f  I> 3R, 
the error does not exceed 10%. If 0/1= 1/1000, Eq. (9) is applicable when 
<p is larger than 2 x 10-4. 

By employing Eq. (2), the distribution equilibrium between bound and 
free counter ions may be written as 

In (1- [3)/[3 = In .pj(l-.p) + [3 Q In (IN) (10) 

• 
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where Q=eo2fcokTd. For the cylindrical model, this nondimensional 
quantity Q i s  the most i mportant parameter determining the intensity of 
the binding of counter ions. It  should be noted that the right-hand side 

, 

orthe above equation is reduced to the form 

( 1 -fJQ) In <p (11) 

for sufficiently small values of 4> . 
Results of some numerical calculation, shown in Figs. 9a and 9b, 

reveal one of the most characteristic properties of polyelectrolytes. At a 
constant length'l of the macroion, the value of Q increases with increasing 
number of charges per ma\croion. The relation between fJ and <p expressed 
by Eq. (10) depends on the value of Q. For values of Q smaller than unity, 
the apparent degree of dissociation fJ increases with decreasing 4> ;  
approaching unity at zero concentration, just as in the case of the spherical 
maeroion. On the other hand, for values of Q larger than unity, fJ docs not 
tend to unity, but approaches I I  Q at zero concentration. The activity 
coefficient, 1', of the counter ions, fJl(l - 4» ,  also approaches I /Q  when Q 
is larger than unity. Thus, at infinite dilution 

l' -+ 1 for 
(12) 

y -+ I IQ for 1 :s: Q 

For large values of Q, with increasing concentration the activity 
coefficient l' docs not decrease but i ncreases stigrrrly. From J::q. ftO) tt is • • 

found that (dfJld4» 4>�o > 0 when Q becomes larger than 2. 
Such behavior of the activity of solute molecules or ions has not been 

observed in  ordinary solutions of noneJectrolytes or electrolytes. In the 
case of polyclectrolytes, however, experiments give results i n  good 
agreement with the theoretical predictions of Figs. 9a and 9b. The data of 
Nagasawa and Kagawa (3) that are presented in Fig. 9c show that the 
activity coefficient of counter ions is very low even at low concentrations of 
polyelectrolyte and is almost constant over a wide range of concentration. 
When the number of charges II is increased with the degree of esterification 
of the polymer, the activity of counter ions changes as expected. At high 
values of Q, the activity is  not increased with n, y being nearly proportional 
to I /Q or 1111, as shown in  Fig. 9d (3). Similar results have been obtained 
in a number of experiments (4). The experimental data i n  Fig. 7c that 
were obtained by Inoue (2) also provide a valuable test orthe present models 
because two kinds of macroions, spherical and linear, are compared. Both 
macroions show the behavior predicted by the above theory. 

• • 
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FIG. 9. (a) Relations of the apparent degree of dissociation of counter iOllS, p, and the 
activity coefficient of counter ions, y, to the apparent volume concentration at various 

values of the charge density Q in solutions of cylindrical macroions; (I) Q = 1,  (2) 
Q = 2, (3) Q = 4, and (4) Q = 8. ( ): The degree of dissociation P; (- -) : the 
activity coefficient y; and (_.) :  the activity coefficient under the condition that y* 
= 0.6 (I). (Sec Section IV). (b) Relations of the number of free counter ions, PQ, to the 
charge density, Q, at various concentrations of macroions in solutions of cylindrical 
macroions; (1) in the limit of dilution, (2) the apparent volume concentration ", = 0.05 
and 0. 1 .  (e) The experimental relation betwcen the activity coefficient of counter ions and 
the concentration of macroions. Sodium polyvinyl sulfate in pure water. The degree of 
esterification (the charge density) ; (I) 0.725, (2) 0.692, (3) 0.740, (4) 0.71 1,  (5) 0.494, 
(6) 0.43 1 ,  and (7) 0.301 (3). (d) The relation of the activity coefficient y (0) and theactiv­

ity yQ ( x )  or the concentration of free counter ions to the degree of esterification (the 

charge density) derived from the data in Fig. 9(e). 
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In water (co = SO) fnd at room temperature, the condition Q = 1 
corresponds to d = 7 A ror monovalent charged groups and counter ions. 
The theory suggests that when thc averagc distance between neighboring 
charges on the macmion becomes less than about 7 A with the increase 
of the numbcr of charges, a further increase of charge docs not resul t  i n  an 
increase of the apparent charge of the macroion even at low concentra­
tions of macroions. The excess number of counter ions arc retained in tile 
cylindrical region along the. macroion. 

In the above model the degree of dissociation and the activity are 
determined by the quantity Q or d, the charge density on the macroion, 
and are independent of the total number of charges, i.e., the degree of 
polymerization of the polyelectrolyte. This estimate of the situation is 
supported by experiments. 

Of course, in actual cases each macroion is n'ot fully stretched to a 

straight rod cven in the extended conformation. It has curvature and takes a 
wavy form. The cylindrical model, however, may be applied to each nearly 
cyl indrical part of the macroion which is  long enough to satisfy the con­
dition that the potential difference is given approximately by Eq. (9). The 
length of the cylindrical part is required to be longer than the distance 
between neighboring cyli nders as shown i n  Fig. 8. For instance, when 
4> = 0.01 (a = 10 A and R = 100 A) and the length of the cylindrical part 
is 200 A, the error in the average potential difference given by Eq. (9) 
is less than 10%. This estimate suggests that the cylindrical model has a 
wide applicability, even when the macroion is coiled to a certain extent. , 

An isolated maeroion in a more or less coiled conformation makes two 
regions for bound but mobile coun ter ions; the cylindrical volume (the 
potential valley) along the chain and the spherical volume (the potential 
trough) apparently occupied by the macroion as a whole. Therefore, 
equi libria must be established among these regions and the outside. The 
equi librium between counter ions in the cylinder (the potential vaHey) 
and in the sphere (the potential trough) may be describcd by an equation 
analogous to Eq. (10), and the equil ibrium between counter ions in the 
sphere and the outside may be descri bed by an equation analogous to 
Eq. (4). At high val ues of the charge density of the macro ion along the 
chain, most of the counter ions arc retained in the cylinder and the 
apparent charge of the chain can not exceed a limit defined by Equation 
(10). Consequently, the concentration of counter ions that are mobile in 
the sphere is  relatively low and not vcry diITerent from the concentration 
of frce counter ions in (he outside region. In this case the spherical region 
assumed above is not important in determining the equilibrium con-
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centration of free counter ions, and the simple cylindrical model can 
adequately explain the experimental facts. 

The theoretical calculation show that the activity coefficient of the counter 
ions does not tend to unity but approaches I / Q  at infinite dilution. This 
result, which seems to contradict the requirement of the general theory of 
solutions that y approaches unity, is due to the assumption that the 
length I of the macroion is infinite. Since the length I of real macroions is 
finite, R must exceed 1 at infinite dilution. In most cases, however, such an 
extreme dilution is not realized in pnktice before the measurement of the 
activity or the osmotic pressure becomes impossible, or before the number 
of hydrogen ions and hydroxyl ions in water becomes significant. 

IV. COUNTER ION CONDENSATION 

The previous section has made clear one of the characteristic properties 
of polyelectrolytes. Let us now increase the number of charges of each 
macroion at a constant total concentration of macroions in  the solution. 
An increasing number of counter ions are distributed inside and outside of 
volumes occupied by macroions. When the number of charges and counter 
ions is small, counter ions are equally distributed in  the solution. With the 
increase of the number of charges, the electric field becomes strong and 
relatively more counter ions are retained in thc volumc of the macroions. 
At infinite dilution, however, the counter ions are free from macroions 
if the number of charges is smaller than a certain critical value. Assuming 
that the cylindrical model can be applied to the macroion or at least to 
parts of the macroion, this critical value is given by the condition that the 
charge density along the cylinder n/I or I /d is equal to f.okT/eo2, or the 
average distance between neighboring (monovalent) charges d is equal to 
eo 2 jf.okT, which is about 7 A. in water at room temperature. 

When the number of charges increases beyond this critical value, the 
dpparent degree of dissociation fJ decreases, becoming equal to I j Q = 

f.okTd/eo 2 at low concentration.; of macroions. Then the concentration 
of free counter ions outside of the macroion is proportional to cp/Q or 
nd, which becomes independent of 11. In spite of  the increase of the number 
of charged groups and counter ions in the solution, the concentration of 
free counter ions is kcpt constant and only the number of bound ones is 
i ncreased, as shown in  Fig. 1 0. 

This phenomenon is a kind of condcnsation. Let us consider a gas 
composed of a large numbcr of molecules among which attractive force 
acts. When the number of  molecules is increascd at a constant total 
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volume of the gas, the condcnsation to liquid takes place at a certain 
critical value of the number or the density of gas molecules. Above this 
critical point the increase of the number of molecules does not i ncrease the 
number or the density in the gas phase. Only the amount of the liquid 
phase is increased (Fig. 1 0). 

In analogy to this gas-liquid condensation, the concentration of free 
counter ions above the critical valuc of the charge density corresponds to 
the saturated vapor pressure coexisting with the liquid. The counter ions 

• 

in the volume of macroions correspond to the molecules in the liquid 
phase. Counter ion condensation is  a characteristic phenomenon i n  poly­
electrolytes. In comparison with the usual condensation caused by the 
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FIG. J O. (a) The counter ion condensation in comparison with the gas-liquid condensa­
tion. The abscissa is the charge density of macroions, or the total number of counter 
ions, or the total number of molecules. ( ) :  The number of free counter ions or the 
density of the gas phase; (- -) :  the number of bound counter ions or the amount oCthe 
condensed liquid. (b) Illustration of counter ion condensation with increasing charge 
density. 

increasc of the density in the gas phase, it is to be noted that, in  the system 
of counter ions and macroions, the number of charged groups of the macro­
ion is increased in parallel with the increase of the number of counter 
ions. In othcr words, the source of the attractive force in the liquid phase 
is increased. The quantity kept constant above the critical condition is the 
number of free counter ions or the apparent charge density of macroions. 

What is the cause of this phenomenon of "counter ion condensation"? 
The distribution equilibrium represented by Eq. (2) denotes the equality 
of the chemical potential of counter ions in the two phases, the region 
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occupied by the apparent volume of the macroions and the region outside 
of this volume. The chemical potential is the sum of energy and entropy 
terms. The contribution of the entropy is  expressed as kTx In (con­
centration), and the difference in the entropy between the two phases 
contains the term kTx In (volume ratio). For a long cylinder having a 
uniform charge density, the coulomb potential around the cylinder is 
expressed as a logarithmic function of the distance. Therefore, the energy 
difference between two phases is also proportional to In (volume ratio). 
If the volume outside the cylinder is increased, the entropy difference and 
the energy difference are both increased according to the logarithmic 
form of the volume. Infinite dilution does not result in the predominance 
of the contribution of entropy to the chemical potential, and counter ions 
can not leave the volume of the macroion. 

On the other hand, in the usual systems where molecules interact with 
each other only at short distance, the energy difference between the free 
state and the bound state is independent of the volume of the free space. 
Only the difference of entropy increases with the increase of free space. 
Therefore, at infinite dilution complete dissociation always takes place. 

Let us assume that at a certain value of the volume concentration the 
number of free counter ions is too large to establish equilibrium between 
two phases. Then, some of the free counter ions are forced to enter into 
the bound state. This flow of counter ions from the free state to the bound 
state can not be stopped by dilution or by the increase of free space. The ' 
number of free counter ions must decrease to a critical value where the 
balance between the contributions of energy and entropy is just satisfied 
almost independently of the volume concentration by the condition that 

(13) 
or 

ftQ = I ( 14) 

Suppose that at the condition (13) counter ions are in the equilibrium 
distribution and an additional charge and its counter ion are newly 
produced in  the macroion. If this additional counter ion escapes from the 
macroion into the free space, the potential energy difference increases 
and becomes predom inant over the entropy difference, namely kT < 
(Il *+  l)eo2jcol. The counter ion must as a consequence be retained in the 
macroion. The increase of the entropy difference resulting from the 
retention of the countcr ion is much smaller than the change of the poten­
tial energy caused by liberation of the counter ion into the free space, if the 
volume concentration is low. Thus, the apparent charge can not be increased. 
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The above analysis is valid for sufficiently small values of the volume 
concentration q). [n the case of the cylindrical model, the apparent volume 
concentration is  not so much different from the net concentration of the 
chain of the macroion, while i n  the case of the spherical model the apparent 
volume is very much larger than the net volume of the chain. In  the former 
case the molar concentration of charged groups cp = 0.0 1 mole/liter, for 
instance, corresponds to a fairly small value of q, (between 0.0 1 and 0.001) .  

In the present case, the mathematical requirement for counter ion 
condensation is that in Eq. ( 1 0) the term - I n  q, is sufficiently larger than 
other terms. Since -In 4> can be large enough only when 4> is extremely 
small, the above analysis seems to be valid only at extremely low con­
centrations. Fig. 9a, however, shows that the activity coefficient is not 
greatly changed with concentration, and this indicates that counter ion 
condensation is numerically insensitive to the' concentration, especially 
when q, is lower than 0. 1 .  

Another approximation in  the two-phase model was that all bound 
counter ions are fully active in  the volume v. Some of them may be localized 
or at least produce an ionic atmosphere around each charged group. Such 
an effect decreases the activity of the counter ions i n  v. Therefore, if  the 
apparent activity coefficient y* of counter ions i n  v is introduccd, the 
left-hand side of Eq. ( 1)  is replaced by y*(n - Il*)/v and the left-hand 
side of Eq. ( 1 0) must include the term In y*. However, at low concen­
trations of macroions, introduction of thc quantity In  y* has little effeet 
on the relation of the apparent degree of dissociation or the activity 
coefficient of counter ions to the concentration, as is shown i n  Fig. 9a. 
The critical value of the charge density for counter ion condensation is not 
changed. Estimation of the magnitude of y* wil l  be given later (Chapter 6, 
Section I). 

The discontinuous condensation of counter ions beyond a critical 
condition is not found in  the case of spherical macroions. However, as 
mentioned in  the previous section, Eq. (5), which corresponds to Eq. 
( 1 3), indicates that for large values of the charge density P, the apparent 
charge fJP increases very slowly (only logarithmically) with increasing P. 
A situation approximating "condensation of counter ions" occurs, 
although for spherical macroions there is no specific critical value of the 
charge density P and the value of the apparent charge depends on the 
concentration 4>. 



Chapter 3 

ELECTRIC POTEN'nAL AND FREE ENERGY 

1. THE FUNDAMENTAL EQUATIONS 
We have seen in the preceding section that a simple model can be 

employed for a rather successful theoretical i nterpretation of the pheno­
menon of "counter ion condensation" that is characteristic of poly­
electrolytes. In this model the distribution equilibrium of counter ions was 
considered to occur between two discrete phases, each of which was 
regarded as a uniform solution of counter ions. Actually the coulomb 
i nteraction between ions and charged groups is of long range so that the 
approximation of uniform phases appears to be too simple and should be 
reexamined by a more critical consideration. This is performed on the 
basis of the Poisson-Boltzmann equation (5). 

Let us consider a random coil macroion or a cylindrical macroion 
occupying volume v, in which II groups of charge - eo are distributed. 
The electric potential tJ; and the charge density P or the concentration c are 
related to each other as functions of spatial coordinates x through the 
equation 

!J.tJ; = -(4n/flo)(p",+p+) = (4n/eo)eofcmex)-c+(x)] ( 1 5) 

where !J. is Laplacian ; Pm and p + are charge densities and Cm and C + are 
number concentrations of charged groups and counter ions, respectively. 

Both potential and density in the above equations are statistically 
averaged quantities. The average distribution of the charged groups Pm 
can be expressed approximately as a continuous function of the coordi­
nates. (The validity of this approximation will be discussed later.) At a given 

27 
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distribution of the charged groups counter ions are mobile and their 
distribution is determined by the balance between the electric potential 
energy and the entropy. The electrochemical potential 11 +  of the counter 
ions can be written as 

(16) 

where 11 +  ° is the chemical potential in the standard state. The electro­
chemical potential must be constant throughout the solution and the 
Boltzmann equation can be used to express the concentration of counter 
ions at any point (x) in the solution. 

c+(x) = A exp (-eo"'(x)/kT) (17) 

where the constant A is determined by the condition on the total number 
of counter ions. I f  a free volume, V/N, in which electroneutrality i s  
satisfied, is assumed for each macroion, the total number of counter ions 
in this volume must be 11. Then, 

with 
A = nN/ V' 

V' = N S exp (- eo"'(x)/kT) dv 
V/N 

( 18) 

If the potential "'(x) is small in  the volume V/ N, V' is nearly equal to the 
volume V. 

By combination of this equation with Eq. (15) the Poisson-Boltzmann 
equation is obtained : 

f>.", = (4n:eo/e)[cm(x)-A exp (-eo",/kT)] (19) 

The average potential ", and the average ion distribution p are determined 
by solving this equation under suitable boundary conditions. At the 
surface of the free volume, the average electric field must be zero. 

The electrical internal energy Ue per macroion with n counter ions is 
given by the following integral in  the free volume: 

Ue = ( 1 /2) S (P .. + p+)", dv 
V/N 

= S (eo/8n)(grad ",)2 dv 
V/N 

The entropy s of the distribution of counter ions is given by 

, 

- Ts = kT S c+ In (c+/cOe) dv 
VIN / 

(20) 

(21) 
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where CO is the number concentration of solvent molecules and c+/co is 
the molar fraction of counter ions (6). The free energy per macroion with 
its counter ions is given by ,_ 

f =  u.- Ts (22) 
The above procedure for the derivation of the free energy is composed of 
two processes. The first brings the ions to the distribution in the final 
equilibrium and the second charges the ions and the maeroion, their 
distributions being kept constant. 

Another method for the derivation of the free energy gives the expression 

f = fo(V/N, I1)+1. (23) 

where fo is the standard free energy of an ideal solution of counter ions 
without charge, and 

eo 
I. = 2 J u.(deo/eo) 

o 

This is proved by the use of the partition function Z given by 

Z = S · · · J exp (-e/ I u;JkT) TI dXk 
i.j k 

(24) 

(25) 

where the coulomb interaction energy between the ith ion (or charge) and 
the jth ion (or charge) is proportional to the square of the charge e�2 
and written as e02uij. The free energy is given by 

f =  -kTln Z 
Therefore, 

dfldeo = -kT d(ln Z)ldeo 

S · · · S (-2eo/kT) I Ulj eXp (-eo2 I UjkT) TIk dXk = -kT 2 J . . . S cxp (-eo I u;)kT) TIk dXk 

Thus, by integration of this equation, we have Eq. (23) with Eq. (24). 

(26) 

(27) 

In  the above method the ideal solution of counter ions is first considered 
and the ions and the macroion arc then charged, the ion distribution 
being changed with charging. The two expressions of the free energy, 
Eq. (22) and Eq. (23), are equivalent to each other. This is shown by 
proving the relation 

(28) 



with u. and s given by Eqs. (20) and (2 1 ). From Eq. (2 1) we have 

-d(Ts)Jdeo = kT(d/deo) J c+ In c+dv 

= kT f (dc+ (deo) In c+dv 

= - eo2 J (dc+/deo)('j) dv 
where we put '" = eo(l>. On the other hand, from Eq. (20) 

duc/deo = (J/2)(djdeo) J eo2(cm+ c+)<I> dv 

= eo J (cm + c+)<I> dv +(e/{2)(d/deo) S (cm+ c+)<I> dv 

30 

(29) 

= 2ue/eo + (e//2)[S (dc+/deo)<I> dv+ J (c",+c+)(d<l>/deo)dv] 
(30) 

Therefore, 

d(u.- Ts)/deo = 2l1c/eo + (e//2) S [(cm +c+)(d¢/deo)-¢ (dc +/deo)]dv 
(31) 

Since 
.M) = -411:/6o(Cm +C+) 

the second term of the r ight-hand side of Eq. (3 \) can be rewritten 

J [(cm +  c+)(d<D/dco) -<D(dc+/deo») dv 
= - (60/411:) J [t:..<D(d<D/dco) -¢(dt:..¢/deo)] dv 
= 0  

, 

Thus, the relation (28) was derived and the equivalence of the two expres­
sions of the free energy was proved. 

The chemical potential of the solvent molecule f.lo and that of the 
counter ion f.l + can be obtained by difTerentiation of the free energy. In 
the present method of approximation. differentiation with respect to the 
number of solvent molecules means differentiation with respect to the 
size of ' the free volume. Performing such differentiation by using the 
expression (22) with (20) and (21), we can find that the chemical potential 
of the solvent )10 is given by 

(32) 

where R denotes the coordinate at the surface of the free volume. Namely, 
the chemical potential is determined by the molar concentration of counter 
ions at the surface R, where the electric field is zero and solvent molecules 
have no electrostriction. 

The chemica! potential of the counter ion is given by 

f.l+ = kT ln c+(R) + const (33) 
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This is directly deliived from Eq. ( 16) and also confirmed by differentiation .'. 
of the free energy, Eq. (22), with respect to the number of counter ions. 

The osmotic coeDlcient g and the activity coefficient JI of counter ions 
are thus given by 

• 

(34) 

The free energy derived above contains only the contribution of the 
counter ion distribution in and around the (fixed) macroion. Besides the 
atmosphere of counter ions around the macroion as a whole, each ion or 
charged group has an ionic atmosphere about itself. The contribution of 
such atmospheres must be included in  the total free energy. 

The free volume of each macroion in  which electro neutrali ty is satisfied 
is not necessarily equal. Because of the Brownian motion of macroions, 
the electroneutral volume around each macroion must fluctuate. This 
fluctuation also makes some contribution to the free energy. 

In relation to these corrections, the validity of the Poisson-Boltzmann 
equation must be reexamined. Such reexamination was partly carried out 
in Ref. 5. 

Now, despite neglect of several terms, the above expression for the free 
energy is useful for the analysis of the characteristic properties of poly­
electrolytes. The central problem in the following sections is to solve the 
Poisson-Boltzmann equation and calculate the free energy and also the 
osmotic coefficient. 

The Poisson-Boltzmann equation can be solved exactly only i n  a special 
case, i.e., for a rodlike macroion with counter ions i n  a cyl indrical free 
volume. This case will be treated in  Section III of this Chapter. J n other 
cases various methods have been devised to obtain approximate solutions 
of the Poisson-Boltzmann equation. One of them is the Debye-Hiickel 
approximation, in which the electrical potential energy \eolfr\ of counter 
ions is assumed to be much smaller than the kinctic energy kT everywhcre 
in the solution. Herman and Overbeck first applied this approximation 
to a spherical random coil macroion with smoothed charge distribution 
in a salt solution and calculated the free energy as a function of the 
extension of the macroion (7). 

In their early work, Kalchalsky. Kunzle, and Kuhn started from pure 
coulomb potential due to charged groups of the m3croioll without counter 
ions (8). The total electric cnergy was calculated by summing up coulomb 
interaction energies among all groups. Actually, counter iOlls arc accumu­
lated by the coulomb potential. The energy must be corrected by taking 
into account these accumulated counter ions. Later, Katchalsky and 
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Lifson assumed the Debye-Hiickel atmosphere of counter ions around 
each charged group of the macroion and gave the electric free energy as 
the sum of interactions between charged groups with the counter ion 
atmospheres (9). 

Such Debye-Hiickel approximation may be valid for macroions of 
small charges i n  salt solutions. However, in highly charged macroions 
which we are interested in, the fact that Jeot/tl/kT> I in and around the 
macroion is essential for the characteristic properties of polyelectrolytes. 

The other method of approximation is based on the Donnan equilibrium 
between tWQ phases, the uniformly charged random coil macroion and 
the outside. As a first approximation, the charged groups in the macroion 
arc assumed to be completely neutralized by counter ions except at the 
surface. Kimball calculated the extensive force of the macroion under this 
first approximation (10). Deviation from the Donnan equilibrium must 
produce correction terms. Along this line, expansion of the free energy 
or the extensive force as a power series of the reciprocal of the ionic 
strength was tried by Flory and others. This method was applied to a 
spherical macroion in concentrated salt solutions (11). 

The two phase model in the previous chapter is, in a sense, a variation 
of the latter method, although it was applied in a wide range of the 
condition where the charge of the macroion was not necessarily assumed 
to be mostly cancelled by counter ions in it. 

The fo\1owing section will treat two typical cases ; one is a spherical 
random coil macroion in which deviation from neutrality is small, and 
the other is a rodlike macroion which can give an exact solution of the 
Poisson-Boltzmann equation. In both cases the polyelectrolyte solution 
will b,' assumed to contain no simple electrolyte ions other than macroions 
and their counter ions. Polyelectrolytes in the presence of simple electro­
lytes are discussed in  Chapter 6. 

II. SMALL DEVIATION FROM NEUTRALITY 

Suppose that a random coil macroion occupies a spherical volume v 
of radius a, as shown in Fig. 1 la. The charge density arises from charged 
groups of the macroions and counter ions. The former is assumed to 
be expressed as a uniform density in  the spherical volume, v, namely, 

• III V 
and 

Pm = 0 outside of v (35) 
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If the macroion is placed at the center of the spherical free volumc of 
radius R, the potential t/I is a function of the distance r from the center and 
the Poisson-Boltzmann equation for this system is difficult to solve. A 
method of approximation has been devised on the basis of the following 
fact. When there are many charged groups in v, counter ions a,re strongly 
attracted by them and most of the counter ions are retained in  v. Conse­
quently, most of the charges in v are canceled and the remaining apparent 
charge becomes much smaller than the original charge of the macroion 

(5). 

a 

R 

(0) (b) 

FIG. 1 1 .  (a) A spherical macro ion with the uniform distribution of charged groups in  a 
spherical free volume. (6) Atmospheres of counter ions around individual charged groups 
on the chai:J of the macroion. 

According to the notations in the previous chapter, n * is considered to 
be much smaller than 11 or the apparent degree of dissociation P is much 
smaller than unity. This kind of relation can be assumed everywhere in v. 
If a new quantity }. is defined as a function of r by 

(n/v»). = (n/v)- (IINJ V') Cxp (- eot/llkT) (36) 

A is very much smaller than unity in v 

(37) 
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By neglecting the quadratic and higher-order terms of A., we have from 
Eqs. (35) and (18) 

where • 

• m v  (38) 

(-.39) 

This differential equation, which is of the same type as the Debye-Hiickel 
equation for simple electrolytes, can be easily solved. The charge density 
or A. and the electric potential I/! i n  v are given as functions of distance r by 

A. = In (V'/NvC) sinh xr/(xr cosh Xa) (40) 
eol/!/kT = In ( V'/NvC)[sinh xt/(xr cosh Xa)] - In (V'/Nv) (41) 

where the integration constant C is determined by the boundary conditions, 
that is, by the continuity of the potential and its derivative at the surface 
of v (at r == a). Actually the term In C comes from the contribution to the 
potential of counter ions outside of u. If this contribution is small, In C is 
negligible. 

The apparent charge of the macroion n* is approximately given by 

n* = n(A.) = (sokTa/co z) In (V'INuC){I -sinh xa/xa cosh Xa} (42) 

where (A.) = J A. dulu 

and the potential at the surface of u is given by 

co"'(a)/kT = In (V'/NvC)(sinh xa/(xa cosh xa»)- In (V'/Nu) (43) 

With the above approximation the distribution of counter ions is not 
uniform in  v. As shown in Eq. (40), the deviation from complete neutrality 
(A. == 0) is very small i n  the central part of u and relatively large in the 
peripheral part. The maximum value of A. is taken at the surface r = a. 
This maximum is small if Xa'P 1 .  Under this condition, the potential 
"'(I') is almost uniform in  v. 

The factor V'/N is determined by the integration of exp (-col/!/kT) in  
the total free volume V/N. The previous two-phase approximation cor­
responds to the condition that 

V'/N = [(n- n*)/II*](V - Nv)/N (44) 
If this relation is put into Eq. (42) and the term In C is neglected, the 
energy lie and the free energy J calculated according to Eqs. (20) and (22) 
arc found to be given approximately by 

lie = (I j2)n*2c//soa ' (45) 

J = -(l/2)Jl*2co2/coa+kTn In «n-II*)jvcOe) (46) 
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and the activity coefficient of counter ions is given by 

y = (n*/n)(V/(V- Nv)) = P/(l - ¢) 
-

which is the same result as ootained by the previous two-phase model 
although the present calculation initially has taken into consideration the 
nonuniform distribution of counter ions in v. As discussed in the previous 
chapter, the above result agrees well with experimental data. (Sec also 
Ref. 5). 

The quantity X, defined by Eq. (38), has the same meaning as the K 
parameter which appears i n  the Debye-Hiickel theory for simple electro­
lytes and the quantity l /X is the radius of the counter ion atmosphere 
around each charged group in the macroion whose concentration is given 
by l1/v. If this radius is very much smaller than the radius a of the volume 
v, most of the charges of the macroion are screened by counter ions inside of 
v. Only in the peripheral region, the thickness of which is of the order of 
l/X, are the charges not expected to be screened effectively, as shown i n  
Fig. 1 1  b. This is the origin of relatively large values of A. at the surface. 
Therefore when 

xa � 1 

the "small deviation from neutrality" approximation is applicable. 
As a numerical example, if 11 = 1000 and a = 230 A i n  water at room 

temperature, l /X becomes about 24 A, and is much smaller than a. The 
thickness of the peripheral region where the deviation from neutrality 
is appreciable is about I j l O  the radius a. Thus, the spherical macroion 
appears to have a thinly charged layer at its surface. 

A more detailed mathematical treatment of the Poisson-Boltzmann 
equation is necessary for accurate analysis of the ion distribution in and 
around the macroion. A useful method may be to take into account the 
higher-order terms of deviation from neutrality as perturbation for the 
solution of Eq. (38). Such refinement, however, is not expected to bring a 
large change of the result. 

. Thus, the approximate treatments in the earlier chapter and in this 
section are very reasonable. The approximation "small deviation from 
neutrality" can be applied to any shape and size of macroion having a 
diffuse but dense distribution of charged groups. When a flexible macroion 
is extended from spherically coiled conformations to stretched ones 
with the increase of charge, an ellipsoidal model may cover the whole 
range. 



36 

The other important assumption in the present method consisted of 
representing the assembly of discrete charges of the macroion by a 
continuous function PIn(x) or c".(x). This assumption is valid if the atmos­
phere of counter ions around each charged group overlaps with each other ; 
in other words, it is valid if the average distance d between neighboring 
charged groups in the macroion is smaller than or of the same order as the 
diameter of the ionic atmosphere around each group, as shown in  Fig. 
l i b. This condition is expressed by 

Xd ;$ 1 
or 

(47) 

In the Debye-Hiickcl theory of simple electrolytes it was shown that the 
average distance between neighboring ions of the same charge in the 
solution is always smaller than or of the same order as the radius of the 
ionic atmosphere, except in an extremely concentrated solution. Similarly, 
the above condition is satisfied in the wide range of the number of charges 
and the volume of the maeroion. For instance, when 11 =  1000 and a =  
230 A, the average distance d in the sphere is equal to 23 A which is of the 
same order as I/x- As shown in  Eq. (47), the quantity Xd is insensitive to 
the change of the number 11 and the radius a. 

If the atmospheres are overlapped, the discreteness of the charges in the 
macroion has no great effect o n  the determination of the distribution 
of counter ions in and around the macroion. As long as the domain 
occupied by the macroion can be defined separately from the outside domain 
in the sense that the average concentrations of charges in  two domains 
are considerably dilTerent, i t  is reasonable to represent the charge distri­
bution in the domain by a continuous function of the spatial coordinates. 

III. ANALYTICAL SOLUTION FOR A RODLIKE MACRO/ON 

In the previous sections the average electric potential i n  and around a 
macroion was described by the Poisson-Boltzmann equation. As shown by 
Fuoss, Lifson, and Katchalsky and by Alfrey and Morawetz iJ,1 Ref. 12 
and 13, respectively, this equation can be exactly solved for an infinitely 
long rodlike macroion with counter ions -in a cylindrical free volume. 
This result is briefly described herein, special attention being given to the 
"counter ion condensation" phenomenon. 

In this case, n discrete charged groups on the rodlike macroion of 
length I and radius a are represented approximately by a uniform charge 

• 
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density nIl = lId, where d is the average distance between neighboring 
groups on the rod. This representation is valid when the condition 

(48) 

(instead of Eq. 47) is satisfied by a sufficiently high charge density on the 
macroion. I n  water at room temperature, Eq. (48) is rewritten as 
7(d/a2) ;$ I ,  where d and a are expressed in the angstrom unit. The equation 
to determine the average potential and the ion distribution outside of the 
rod is then expressed as . 

where e 
and 

61/1 = - (4neo/so)c+(r) = -(4neo/so)A exp (-eol/i/kT) (49) 

R 
A = nlS exp (-eoVIJkT) 2nr dr 

a 

The potential 1/1 must be a function of the distance r from the center of the 
rod. The radius of the free volume R is chosen to satisfy thc condition 
N/nR2 = V. Countcr ions are assumed to be excluded from the rod itself, 
and its radius a denotes the minimum distance of approach of counter 
ions to the macroion. 

The boundary conditions for the electric field at a and R are then given 
• 

by 
(50) 

respectively. The analytical solutions of the above Poisson-Boltzmann 
equation were found to be (12, 13) 

eoljJfkT = In {(2Q/B2)[r2J(R2_a2)] sinh2 (B In br)} (51) 

when the integration constant B is real, and 

eol/ilkT = In {(2Q/IBI2)[r2/(RZ_a2)] sin2 (lBl ln hr)} (52) 

when it is imaginary. The integration constants B and b must satisfy the 
relations: 

Q = (I - B2)/[1 +B coth (B In (RIa» ] 

B In b = - B  In R - tanh-1 B 

for Eq. (51) and 

for Eq. (52). 

Q = (I + IBI2)/[1 + IBI cot (lBl ln (R/a))] 

IBl ln b = - IBl ln R -tan-l IBI 

(53) 

(54) 
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The constant B is real and 0 S; B S; J for low charge densities in the 
range 0 S; Q S; In (Rla)/[1 + In (R/a)). (Q = eo2/sokTd). It becomes imagin­
ary for high charge densities where Q � In (R/a)/[l + In (R/a)]. When a is 

• 

sufficiently small, or more exactly when the ratio aiR is sufficiently smaller 
than unity, the solution has a mathematical abnormality at Q equal to 
unity. 

The electric energy and the electric free energy calculated from the 
above solutions according to Eqs. (20) and (24) are expressed as (/4) 

and 

u. = (nkT/Q){(l + B2) In (R/a) + ln ( (I + Q)2-B2)/(1 -B�)]+ Q} 
(55) 

for real B and • 

u. = (nkT/ Q){(I - IBI2) In (RIa) + I n [«(I + Q)2 + IBI2)/(1 + IBll)} + Q} 
(57) 

and 

fe = - u.+nkT ln {[(R2 -a2)/a2J[(1 - Q)2 + IB12 1/2Q} (58) 

for imaginary B. This free energy yields the following expression for the 
osmttic coefficient or the activity coefficicnt of counter ions: 

"'I = (l - B2)/2Q - f/>/(1 - f/»  

Y = (1 +B2)/2Q- cp/(l - cp) 

for real B 

for imaginary B 

(59) 
• 

(60) 

Numerical examples of the value of B as a function of Q are given in  
• 

Fig. 12b (Ref. 14). It is found that at values of Q larger than unity, the 
increase of B is very slow and the activity coefficient "'I is almost propor­
tional to I /Q. With the ratio R/a increasing or with the concentration cf; 
decreasing, B tends to 1 - Q at Q smaller than unity and approaches zero 

at Q larger than unity. The activity coefficient thus tends to 1 - Q/2 at Q 
smaller than unity and to 1/2Q at Q larger than unity; namely, 

'l' -> I - Q/2 

'I -> 1/2Q 

as is shown in Fig. 1 2e. 

for 0 S; Q s; 1 
for 1 S; Q (61) 

• 

Th�re results agree qualitatively with those obtained previously with the 
more simple approach. Thus, thc simple two-phase model provides a 
reasonably meaningful path to the elucidation of a characteristic pheno­
menon of polyelectrolytes "counter ion condensation." The numerical 

• 
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value of the activity coefficient obtained here, however, is different from 
the value estimated previously. In the limit of dilution the activity coeffi­
cient decreases with increasing Q even at Q smaller than unity and becomes 
equal to 1/2Q instead of l/Q at Q larger than unity. In the present cal­
culation that is  based on the analytical solution of the Poisson-Boltzmann 
equation, the concentration of counter ions outside of the macroion 
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FIG. 12. (a) A cylindrical macroion with the uniform distribution of charged groups in a 
cylindrical free volume. (b) The value oftheeonstant B as a function of the charge density 

Q at various values of the volume concentration; (I) In ? = -2, (2) In ? = -�, and 
(3) In .p "" -00. (e) The relation between (he activity coefficient )' and the charge 
density Q in the limi( of dilution, and the relation between the activity yQ or (he 
number of free counter ions and the charge density Q in the limit of dilution. 
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continuously decreases with the distance from the macroion. The con­
centration of counter ions at the surface of the free volume is therefore 
less than is estimated with the previous approximation of a uniform phase 
outside of the macroion. A simpler method to derive this result, Eq. (61), 
is described in Chapter 6, Section III. 

Here we add an analysis of the Poisson-Boltzmann equation for a rigid 
spherical macroion in a spherical free volume, for comparison with the 
case of tIfe rigid rod. The Poisson-Boltzmann equation is written 

where 

and 

Ii'" = - ( 4ne ole o)A exp ( -eo'" / kT) 

Ii = d2jdr2 +(2jr)(djdr) 

R 
A = II/ S exp ( - eo",jkT)4nr2dr 

• 

and the boundary conditions are given by 

(d"'Jdr). = neo/soal ; (d"'Jdrh = 0 

'(62) 

(63) 

The differential equation (62) can not be solved analytically, but approxi­
mate solutions were derived by Imai (15). For a highly charged sphere in a 
very large spherical frec volume, the potential energy leotftl is expected 
to be very much larger than the kinetic energy kT in the neighborhood 
of the sphere. Under such a condition, the approximate solution of 
Eq. (62) was found to be written in the form 

eoifJjkT � - In sinh2 ( +B'jr+b')+const (64) 
in the neighborhood of the spherc, and in  the form 

eotft/kT � -2B'lr 

• • 

(65) 
in the region distant from the sphere. The apparent charge of the sphere 
n*eo is related to the constant B' by the equation 

2B'/a = n*eo2/sokT a = fJP 

From the above equations it was shown that the apparent charge n* 
increases logarithmically with dilution and is insensitive to the increase 
of the total number of charges of the sphere. At extremely large values of 
P, the value of fJP tends to the order of In (IN). (n-n*) counter ions are 
condensed in a thin layer on the surface of the sphere, the thickness of 
which is very much smaller than the radius a, that is, its ratio to the radius 
is of the order of I/fJP. These results are very similar to those obtained 
from the spherical random .coil macroion. 



Chapter 4 

VALENCE AND SIZE OF COUNtER IONS 

I. EFFECT OF VALENCE OF COUNTER IONS 

The valence of counter ions strongly influences the counter ion con­
densation phenomenon. Let us consider a macroion having a total charge 
- nea and counter ions of charge +zco . The number of counter ions must 
be /lIz. The equation of the distribution equilibrium between counter ions 
in the simple two phase model is written : . 

In ( 1 -[3)1[3 = In cp/(I - cp) - zcoor/llkT (66) 

where [3, as before, is  the apparent degree of dissociation, i.e., the ratio of 
the apparent charge lI*eo to the total charge neo . The number of free 
counter ions is given by II*JZ. The only difference from Eq . (2) comes from 
introduction of valence z in  the potential energy difference. If the cylindrical 
model i s  applied, 

In (I -[3)1[3 = In cp(J - cp) +[3zQ In ( IN) (67) 

It is found that for values of Q smaller than l Iz, the degree of dissoci­
ation slowly decreases with decreasing concentration </>, and then increases, 
tending to unity at zero concentration. For values of Q larger than l Iz, 
however, the degree of dissociation slowly decreases with decreasing 
concentration, tending to l /zQ at zero concentration. Infinite dilution 
can not result in complete dissociation. With increase of the total charge of 
the maccoion, the number of free counter ions first increases but then 
levels off at Q = l iz. In the case of divalent counter ions, for example, 
the critical value of Q corresponds to an average distance of about 14 A ( 

41 
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bctwecn (monovalent) charged groups on the macroion in water at room 
temperature. The number of free counter ions, Il*jz, can not exceed 
nlz2 Q, which is inversely proportional to the square of the valence. With 
higher valence of counter io.ns their condensation takes place at a lower 
density of charges and a smaller number of free counter ions. The critical 
value of the charge density is determined by the balance between the 
entropy and energy difference of bound and free counter ions. 

In the two-phase approximation, counter ion condensation is not 
influenced by the valence of each char ged group on the macroion at a 
given value of the charge dcnsity as long as charged groups can be repre­
sented by a uniform charge density along the cylinder. It should be noted, 
however, that the radius of the ionic atomosphere around eaeh multi­
valent group is small so that reexamination of the applicability of the 
approximation of uniform charge density is required. 

II . MIXTURE OF COUNTER IONS OF DIFFERENT VALENCES 

In a mixture of two kinds of counter ions which have different valence, 
the characteristic phenomenon is  deduced from the requirement that 
equilibrium must be established separately for each of the two ki nds of 
counter ions (J). 

The number of counter ions of charge zeo per macroion is denoted by 
In and that of charge z' e 0 by Ill' ; the total charge of each macroion must be 
equal to mzeo + m'z'eo = neo . The degree of dissociation, p and p', of the. 
two kinds of counter ions, respectively, are given by the ratio of the number 
of these ions inside and outside of v. The ratios q and q' defined by mzl'" 
and m'zjn, respectively, are the proportions of the charges carried by the 
two kinds of counter ions (q+q' =; 1). For the cylindrical model the 
equilibrium conditions are then given by 

In (l -P)IP = In </!/(l - </!) + (Pq+P'q')zQ In ( IN) 

In (I -P')jp' = In </!1( 1 - </!) + ([Jq +f1'q')z' Q  In ( IN) (68) 

if the two-phase approximation is employed. For the spherical model, Q 
is replaced by P and In ( II</!) is replaced by ( 1 - 4>1/J). 

When the valuc of Q is smaller than both liz and Ijz', thc degree of 
dissociation of both counter ions tends to unity at zero volume con­
centration. When, however, Q becomes larger than either liz or I jz', 
counter ion condensation takes place even at zero volume concentration, 
and the condensation of two kinds of counter ions has correlation. Under 
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the assumption that z' is larger than z, it  is convenient to classify the value 
of Q into the following four categories for analysis of the behavior of 
P and P' at infinite dilutioll. T)le degree of dissociation tends to different 
values determined by the value of Q. 

P -> l and 

P -> ! and 

{3 -> 1  and 

{3 -> IjqQz and 

fJ' -> 1 
P' -> (1 Iq' Qz') - (qlq') 

P' -> 0 

P' -> 0 

for o � Q � ljz' 

for l jz' � Q � I/qz' 

for I jqz' � Q � I /qz 

for Ijqz � Q 

These results are obtained from the equations listed under (68). 

(69) 

Now, suppose that the charge of the macroion and the number of two 
kinds of counter ions are increased at a constant ratio q or q'. Such a 
situation can be realized experimentally by the addition to a solution of 
polyacid of a mixture of alkali having two cations of different valencies. 
With increasing Q, the dissociation of counter ions of the larger valence 
z' begins to be suppressed at Q = liz'. This critical value of Q is independ­
ent of the ratio q of the two kinds of counter ions present. With further 
increase of Q, the degree of dissociation P' of counter ions of higher 
valence is .decreased and is eventually fully suppressed at Q = l /qz'. All 
counter ions of higher valence are bound to the macroion. At larger 
values of Q all free counter ions are of lower valence. The dissociation of 
counter ions of smaller valence begins to be suppressed at Q = I jqz. With 
further increase of Q, the degree of dissociation of these counter ions 
decreases in proportion to l/Q. These features of ion condensation are 
shown in Figs. 1 3a and b. 

The complete suppression of the dissociation of counter ions of higher 
valence is a characteristic property of polyelectrolytes. The difference of the 
valence is remarkably amplified. 

Condensation of counter ions of higher valence begins to take place 
when the charge density Q exceeds the critical value l Iz'. The degree of 
binding increases with increasing Q as if all of the counter ions present in 
the solution were of the same valence z'. The apparent charge number n* 
of the maeroion is equal to n[l - (1 -P')q'] = n(q+ P'q') when the degree 
of dissociation of counter ions of valence z' is P' and that of counter ions 
of valence z is equal to unity. As long as the value of (n*ln)Q or (q+ fJ'q')Q 
is larger than Ijz', the binding of counter ions of valence z' must continue. 
Therefore, fJ' must attain a value determined by (q+ p'q')Q = I jz'. The 
condition of counter ion condensation is determined by the charge density 
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FIG. 13. (a) Illustration of binding of counter ions of different valences to a cylindrical 
macroion. With the increasc of the charge density from (I) to (2), bound divalent 
countcr ions increase and only monovalent counter ions remain in the free statc. 
(b) Relations between the degrees of dissociation of counter ions P. P' and the charge 
density Q in a mixture of two kinds of counter ions having different valences z and z' 
at infinite dilution. (e) Relations betwccn the degree of dissociation of counter ions 
of the larger valence z' and the ratio of two kinds of counter ions at various values of the 
charge density Q. (d) Relations between the osmotic pressure and the ratio of two kinds 
of counter ions of different valences (z'lz = 2) at various values of the charge density 
Q; (I)  Q = 1/2, (2) Q = 1 ,  (3) Q = 2, and (4) Q = 4. 

• 
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of the macroion. It is independem of the number of free ions that are 
present. When Q is larger than I /qz', the value of (n*/Il)Q can not be less 
than liz' even at /3' = O. Therefore, the binding continues to increase until 
all counter ions of valence z' are lost from the outside of the macroion. 
For this reason the degree of dissociation of counter ions of valence z' 
must be equal to zero at Q larger than I /qz'. During decrease of the 
degree of dissociation of counter ions of higher valence from unity to 
zero, all of the counter ions of lower valence are in the free state. The 
binding of these counter ions begins after Q becomes larger than l/qz. 
Therefore, i n  the range of Q between l /qz' and l /qz, all counter ions of 
higher valence are bound and all counter ions of lower valence are free. 
Such a range of Q exists independently of the magnitude of the difference 
between the valence of the two kinds of counter ions. 

Figure 13c shows the relation between the degree of dissociation and 
the ratio of two kinds of counter ions at a constant value of the charge 
density of the macroion. At the beginning of the addition of counter ions 
of higher valence they arc all bound to the maeroion until the apparent 
charge density is decreased to a critical value for their condensation. 
At this critical value, further addition begins to produce free counter ions 
of larger valence. 

Consider a macroion of high charge density (Q > I )  with monovalent 
counter ions preserving electroneutrality. Some of the counter ions are, 
condensed in the volume of the macroion. In this condition the charge 
density is, of course, higher than the critical value for condensation of 
counter ions of higher valence. If, therefore, divalent counter ions are added, 
all of them are bound. Bound monovalent counter ions must be freed and 
the apparent charge is maintained at the critical value for condensation 
of monovalent ions, thereby facilitating the exchange of bound counter 
• Ions. 

The activities of two kinds of counter ions are given by /3/(1 - </» and 
/3'/(1 - </» , respectively. The osmotic pressure of this solution is propor­
tional to the total concentration of free counter ions : 

(m/3 +m'/3')/(I - </» = n[(q/3/z)+ (q'/3'/z,)]/(1 - </» (70) 

Figure l 3e1 shows the dependence of the osmotic pressure on the ratio q 
of two kinds of counter ions at various values of the charge density of the 

• macrOIOn. 
The above analysis was made in  the limit of extreme dilution by employ­

ing the two-phase approximation. It is impossible to obtain an exact 
solution of the Poisson-Boltzmann equation for the mixture of counter . 
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ions of different valence. Results in the preceding chapters suggest that 
the counter ion distribution derived from the solution of the Poisson­
Boltzmann equation is different from that of the two-phase approxi­
mation. The di fference is in  the distribution outside of the volume of the 
macroion. Comparison between the results of Eqs. (12) and (61) shows 
that the real distribution outside of the macroion is not uniform ; that 
is, the concentration of counter ions at the periphery of the free volume, 
which is related to the activity or the osmotic pressure, is considerably 
smaller than the average concentration outside of the macroion. The 
ordinate of Fig. J 3b gives the degree of dissociation of counter ions which 
is related to the average concentration outside. The activity coefficient of 
counter ions must be smaller than this ordinate. 

Many experimental data support the theoretical results obtained. It has 
often been observed that polyvalent counter ions are strongly and com­

pletely bound by macroions in polyelectrolyte solutions (/6). The replace­
ment of bound monovalent counter ions by polyvalent ones has been 
frequently observed as well. Experimental results similar to the theoretical 
predictions developed in Fig. 1 3d have been obtained i n  studies of the 
osmotic pressure or the extensive force of polyelectrolyte gels (17). 
Previously such behaviors were apt to be attributed to a special interaction 
between polyvalent counter ions and charged groups of the macroion, 
for instance, the saIt bridge. The present theory, however, indicates that 
these phenomena can occur without such a special interaction. It is simply 
due to the coulomb potential or 'the macroion in which the effect of the 
valence of counter ions is greatly amplified . 

Ill. EFFECT OF SIZE OF COUNTER IONS 

Both the chain of the maeroion and the counter ion have finite sizes 
from which other molecules or ions are excluded. When their sizes are 
large, the minimum distance between the counter ion and the chain must 
be large, as shown in Fig. 1 4a. As a consequence, the average potential 
difference between bound and free counter ions is small. Moreover, the 
space around the chain of the macroion in which bound counter ions 
are mobile is also small. To analyze such effects of the size of counter 
ions, Kagawa and Gregor applied the Poisson-Boltzmann equation 

1.(iW) with the boundary condition that counter ions can not enter into the 
cylindrical volume, the radius of which is given by the sum of the radius 
of the cylindrical macroion and that of spherical counter ions (J 8). The 
dependence of the electric potential of bound counter ions on their sizes 
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obtained by this method was found to agree well with experimental results. 
Here, however, we apply the simpler two-phase approximation and extend 
the analysis to the mixture of counter ions of different sizes. 

-

Instead of Eq. (I), the equilibrium is given by 

(n -I1*)/v* = n*N/(V -Nv) exp (-eooifJ/kT) (7 1) 

where v* is the effective volume of the potential trough or valley in which 
bound counter ions are mobile. This volume must be distinguished from 
the total volume v of the potential trough made by each macroion. In 
other words, the effective volume v* is given by subtracting from v the 
volume of the chain skeleton (including charged groups) from which 
bound ions are excluded. (This excluded volume increases with increasing 
number of bound counter ions.) The potential difference DifJ was previously 
given by -eoDt/t/kT= 2fiQ In  (R/a) for a cylindrical macroion in whieh the 
quantity a was defined as the radius of the cylindrical volume apparently 
oceupicd by the maeroion. However, the quantity a in the above equation 
must be modified to give the correct value ofthe average potential of bound 
counter ions. It can have different values for different chains and counter 
ions. When the chain skeleton has a large average radius, the distribution 
of charged groups in the cylinder is diluted and a larger value must be 
used for a in  the above expression of the potential difference. The large 
radius of. counter ions has a similar effect. Thus, by introducing the . 
effective radius a* in the average potential, the following equation is 
obtained : 

In (1 -/3)//3 = In ¢/(l - ¢) + /3 Q In (114)) +  In (v*/v)+ PQ In (a/a*) 
(72) 

The new terms In (v*/v) and In (a/a*) are independent of the apparent 
volume concentration 4>( = Nv/V) and the charge density Q, and are 
determined by the radii  of the chain skeleton and the counter ion, or by 
the volumes excluded in  their i nteraction. 

In the case of spherical maeroions, the same correction In (v*/v) must 
be introduced, but there seems to be no reason for the above type of 
correction in the potential difference. 

According to Eq. (72), the size has no influence at extreme dilution or 
in the limit of 4> ..... O. The degree of dissociation tends to unity for Q 
smaller than unity and tends to I/Q for Q larger than unity. The two 
correction terms In (v*/v) and In (a/a*) both become more negative for 
larger radii of counter ions or of the chain skeleton and at finite con­
centrations the degree of dissociation increases with increasing radi i .  
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Now, let us consider a mixture of two kinds of counter ions of the same 
valence and different radii. The equations for the distribution equilibrium 
of these counter ions are given by 

In (i -{3)/ {3 = In r/>/(i - r/» + In (v* Iv) + ({3q+ {3'q') Q[ln (IN) 

+ In (a/a*)] 

In (1 -{3')/{3' = In r/>/(l - r/>) +ln (v*
'/v) + ({3q + P'q') Q[ln (IN) 

+ In (a/a*')] 
(73) 

where q = I -q' is the fraction of one kind of counter ions. The correction 
terms due to v*, a* and v*', a*' must be distinguished for the two kinds 
of ions. In very dilute systems and for large values of Q 

{3q+ {3'q' = Q - I  (74) 
and 

In (I -f3)/{3-ln (I -{3')/{3' = In A (75) 

where In A is the difference in In (v*/v) + ln (a/a*) between two kinds of 
counter ions, being positive when the counter ion of fraction q has a 
smaller radius than that of fraction q', (q+q' = 1). As a consequence, the 
degree of dissociation {3 for the smaller ion-radius is aiways less than {3' 
for the larger ion-radius. The relation of the degree of dissociation p and 
{3' to the charge density Q and the fraction q has been calculated according 
to Eqs. (74) and (75) and the results are shown in  Fig. 14b. ' 

For Q smaller than or equal to unity, both /3 and /3' are equal to unity 
at r/> -> 0 over the whole range of q. For Q larger than unity, counter ion 
condensation takes place. Equation (74) shows that the apparent charge 
density of the macroion is limited at Q = I ,  independent of the ratio q and 
the size or the size difference of counter ions, and that the total number of 
two kinds of free counter ions or the osmotic coefficient g at infinite 
dilution is kept constant for Q �  I ,  independent of the size difference and 
the ratio q. However, the number of each kind of free counter ions changes 
with q and Q. The value of {3Q which is proportional to the activity of 
counter ions of the smaller radius increases slowly with increasing fraction 
q, tending to Q-I  at q = 1 .  The initial gradient of the increase of the 
activity is given by 

(76) 
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In the example presented, the constant A is larger than unity and the 
denominator of the right-hand side of the equation is larger than unity. 
The initial gradient (o(flq)/oq)q_O  i s  thus larger than Q-I ,  which is the value 
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Fla. 14. (a) IIIuslratlon of binding of counter ions of different sizes to a cylindrical 
macroion. (b) Relations betwccn the degrees of dissociation of counter ions p, P' and 
the ratio q of two kinds of counter ions in a mixture of counter ions of different sizes, 
at various values of the charge density Q ;  and relations between the numbers of free 
counter ions of different sizes PQq and P'Q(I -q) and the ratio of two kinds of counter 
ions at various values of the charge density Q. The value of the constant In A which 
represents the effect of the size difference was put equal to In 4. 

of flq at q = 1 .  When counter ions of smaller size are added to a solution 
of macroions containing counter ions of larger size, the activity of the 
added ions becomes lower than that expected ir no correlation between the 

e 
Q 
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two kinds of counter ions is assumed. Bound counter ions of larger size are 
prefercntially replaced by counter ions of smaller size. This selective 
replacement by smaller ions is enhanced by larger values of the charge 
density Q. The selective binding of counter ions, however, is not as sensi­
tive to counter ion size as it is to counter ion valence. 

At finite concentrations the degree of dissociation of two kinds of counter 
ions must be obtained directly from Eq. (73). Although the calculation is 
compl icated, results are similar to those obtained for the infinite dilution 
case described above. 

Summarizing the above analysis, we have learned that the critical value 
of the charge density for condensation docs not depend on the size, but 
the composition of bound counter ions depends on the size. In other words, 
the osmotic pressure is not affectcd by the sizc difference, while the activity 
coefficient of each kind of counter ions depends on the size. Such behavior 
of counter ions of different sizes (for instancc, the selective replacement by 
counter ions of smaller size), has been observed in thermodynamic and 
transference measurements (/9). 

In the above treatment the effeet of the size on the interaction between 
counter ions was neglected. A l imit to the mutual approach of counter ions 
must be taken into consideration at high concentrations of counter ions in the 
volume v. This effect seems to decrease the concentration of bound counter 
ions, but it is to be noted also that when counter ions can not approach 
very closely the coulomb repulsion between counter ions becomes smaller . 

• 



Chapter 5 

POLARIZABILITY OF POLYELECTROLYTES 

I. FLUCTUATION OF ION DISTRIBUTION 

In the earlier chapters it was emphasized that counter ions bound to the 
macroion can move in the apparent volume occupied by the macroion 
where the electric potential forms a trough or a valley. This mobility of 
bound counter ions can not be proved directly by the analysis of purely 
thermodynamic quantities which are determined mainly by the contribution 
of free counter ions. Evidence for this mobility seems to lie in the experi­
mental fact that polyelectrolyte solutions show an extremely large 
dielectric constant (Fig. 1 5  (20, 21» . 

Let us consider a spherical macroion in and around which counter ions 
are distributed. At equilibrium. counter ions are distributed with a 
spherical symmetry and the system has no net electric dipole moment. 
If this system is placed in an external electric field, the distribution of 
counter ions is shifted relative to the charged groups of the macroion 
and an e1cctric dipole is produced. The average dipole moment (Ii) of a 
polyelcctrolyte moleCUle (a macroion with counter ions) in a static 
electric field E is' given by the following averaging procedure. 

([I) = S [I exp [-f(Ji)/kT + fiE/kT] dp/S exp ( -fCJI)/kT + JIE/kTJdli 
(77) 

where f(fi) is the free energy of the system in a state with a dipole Ii. The 
free energy has a minimum at Ii = O.  Even in the absence of the field E, 
however, the probability of a state with dipole is proportional to 
exp [ -f(Jl)fkTJ as a result of thermal fluctuation. From the above 

5 1  
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equation it i s  readily found that the polarizability IX for a low field is given 
by 

(78) 

The quantity <p2) is the average of p2 resulting from thermal fluctuation 
in  the absence of the field. Therefore, the polarizability is large if  the 
fluctuation of the dipole is largc. According to l inear-response theory 
(22), this expression of the polarizability (Eq. 78) is generally applicable. 
In the present system all of the counter ions and the charged groups of the 
macroion can make contributions to the fluctuating dipole, p. 
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FIG. 15. Dielectric constant of polyelectrolyte solutions. ( ): CMC (carboxy­
methylcellulose) ; (- -): DNA; and (-/-) : serum albumin, in a salt free solvent. (_. ) :  
DNA in a MgCl2 solution (20). 

A dipole moment is produced when the center of the distribution of 
counter ions is displaced from the center of the distribution of charged 
groups of the macroion, Therefore, let us dcfine this displacement (j between 
two centers as one of the coordinates specifying the distribution. Then the 
dipole moment is written as 

and (79) 

The frce energy f(p) = f(b) is obtained by taking into account all possible 
distributions at a given value of (j. 

, 
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As a simplest approximation, let us suppose that all counter ions are 
retained in the volume v with a uniform density 11(0, and the fluctuation 
of the counter ion distribution takes place, keeping the density uniform 
in the spherical volume 0 as shown in Fig. 1 6a. 

(80) 

This free energy must be proportional to 02 for sufficiently small values of 
o because it  is an even function of 0. It is easily found by dimensional 
analysis that the integral on the right-hand side is proportional to v02• 
Actually, . 

(8 1)  

We know from statistical thermodynamics that the average value of the 
free energy due to fluctuation is equal to ( lJ2)kT per degree of freedom. 
Therefore 

<f(o» = (1 (2)kT (82) 

[The standard free energy at 0 = 0 is omitted in the above derivation of 

• ---------.--- - --_ .. - - - - - . - - ----� 8 

(a) (b) 
FIG. 16. (a) The displacement oCthe spherical cloud of counter ions bound to a spherical 
macroion. (b) The displacement of the ellipsoidal cloud of counter ions bound to an 
ellipsoidal macroion. 

f(o).] Thus, the average value of <IL2) is found to be given by 

<IL2) = (3J4n)kTv&o (83) 

and the polarizability is given by 

a = (3(4n)v&0 (84) 

This result shows that the polarizability is determined by the volume of 
the macroion, independent of the charge or the charge density of the 
macroion. More exactly, it is determined by the volume in which bound 
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countcr ions are moving. Tne dipole moment increases with the charge 
density at a constant value of the displacement of the counter ion distri­
bution. However, at high charge density the excess free energy due to 
a constant displacement becomes large, so that the average displacement 
decreases. As a result, the average dipole moment is not changed by the 
charge density. The above equation shows that in water at room tempera­
ture the root-mean-square of the fluctuating dipole moment is about 
1000 Oebye units for a sphere of radius 100 A and about 5000 Oebye 
units for a sphere of radius 300 A. 

The dielcctric constant 6 of the solution is calculated from 

6E =�+41[P; , . 
. 

p = I N,IY.iE/ 
i 

(85) 
-, 

where the summation is carried out for all macroions and other molecules • 

in the solution, and E' denotes the internal field acting on the macroions 
and molccules. The incrcment of the dielectric constant (t18 = 6-80) 
relative to eo of the solvent (water) is given by 

(8-80)[60 = 3(E'jE)(Nv/V) = 3B¢ (86) 

which results from combination of Eqs. (84) and (85). The constant 
B( == E' /E) corrects the internal field and is usually a little larger than 
unity for a polar solvent. The relative increment is proportional to the 
apparent volume concentration of macroions and the proportionality 
constant is between 5 and 10. For example, when 4> = 0.01 ,  the relative 
increment is about 0. 1. . 

The above result is similar to the classical result derived by Wagner 
for a sphere having electrical conductivity (u\) in a medium having a 
different conductivity «(10) (23). Upon application of the elcctric field, 
polarization appears at the surface of the sphcre. The theory of electricity 
for this system showed that thc relative increment of the dielectric constant 
at zero freq uency is given by 

(6-to)/to = 3B4>((11 -UO)1/(Ul + 2UO)2 (87) 

The dielectric increment is proportional to the volume of the sphere, and 
in the limit of the nonconducting medium, Eq. (87) becomes equivalent to 
Eq. (86), which was obtained under the assumption that all counter ions 
are bound in the macroion. Some of the counter ions in real solutions 
are outside the apparent volume of the random coil macroion and produce • 
the finite conductivity U o .  Equation (87) shows that the dielcctric increment 
is proportional to the square of the difference between conductivities in 
and outside the macroion. 
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However, it must also be remarked that the distribution of counter ions 
outside the macroion is not uniform but forms the diffuse atmosphere 
around the macroion. The displacement of thc diffuse atmosphere from 
the average makes a contribution to the fluctuatinlZ..dio.ole u.. Thc_"xcess_ 
free energy for the displacement may be small. The dielectric increment 
is then expected to bccome larger than that given by Eq. (86). A theoretical 
analysis in which the distribution of all counter ions in and outside the 
macroion is taken into consideration can be developed by the combination 
of the Poisson equation and the diffusion equation under the external field 
(24). The contribution of cOllnter ions outside the macroion may be fairly 
large and then the dielectric increment depends not only on the volume of the 
macroion but also on the free volume per macroion. 

11. POLARIZADlLlI'Y AND THE SHAPE OF MACROIONS 

I n  the preceding section it was shown that the polarizability or the 
dielectric constant of polyelectrolytes is determined by the volume of the 
macroion in which counter ions are retained, but not by the charge 
density of the macroion, as long as a domain of bound but mobile counter 
ions is formed. Experimental results suggested that the dielectric increment 
depends on the shape of the macroion ;  rod like macroions give very much 
larger increment than spherical macroions, as shown in Fig. 15  (2 J). 
Moreover, the dielectric increment due to rodlike macroions was found to· 
i ncrease rapidly with increasing length of the macroions (25). Therefore, 
we employ here an ellipsoidal model by which the wide range of con­
formations from spherical to cylindrical or rodlike can be represented with 
the change of the axial ratio p from unity to infinity and analyze the 
effect of the shape of macroions on the dielectric increment. 

Charged groups oCthe macroion are assumed to be uniformly d istributed 
in the ellipsoid and all counter ions are assumed to be retained there. The 
long axis of the ellipsoid is placed in the x-direction. If the center of the 
ell ipsoid of counter ions is displaced by x, y, and z from the center of 
charged groups, keeping the ell ipsoidal distribution as shown in Fig. 
16b, the free energy given by an integration similar to Eq. (80) is expressed 
as the sum of independent contributions of displacements in three directions 

(26) ; 
f(Jl) = f(x)+f(Y)+f(z) 
f(x) = (21t/3)(n/v)2(eo 2/lio)V A (P)x2 

fey) = (21t/3)(n/v)2(eo2/lio)vv(P)y2 
fez) = z2f(y)Jy2 

(88) 



where 

1\ (p) = (3/2)p(p2 _ 1)-l/2{ln [p+ (p2 _ 1) 1/2] _ (pZ _ 1)1/2 /p} 

v(P) = (3/2)p(p2_ l)-3J2{p(p2_ 1) 1/2- In [p+(pl_ l)l/l]) 
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(89) 

The averagc of the square of the fluctuating dipole moment of ellipsoidal 
macroions uniformly distributed in alI directions in the solution is given by 

<Jl2) = I j3« p/)+<p/)+(Jl/» 
= (I!3) 1I1eo2«x2) + (y2) + (z2» (90) 

The average displacements are determined by the average free energy of 
fluctuation 

(f(x» = (f(y» = (f(z» = '(1/2) kT (91) 
Therefore , 

and 
(92) 

a = (I/3)(IXx+ 2ay) = (1 /3)(3/41t)eov( 1\ (P)-l +2v(p)-J) (93) 
The function I\ (p)- I  and V(P)-l are both equal to unity for a sphere 
(p = 1). With increasing axial ratio p, 1\ (p)-l increases to infinity and 
V(P)-l decreases to 2/3 in the following way 

1\ (P)-I-+(2/3)pljOn 2p- l) 
, 

v(P)-I-+(2/3)(I -ln 2pjp2) (94) 
• 

The average dipole is determined by the size and shape of the macroion. 
The displacement of the counter ion distribution along the long axis of the 
ellipsoid is much easier than that in the direction perpendicular to the 
axis. For example, in an ellipsoid of axial ratio 10  with a vol ume equal to a 
sphere of radius 300 A, the root-mean-square of the dipole moment 
becomes about lOS Debye units i n  the direction of the long axis. 

The relative d ielectric increment of a solution of ellipsoidal macroions 
is given by 

(95) 

For a very long ellipsoid the relative increment is approximately pro­
portional to p2/ln 2p at a constant volumc conccntration ; namely 

(96) 
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where I is the length and a is the radius of the ellipsoidal macroion. For 
example, for p = 10 and ", = 0.0 1 ,  the relative increment becomes about 
2.5. • 

Equation (95) is also equivalent to the classical result obtained for a 
suspension of ellipsoids having thc electrical conductivity in a non­
conducting medium (23). 

Thus, the origin of the extremely large polarizability of polyelectrolytes 
can be well understood. The polarizability becomes larger for a larger 
volume and a longer shape of the region in which bound counter ions are 
mobile. The uniform and continuous distribution of charged groups and 
the mobility of counter ions bound to them are essential for large polariza­

bility. If these groups were accumulated at a point or a few points in the 
region, the average of the fluctuating dipole could not be large even when 
the total charge was very large. 

Figures 1 7a and b present the experimental dielectric increment 
obtained at various degrees of neutralization of polyadds (27). With the 
addition of alkali, the number of charged groups of macroions and their 
counter ions increases and a domain of bound but mobile counter ions 
begins to form. Then, a large dielectric constant is observed . With further 
increase of the degree of neutralization the dielectric increment increases 
and tends to saturation. 
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FIG. 17. (0) The relation betwcen the dielectric increment and the dcgree of neutrali­
zation in polyacrylic acid solution neutralized by NaOH. (b) The relation between the 
dielectric increment and the concentration of polyacrylic acid fully neutralized by 
Bu.NOH (27). 
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The absolute value of the dielectric increment observed, however, is 
larger than that expected from the spherical modcl according to Eq. 
(86). The macroion is elongated and it  is better to apply a long ellip­
soidal model. Equation (96) predicts that in the case of rodlike or cylind­
rical macroions of different lengths, the dielectric increment at a constant 
total (weight) concentration is approximately proportional to the square of 
the length or the molecular weigh t of the macroion. Such dependencc of the 
dielectric increment on themolecularweight was actually found in  neutralized 
polyacids and also in DNA, as shown in  Figs. 1 8a and b (27, 25). This means 
that the neutralized polyacid molecules are in the stretched conformation . 
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FIG. 18. (a) The plot of dielectric increment against the length of DNA ; (I) salmon 
sperm DNA; (2) calf thymus DNA; The abscissa is the 2.2 power of the length i n  
angstroms. Concentration is 0.1 mg/ml. (b) The plot of dielectric relaxation time against 
the length of DNA; (I) Salmon sperm DNA ; (2) calf thymus DNA; The abscissa is the 
1.8 power of the length in angstroms. Concenfration is 0.1 mg/ml (25). 

III. FLUCTUATION OF COUNTER IONS IN VARIOUS MODES 

In the above simple theory, we considered only the uniform displace-• 

ment of the counter ion cloud relative to the macroion. The fluctuation 
of the counter ion distribution is not limited to the uniform displacement. 
It takes place at random in various ranges along the macroion and some 
of them contribute to the electric dipole. In the case of rodlike macroions 
such situation can be analyzed theoretically by expanding the fluctuation 
in  a Fourier series (28). 

2.0 
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Let us consider a sufficiently long rod with uniform charge density and 
counter ions bound to it. On the average these counter ions are assumed to 
be distributed with the uniform concentration c + o( = n+ 0/1) along the rod. 
When the concentration deviates from the average by ,5c+ (x) at the 
position x � x+ dx, the excess interaction , energy ,52u can be given by 

I I 
,52u = 1/2 S S 8c+(x),5c+(x')qJ(lx-x'l)dxdx' (97) 

0 0  

where <p(jx-x'j) is the interaction energy between counter ions at x and 
x' and can be assumed to be a function ofj the distance lx-xl The excess 
entropy due to the fluctuation 82s is  giveni approximately by 

I 
Tlh = -tkT(I/c+ 0) J [8c+C'I:Wdx (98) o 

where the domain along the rod in  which counter ions are bound but 
mobile was regarded as a phase of a solution of counter ions with the average 
concentration c+ o .  It is to be noted that in  the excess energy and the excess 
entropy the terms of the first order of  fluctuation 8c + (x) must vanish 
since the average distribution is an equilibrium one. The electric dipole 
produced by the fluctuation 8c+(x) is given by 

• I 
J1 = eo J (x-l/2)8c+ (x)dx 

o 

• 
(99) 

Here, as shown in  Fig. 19, the fluctuation is expanded in a Fourier 
• 

senes as 

where 

8c+(x) = I [Ck cos (2nkx/l) + ck' sin (2nkx/l)] (100) 
k 

I 
Ck (or ck') = (2/1) J 8c+(x) cos (or sin)(2nkxfl)dx (101) 

o 

0 '----

• x 
• 

FIG. 19. Various modes of fluctuation of counter ion concentration along a rodlike 
polyion. 



60 

Namely, C1 is the amplitude of the fluctuation with the wave number k 
or the wavelength 1 1k. Then from Eq. (97) the excess energy 02U is found 
to be expressed as 

b2u = (1 /2)(lj2)2 I: (Ck2 + C�2)(,Ok (102) 
k 

where (Pk is the Fourier component ofthe interaction energy lP(r) defined by 
I 

lPk = (211) S (,O(r) cos (2nkrfl)dr (103) 
o 

In the derivation of Eq. (102) under Eq. (103), the length 1 was assumed 
to be sufficiently longer than the effective range of the interaction lP(r) 
(28). From Eq. (98) the excess entropy is expressed as 

Tb2s = - (Jf2)kT(lf2)(lfc+ o) L (Ck2 + C�2) (104) 
k . 

Since the probability of the fluctuation bc+(x) is proportional to the 
factor exp (_ (';2U_ T02S)jkT], it i s  found from Eqs. (102) and (104) that 
the mean square of the fluctuation of each component Ck or c� is given by 

<c/> = <c?> = J/[(1/2)(J/c+ o) + (1/2)2(lPk/kT)] ( 105) 

On the other hand, from Eq. (99) the mean square of the fluctuating 
dipole is found to be 

(11.1) = eo212 L (1/2nk)2<C�2> (106) 
k 

Thus, the po\arizability along the rod is obtained from Eqs. (105) and 
( 106) as the sum of contributions of fluctuations of different modes or 
different wavelengths: 

C( = I: C(k 
k 

• 

C(k = (n+ oe//kTl)13(2n2)(I /k1)J(1 +1I+ 0(,OkJ2kT) (1 07) 

The dielectric increment due to such dipoles can be derived by a pro- . 

cedure similar to the previous case. After simple calculation, the final 
result is obtained as ' 

where 
I 

Wk = J I\'(r) cos (2nkrj l)dr o 
w(r) = (coleo2)(p(r) 

Q+ = lI+ oc/fsokTI 

(108) 

(109) 
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In the case of sufficiently long rods, II'k is in'dependent of k for small values 
of k. Then, approximately 

where 
I 

W = f w(r)dr 
o 

( 1 1 0) 

and the relation Ik(l /k2) = 712/6 was used. If a long cylindrical free 
volume model is applied, 11'/2 may be replaced by In (RIa). 

The expression ( 1 1  0) is very similar to equation (96). The dielectric 
increment at a constant total concentration is proportional to the square 
of the length. With the increase of the charge of the rod, the dielectric 
increment first increases in proportion to the number of bound counter 
ions and then tends to saturation for large values of 'Q+ or 11+ 0 ,  Such 
behaviors of the increment arc actually observed. Equation ( 1 1 0) is  nearly 
equivalent to Eq. (96) at saturation. For example, in the case of neutralized 
DNA of length 1 0,000 A and concentration 0.0 I %, the value of Nl3 is about 
35 and the dielectric increment (s -so) calculated becomes several hundreds 
to a thousand, which is of the same order as the experimental values (25). 

Thus, the counter ion distribution was analyzed in the form of th,e 
Fourier series. The magnitude of the fluctuation in different modes is 
given by Eq. (105). The magnitude increases slowly with decrease of the 
wavelength of fluctuation because the component of the repulsive inter­
action lPk must decrease with k at large values of k. However, the con­
tribution of  the fluctuation to the dielectric increment is proportional 
to the square of the wavelength as shown in Eqs. (106) and (108). The 
fluctuation of the short wavelengths makes only a smaIJ contribution to the 
dielectric increment. Therefore, the value of the total dielectric increment 
Eq. ( 1 1 0) was not very different from that derived under the assumption 

-of the uniform displacement of the counter ion cloud. However, it must 
be remarked that fluctuations of different modes have different relaxation 
times. As will be shown i n  the next section, the above method of the 
Fourier expansion is most useful for understanding the whole feature of 
the dispersion of the dielectric constant. 

It  is easy to extend the above theory to the case of polyvalent counter 
ions. For counter ions of valcnce z it is found that the quantity Q + in  
Eqs. ( l08) or ( 1 1 0) must be replaced by z211+ oe//sokTi = Z2 Q+,  where 
11+ 0 '  as before, is the number of bound counter ions of the valence z. 



62 

Real rodJike macroions have discrete charged groups instead of the 
un iform charge density. The electric potential along the rod is not uniform 
but consists of many holes, somc of which arc occupied by counter ions. 
The number of counter ions in these holes fluctuates. The above method 
can be modified to be applicable to such a model. The main effect of the 
presence of the discrete potential holes is that when almost all holes are 
occupied by counter ions, the fluctuation becomes small. This effect 
brings, for example, the difference in the dielectric increment between 
polyacids having hydrogen iOlls and sodium ions as counter ions, as 

shown in Fig. 17a. (28). 
As shown in the experiment of Fig. 20, in polyacids neutralized by the 

mixture of monovalent and divalent countcr ions the die1cctric increment 
was found to become highest in the intermediate value of the mixing ratio. 
For understanding this interesting phenomenon, also, it is necessary to 
refine the theory by taking into consideration the short range exclusion 

effect between bound counter ions. 
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FIG. 20. Low frequency dieh:ctrie increment as a function of counter ion ratio in poJy­
acrylic acid solution neutralized by NaOH and/or Ca(OH),; the polymer conccntration 
c. = I mN; and thc degree of neutralization IX => 1 .  
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For the polarizability of rod like macroions, another theoretical approach 
was made on the basis of the discrete binding site model by Mandel (30). 
I n  his case interactions among charged groups and counter ions were 
treated as being of short range. A refined theory along this same line was 
developed by the use of the matrix method (29). This kind of approach is 
useful in  the system where the short range interaction is more important 
than the long range interaction. 

IV. RELAXATION OF THE COUNTER ION DISTRIBUTION 

In the previous sections, the large polarizability and dielectric constant 
o f  polyelectrolytes in a static field were shown to be attributable to the 
distribution and the mobility of bound counter ions. In an alternating 
field, the cloud of counter ions oscillates and at high frequency it  can not 
follow the field. This brings about dielectric dispersion, that is, the 
decrease of polarizability or dielectric constant at high frequency. 
Additional electric conductivity appears in the range of frequency where 
such dispcrsion occurs. Experiments show that this frequency is signifi­
cantly lower in  polyelectrolyte solutions than in simple electrolytes, as 
shown in Figs. 21a and c (25, 27). The relaxation time of counter ion dis­
tribution is considerably longer in polyeIectrolytes. Here, it is instructive 
to analyze first the relaxation of the uniform counter ion cloud displaced 
relative to the macroion. 

The equatiop of motion for each counter ion distributed in  the macroion 
may be written as 

(I l l) 

where Xl is the spatial coordinate of the ith counter ion and , is the 
frictional constant, usually given by 6n1fb, where b is the effective radius 
of the counter ion and 11 is the viscosity of the solvent. The second term 
of the above equation describes the force exerted by the coulomb potential 
arising from all other ions and charged groups. If the above equation is 
summed for all counter ions, the kinetic equation for the motion of the 
center of distribution of counter ion results. The force due to the inter­
action between counter ions cancels and only the force due to the inter­
action of counter ions with charged groups remains: 

(1 1 2) 
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FIG. 21. (a) Dielectric dispersion of DNA solutions [with added NaCI; (e) 10- > 
mole/liter, and (0) 2 x  10- 3 mole/literj. Coordinates for each curve are indicated by 
arrows. (b) The Cole-Cole plot of DNA solutions [with added NaCI ; (I) 10->  mole/ 
liter; (2) 10-4  mole/liter, and (3) 1 0- 3 mole/literj. The abscissa is the real part of 
dielectric constant and the ordinate is the dielectric loss (25). (e) Dielectric dispersion of 
polyacryl ic acid solutions neutralized by Bu.NOH at various concentrations of 
polyelectrolytes; ( I )  concentration Cp = 5 mN, (2) 2.5 mN, (3) 1 .25 mN, (4) 0.5 mN, 
(5) 0.2 mN, and (6) 0.1 mN. (d) The relation between the dielectric loss and the frcquency 
in polyacrylic acid solutions neutralized by Bu. NOH under the same condition as in 
Fig. 21(c) (27); ( I )  concentration c. = 5 mN, (2) 2.5 mN, (3) 1 .25 mN, (4) 0.5 mN, 
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5. POLARIZABILITY OF POLYELECTROLYTES 65 

• <l 

100 

• 

I l<c 10 kc 100 kc 1 Me 
Log frequency 

(el 

FIG. 21 (COllI.) 



• 

50 

40 

o� 30 <I 

20 

1 0  

I ke  

(4) 

(5) 

(6) 

1 0 ke  1 00 kc 
log frequency 

(d) 

FIG. 2 1  (cont.) 

66 

I Me 

where b = Ix;/n is the displacement of the center of gravity in  a certain 
direction and the second term is the derivative of the free energy feb) defined 
in the previous section. Thus the collective motion of the counter ion cloud 
is described by the equation 

(1 13) 

Accordingly, the relaxation time of this motion is given by 

(1 14) 

For an ellipsoidal distribution, the displacement is considered in three 
ditections, and the two kinds of relaxation time 't"x and 't"y (= 't"=), corre­
sponding to two directions of motion, are given by 

't"x = ((so/neo2)(3/4n)v· 1\ (p)- I  

't" J' = ({&o/ne o2)(3/4n)v · U(p)- I (1 1 5) 
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These results indicate that the relaxation time • i s  proportional to the 
volume v of the macroion and to the function I\ (p)-l and V(P)-l in the 
case of ellipsoids. It is inversely proportional to the number of charged 
groups n. If p is constant and n is proportional to the length of the ellipsoid, 
the relaxation time 'x is proportional to the square of the length. 

In the comparison of Eq. (1 1 5) with Eq. (95) it is remarkable that the 
relaxation time, as a function of the size and shape of macroions, is 
proportional to the dielectric increment. The displacement of counter ions 
along the long axis of the ellipsoid makes a large contribution to the 
dielectric increment only in a field of very low frequency. 

When ( = 3 x  10-9 (reasonable for small ions) and n =  1 03, the 
relaxation time . estimated from Eq. (I 1 5) is 3 x 10  - 7  sec for a sphere of 
p = 1 and radius 300 A, and it is about 5 x 10- 5 sec for the long axis of an 
ellipsoid of p � 1 0  having a volume equal to the sphere of radius 300 A. 
The dispersion frequencies corresponding to these values of the relaxation 
time are equal to 5 x 105 and 1 04 cycles, respectively. Thus, the large dielectric 
dispersion of polyeleetrolytes observed at low frequencies can be well 
understood. 

Rodlike polyelectrolytes such as linear polyacids or DNA, however, 
show broad dispersion curves of dielectric constant at low frequencies 
which can not be explained by a single relaxation time (Figs. 21 a and c). 
Such a situation can bc clarified by employing the same method as in  the 
previous section. Consider a rodlike macroion along which counter ions 
arc bound but mobile. The fluctuation of the counter ion concentration 
&+(x) changes with time I. The diffusion equation of this oc+ (x,t) can be 
written as : 

I 
+c+ o(ajax) S oc+(x',t)<p(Jx-x'Ddx'] ( 1 16) 

o 

where the first term of the right-hand side comes from the simple diffusion 
force or the entropy force and the second term comes from the electric 
force exerted by fluctuating counter ions. This equation is almost equivalent 
to that proposed by Schwarz for the relaxation of the counter ion atmos­
phere on a charged spherical particle (31). By operating the integral 
(2/1) S� sin or cos (2nkxjl)dx for both sides of the above equation, we 
obtain the equation for the Fourier components Ck or c� of the fluctuating 
concentration in the form: 

• 



68 

Therefore. the relaxation time 1:k of the fluctuation of the mode k is given 
by 

(1 1 8) 

For sufficiently long rods. 1\'. can be replaced by )II of Eq. (1 09). Then, 
the relaxation time 1:, is proportional to the square of the wavelength of the 
fluctuation. It is also proportional to the square of the lotal length of the 
rod at a constant density of bound counter ions or Q+ . This agrees with 
experimental results (25). 

For small values of the charge density or Q+ the above equation gives 
the relaxation time which is equal to the time necessary for the diffusion 
of small ions with the diffusion constant (kTIO by the distance Jj2nk. The 
relaxation time decreases with i ncreasing charge density and under the • 

condition that Q+JI'� I ,  Eq. ( 1 1 8) becomes almost equivalent to 
Eq. (1 1 5). derived without considering the diffusion force. 

Now, the static polarizabil ity ct, of fluctuation of the mode k is  given by 
Eq. (1 07) and its relaxation time 1:k is given by Eq. (I  1 8). Then, the complex 
polarizability ctk( 1') of fluctuation of the mode k at frequency v is expressed 
as : 

(1 19) 

Therefore, the real part of the dielectric constant at frequency v, s'(v), is 
given by 

• 

[s'(\') -&o]/so = B(N/ V)(2j3n)/3{ Q +/e(1 + Q + 11',)[ 1  + (2nv)21:k 2]) 
(120) 

and its imaginary part, s"( v), is given by 

s"( \·)/so = B(Nj V)(2/3n)/J{ Q +(2nl')1:k/e(l  + Q + \1'.)[1  + (2nv)21:/]) 
(12 1 )  

I n  Fig. 22a. /:'( 1') and c'(I') calculated from the above equations are shown 
as functions of the frequency v. Figure 22b gives the Cole-Cole plot. The 
plot deviates from the semisphere and the shape of the curve does not 
depend on the absolute value of the dielectric constant. The Cole-Cole 
plots experimentally obtained in li near polyacids and DNA are very 
similar to the calculated one, Fig. 22b. (See Fig. 21 and Ref. 25). The 
plots observed at different degrees of neutralization had the same shape. 

Thus, the broad dispersion of the dielectric constant of polyeleetrolytes 
at low frequencies is attributable to the presence of different modes of 
fluctuation of the counter ion distribution along the rodlike macroions. 
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semicircle due to the first mode of fluctuation (28). 
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The numerical value of the lowest relaxation time T I expected from 
Eq. (l I S) is of the same order as or a little smaller than that observed 
experimentally. For example, DNA of 7,Soo A length had a relaxation time 
o f  IO-J sec (25), whilc the above equation gives the time T 1 of the order 
of 10-4 sec for the same length i f  the frictional constant , of bound 
counter ions is assumed to be the same as in the normal solution. 

Bcsides the large dispersion at low frequcncies discussed above, the 
dielectric constant of polyelectrolytes usually shows the other smaller 
dispersion at high frequencies ofthe order of lOs -106 cycles. The dispersion 
curve i n  this frequency range does not depend on the molecular weight o f  
polyelectrolytes but shifts to the high frequency with increasing concen­
tration of polyeJcctrolytes. The origin of the dielectric dispersion i n  this 
range is not clear. However, one possibility may be that it  comes from the 
polarization of the counter ion distribution perpendicular to the chain of 
the macroion, and the dependence of the dispersion on the concentration 
suggests the importance of counter ions outside of the macroion. 



Chapter 6 

STATE OF BINDING OF COUNTER IONS 

I. THE ION PAIR AND LOCALIZED BINDING 

In earlier chapters most of the bound counter ions were assumed to be 
mobile in  the potential trough or valley of the macroion. Many character­
istic properties of polyelectrolytes, for instance, counter ion condensation, 
the complete condensation of polyvalent counter ions, and the large 
dielectric constant, were explained under this assumption. Actually, 
however, some of the bound counter ions may be localized at the potential 
holes formed by individual charged groups. The extent of such binding 
(localized binding) is examined below. 

As already mentioned in  Chapter 2, the relation between mobile 
counter ions and localized ones in  the apparent volume of the macroion 
is analogous to that between free ions and ion pairs in simple electrolyte 
solutions (5). In the case of strong electrolytes the ion pair does not 
originate as a result of covalent or chemical binding but is a consequence 
of localization induced by strong short range coulomb interaction. In 
weak polyelectrolytes the ion pair is partly due to covalent bonding. A 
similar situation must be considered to exist i n  polyelectrolytes. 

Let us classify the counter ions into three categories ; free, bound but 
mobile, and localized. The number of cach kind is denoted by n*, n' and 
n" per macroion, respectively. The total number n is  given by the sum 
n*+ II' +11". The relation between free counter ions and bound but mobile 
counter ions can be given by an equation similar to (4) or (10) where II 
i n  the quantities P and Q must be replaced by II _ II" = II' + n* and the 
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FIG. 23. (a) The hydrogen ion equilibrium in polyacid ions partially neutralized by 
NaOH. (b) The electric potential difTerenee between bound and free hydrogen ions at 
various degrees of neutralization and various concentrations of polyclectrolytcs (poly­
mcthacrylic acid neutralizcd by NaOH) (33). (e) The relation betwccn pH and thc 
logarithm of dissociation constant pK' dcfined as pH + log (\ -«)/« in polyacrylic acid 
solutions ncutralized by NaOH. The degree of polymerizat ion ( x )  50, and (e) 340. Thc 
linear relation between pH and pK'is equivalent to the relation (\25) (34). 
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As compared with the case of simple weak acids, the dissociation of 
charged groups in the macroion is depressed by the repulsive interaction 
among charged groups. The. (free) energy eool/! gives the extent of such 
depression. With increasing degree of neutralization it increases slowly 
and is almost saturated at large numbers of charged groups, as shown in 
Fig. 23b (33). Such behaviors can be understood according to the 
theoretical treatment presented in Chapters 2 and 3. The simple two-phase 
model in  Chapter 2 predicted that for cylindrical macroions at infinite 
dilution the potential difference first increases with increasing charge 
density and is then completely saturated at the critical value of the charge 
density Q = I .  At finite concentration or for macroions of finite thickness, 

. 
the potential difference continues to increase very slowly with the charge 
density even for the density higher than the critical value, as shown in 
Chapter 3, Section III. A similar situation was also found for spherical 
macroions in Chapters 2 and 3. 

The observed relation between pH and the degree of neutralization 
was often found to fit the equation 

pH = pK+m log a/(I - a) (125) 

(unless a is near unity or zero), where m is a constant larger than unity. 
As shown in Fig. 23c (34, 35), the change of pH is nearly proportional to 
log a/(1 - a). The case of m = I corresponds to the titration of simple weak 
acids. The value of m - I gives the magnitude of the effect of repulsive inter­
action among charged groups. The empirical relation (125) means that the 
potential difference is approximately proportional to the factor log a/(J - a) ; 
namely, it shows logarithmic increase with the charge density. Such log­
arithmic increase is expected from calculation in Chapters 2 and 3. 

It is to be noted that since hydrogen ions are much smaller than other 
counter ions, the potential difference of ( 124) is not necessarily equal to, 
but a little larger than, the potential difference expected for alkali ions. 
This dependence can be explained on the basis of calculations developed 
in Chapter 4. 

III. HYDRATION OF THE MACROION 

Counter ions bound to macroions have been classified into two types; 
nonlocalizcd (bound but mobile) and localized. The number of the latter 
was estimated to be small in strongly dissociative polye1ectrolytes. It is 
not simple, however, to analyze experimentally the microscopic state of 
bound counter ions. If the localized binding introduces some change in the 

• 
• 
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electronic or vibrational state of the ion, measurement of the optical 
absorption spectrum, for example, is one useful method that may be 
employed to provide direct information on  the state of binding. Magnetic 
resonance study may be also useful, for example, in the case of hydrogen 
ions. This kind of study actuaIly gave valuable information (36). The 
applicability of such methods, however, is limited to special cases, and the 
use of a more general probing method is of advantage. For this purpose it 
may be convenient to investigate the effect of charged groups and counter 
ions on the structure of the solvent (water). 

Charged groups of macroions are expected to form layers with a 
special structure of water around them. This structure may be changed by 
the binding of counter ions. If counter ions are tightly bound to individual 
groups, the water molecules around them must be wholly rearranged. If 
counter ions are not localized but mobile around the macroion, the influ­
ence on the water structure around charged groups may be smaIL Thus, 
the state of binding should be closely related to the change of the water 
structure associated with the binding. The change of the water structure 
can be estimated by the measurement of the density or the refractive index. 
The refractive index is determined by the numbers of various kinds of 
atoms (molecules) and ions in a unit volume (density) and their polariz­
abilities. Since the polarizability of atoms or ions is not much affected by 
the state of interaction between them, the density in the solution can be 
related simply to the refractive index. In the present case, the water 
structure made by the charged groups is expected to have a density larger 
than the structure in normal water. Therefore, the average density or the 
average refractive index of the solution should increase on account .of 
this special structure. The destruction of this structure to the noollal one 
should decrease the density or the refractive index. 

The measurement of ultrasonic velocity, which is determined by the 
density and the compressibility of a solution, is also useful for the exami­
nation of the water structure. The compressibility of the special water 
structure around charged groups is expected to be smaller than that of 
normal water, and small compressibility is related to high ultrasonic 
velocity. Here, the results of refractive index measurement carried out by 
Ikegami (37) are described and their utility for investigating the state 
of counter ion binding is discussed. The ultrasonic measurement also 
gave similar results (38). 

Let us consider first the case of simple ions. When a simple monovalent 
acid is neutralized by a simple monovalent base, the refractive index of the 
solution is smallier than the mean of the refractive indices of the two 
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separate solutions of acid and base before neutralization. The difference 
of the refractive index between the solution and the weighed mean of com­
ponents is proportional to the-degree of neutralization, i.e., to the amount 
of the base added at a constant concentration of the acid, as shown in Fig. 
24a. In the case of the neutralization of strong acid this decrement of the 
index is associated with the reaction 

( 126) 

and in  the case of weak acid (for example, acetic acid) it is associated with 

( 127) 

By combining these two reactions the change of the refractive index or the 
density associatcd with dissociation of the carboxyl group is obtained. The 
decrease of the volume due to the dissociation, 

( 1 28) 

was estimated to bc 1 5.5 ml/mole at 25°C (37). 
If in the process of neutralization of a polyacid by alkali, the counter 

ions are bound to the macroion and change the water structure around it, 
it is difficult to isolate the effect due to the formation of the water structure 
by ionization of the macroion alone. It is desirable, therefore, to use alkali 
with cations that will have no influence on the water structure around the 
macroion, even if  they are bound. Alkali with cations of a very large 
volume were chosen on account of their inert property. If the special water 
structure is limited to the close neighborhood of the chain of the macroion, 
such cations are not expected to have large effects on this water structure. 
When this kind of alkali is  added to a weak polyacid, at low degree of 

, 

neutralization the decrement of the refractive index due to mixing is found \ 
to\increase in proportion to the amount of alkali added, as in the case of 
simple acids. The result is shown in  Fig. 24b for polyacrylic acid neutral ized 

, 

with tetrabutylammonium hydroxide. At high degrees of neutral ization, 
-

howFer, this dccrcmcnt is not increased further but rather is decreased by 
the a'ddition of alkali. 

By Isubtracting the effect of reaction ( 1 26) from the observed result 
corresponding to (1 27), the change of the refractive index due to the 
dissociation of carboxyl groups is obtained ovcr the whole range of 
neutralization. The change of refractive index can be translated to the change 
in the volume. Figure 24c gives the relation between the volume change due 
to the dissociation of a carboxyl group and the degree of neutralization or 
the number of charged groups. At low degrees of neutralization, each 
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FIG. 24. (a) The relation betwccn the decrement of the refractive index D.n of acid 
solutions and the degree of neutralization It. Solutions of 0.05 N HO were neutralized 
by (0) Bu.NOH and (e) NaOH; solutions of 0.05 N CH,COOH were neutralized by 
«() Bu.NOH and «() NaOH. (b) The relation between the decrement of the refractive 
index t;.n of polyacid solutions and the degree of neutralization It. Solutions of 
0.05 N polyacrylic acid were neutralized by (0) Bu.NOH and (e) NaOH. (e) The 
volume decrease accompanying the dissociation of carboxyl groups of polyacrylic acid 
at various deglccs of neutralization by Bu4NOH (37). 
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charged group forms an independent small region of special water 
structure around it. The probability of overlap or interaction between two 
regions belonging to different groups is small. If each region is assumed to 
be a sphere of average density 1 . 1 ,  its radius is estimated to be about 
3,f A from the experimental data in  Fig. 24c. 

At high degrees of neutralization, in excess of the individual spherical 
regions around charged groups, special water structure is formed in  
proportion to the square of the degree of neutralization. This aspect is 
fully illustrated in  Fig. 25. At low degrecs of neutralization individual spheri­
cal regions of the special water structure arc formed at charged groups. The 
spherical regions begin to overlap when the density of charged groups on the 
macroion exceeds a certain limit. In the case of poly acrylic acid, if the charged 
groups are uniformly distributed and the radius of a sphere is about 3. I A, this 
limit corresponds toa degree of neutralization of aboutO.3.Above this degree 
of neutralization the individual regions must fusc into cylindrical regions 
along the chain of the macroion. At ful l  neutralization, if this cylindrical 
region is assumed to have the same radius as the sphere initially formed, 
the whole volume of the cylinder is too small to explain the magnitude of 
the total volume change observed. The radius of this cylinder of the special 
water structure is estimated to be about 5.6 A for polyacrylic acid. 

If a cylindrical model having uniform charge density is employed for the 
macroion, the electric field around the cylinder is given by 

(129) 
at the degree of neutralization ex and the distance r. The electric field must 
be larger than a certain limit to reorient water molecules. Therefore, the 
above expression of the field suggests that the radius of the cylindrical 
region of the special water structure increases in proportion to the degree 
of neutralization ; its volume increases in proportion to the square of the 
degree of neutralization. Thus, the model of Fig. 25 is reasonable in 
comparison with experimental data. 

If the macroion is in a stretched conformation, the above region of the 
special water structure is essentially a straight cylinder. If  it is coiled, the 
cylinder is curved and overlapping of cylinders may occur in the macroion. 
I n the region of overlap the electric field must be weak and the special water 
structure disappears. Therefore, from the standpoint of the water structure, 
we must also d istinguish the three regions in and around the macroion ; 
potential holes at individual charged groups, cylindrical regions along the 
chain where the electric field is strong, and a residual region where the 
electric field is weak as a result of the summed effect of surrounding 
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charged chains. In the' former two regions two kinds of special water 
structure are formed. In the third region water has the normal structure . 
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FIG. 25. Illustration of spherical and cylindrical hydration regions around a cylindrical ' .  

macroion at various charge densities, and the statc of binding of various counter ions. 

, 

IV. HYDRATION AND BINDING OF COUNTER IONS 
, 

What kind of effects on the water structure is found when counter ions 
arc bound to the macroion ? In the previous section, inert cations of large 

• 

volume were employed to prevent their entry into the hydration region 
• 



, 
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· , around the macroion, If  counter ions of smaller size are used, the change of 
water structure 'due to their binding can be estimated. In Fig. 24b, the 

, ' , change of the refractive index in the process of neutralization is compared 
, ,' for two kinds of counter ions. In the case of sodium ions, the decrease of 
. ', . the refractive index or the increase of the volume due to mixing with 

,: . polyacids is larger than in the case of tetrabutylammonium ions. Tetra­
'. butylammonium ions are supposed to be bound but have little effect on the · hydration region along the macroion, while sodium ions are bound in the 
: hydration region and break the special water structure to bring the increase 
; '  'of the volume of water. The difference in the value of the ordinate between 

, two curves in Fig. 24b gives the total change of the refractive index due 
, to binding of sodium ions. The relation between the total change and the 
degree of neutralization IX is given i n  Fig. 26a. 

In the next experiment, sodium ions are added to solutions of polyacid 
neutralized by tetrabutylammonium hydroxide to various degrees. Upon 
the addition of sodium salt, the refractive index decreases or the volume 
increases in comparison with the sum of indices or volumes of individual 
solutions of polyacids and salt. This increase of the volume continues up 
to a critical concentration of sodium salt which depends on the degree of 
neutralization, as shown in Fig. 26b. Above this critical concentration 
the further addition of sodium ion produces only a small increase of 
volume which is independent of the degree of neutralization. The first 
steep increase of volume is due to the binding of sodium ions in the 
hydration region around the macroion, and saturation of binding occurs 
at the critical concentration. Beyond this concentration the slow increase 
of volume is due to a simple salt effect. This interpretation is supported 
by the fact that the value of the change of the refractive index at critical 
points dependent on the degree of neutralization is in good agreement 
with the value estimated by the previous method i n  Fig. 26a. 

On account of the great difference in the size the binding of sodium ions 
is very predominant over that of tetrabutylammonium ions. By assuming 
that all sodium ions added are bound up to the critical concentration, 
the numbcr of bound ions at saturation can be compared with the total 
number of charged groups in the macroion. Figure 26c gives the relation 
between the amount of bound sodium ions at saturation and the degrce of 
neutralization or the charge number on the macroion. The relation obtaincd 
is the same as was previously prcdicted in the counter ion condensation 
theory for the cylindrical macroion model in Chapters 2 and 3. With 
polyacrylic acid the value of IX at which condensation just begins corre­
sponds to the condition that Q = 1 .  Above this critical value of IX, the 

, 
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gradient of the straight line in Fig. 26c is almost equal to unity. That is; 
the excess amount of counter ions is bound to the macroion until the 
apparent charge of the macroion is reduced to the limit corresponding to 
the critical IX or P Q = 1 .  
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FIG. 26. (a) The decrement of the refractive index accompanying the binding of sodium' , 
ions to polyacrylic acid ions neutralized at various degrees, obtained by the comparison 
between two curves in Fig. 24(b). (b) The decrement of the refractive index accompanying 
the binding of sodium ions when NaCi was added to solutions of polyacrylic acid 
partially neutralized by Bu4NOH ; (0) the degree of neutralization 0; = 1 .0, (}) 0.69, 
(() OAO, and (0) 1 .0 neutralized by NaOH. (e) The relation between the fraction of 
bound sodium ions at saturation and the degree of neutralization estimated from the 
data in Fig. 26(b). 
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Thus, the counter ion condensation phenomenon has also been con­
firmed by the measurement of refractive index. The agreement of the 
present analysis with the p;:evious thermodynamic analysis on the amount 

-. of bound counter ions suggests that all bound counter ions (of small size 
such as sodium ions) are in the hydration region. 

In Fig. 27 the magnitude of the volume change associated with the 
:. binding of sodium ions is compared with that associated with the dis­

sociation of carboxyl groups or the binding of hydrogen ions. The former • 

30 

x 
x 

o 
a 

FIG. 27. The volume decrease accompanying the binding of various counter ions to 
macroions at various degrees of neutralization <x. Polyacrylie acid neutralized by 
Bu .. NOH was used as the standard. (ct, () H +,  (6) Na + ,  ( x )  Mg2 +, (0) Ba2 +, and 
(e) LaH • 

• 

. is considerably smaller than the latter. The bound hydrogen ions arc 
evidently localized to individual charged groups and the water structure 
around them is therefore completely rearranged. The change of the water 
structure by bound sodium ions is much smaller. It is very likely that sodium 

. ions are not localized at individual charged groups but are mobile in the 
second cylindrical region of the water structure as illustrated in Fig. 25 . 

• 



84 

This idea is supported by the fact that the magnitude of the volume change 
by sodium ions is of the same order as the difference that is ' observed 
between the volume changes by hydrogen ions at high and low degrees of 
neutralization (Fig. 27). Bound sodium ions have an effect only on the 
excess volume of the special water structure made by the cooperation of 

charged groups in the macroion. Therefore, as shown in Fig. 27, the effect 
on the water structure slightly decreases with decreasing degree of neu­
tralization. 

Similar analyses have been carried out to examine the effect of polyvalent 
counter ions on the water structure. As shown in Fig. 27, i n  the case of 
divalent counter ions, the magnitude of the volume change associated 
with the binding is bctwcen that observed for hydrogen ions and sodium 
ions. The bound divalcnt cations are partially localized and partially 
mobile. The former destroy the water structure around individual charged 
groups and the latter are retained in the second cylindrical hydration region. 
Trivalent cation produces a volume change of the same order as hydrogen 

ion. The water structure around the macroion is largely destroyed by the 
binding of trivalent counter ions. 

Thus, the binding state of counter ions depends on their size and 
valence. The property of the resultant polyelectrolytes therefore depends 
on the size and valence of counter ions. For example, polyacrylic acid 
neutralized by sodium hydroxide i s  easily precipitated by the addition of 
polyvalent counter ions. At full neutralization the amount of counter ions 

needed for precipitation of polyanions is almost the same for all kinds of 
polyvalent counter ions, as shown in  Fig. 28a. This may be related to the 
loss of the hydration region due to the binding of these countcr ions (17). 

It must bc noted here that at low dcgrees of neutralization there is a 

great differcnce in  thc critical amount of different polyvalent counter ions 

for precipitation of polyanions. This phenomenon i s  an interesting example 
of the relationship betwccn properties common to all polycleetrolytes and 
properties specific to the species of macroions and counter ions. Among 
various divalent counter ions, barium ions in  a very small amount can 
precipitate half neutralized polyacrylic acid, while magnesium ion can 

not at all, as shown in Fig. 28b. 
It was confirmed that such a difference in the ability for precipitation 

is not due to the differcnce in the amount of bound countcr ions (39). 
As predicted by the counter ion condensation thcory in  Chapter 4, all 
kinds of divalent counter ions are bound to polyanions to the same extent. 
That is, when divalent cations are added to polyacrylic acid neutralized 
by sodium hydroxide to the degree of neutralization of 0.3, all divalent 
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FlO. 28. (a) Thc relation bctween the critical salt concentration for precipitation and the 
polymer concentration in polyacrylie acid solutions fully neutralized by NaOH in 
different kinds of divalent cations; ( x )  MgCI,. and (0) CaCI2• (39). (b) The relation 
between the critical salt concentration for precipitation and the degree of neutralization 
in polyaerylie acid solutions neutralized by NaOH; (0) MgCI2• (a) CaCl" and (e) 
BaCI, .  (c) The relation between the amount of bound divalent cations C.ound and the 
concentration of added salts Cs at various degrees of neutralization a in polyacrylic 
acid solutions of concentration 60 mN/ l ;  (0) MgCl,• a ""  1.0, (0) HaCI" a ""  1 .0. 

(a) MgCI,. a = 0.7. (0) BaCl,. « = 0.7, (e) MgCI2, « = 0.25, (II)BaCl2 •  /% = 0.25, 
and (A) HCI, a = 0.7 (39). 
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cations added are bound to polyanions up to a certain limit. Figure 2Sc 
gives the amount of bound divalent cations estimated from the measure­
ment of electrical conductivity of polyacrylic acid solutions (39). Both 
barium and magnesium ions are fully bound to polyanions until the 
apparent charge of the polyanion is depressed to a common critical value 
for condensation of divalent counter ions. Therefore, it must be concluded 
that polyanions having the same number of bound divalent counter ions 
show different solubilities depending on the species of the counter ion. 
That is, at low degrees of neutralization barium polyacrylate has a very 
low solubility, while magnesium polyacrylate is highly soluble. 

This difference is consistent with the result of the refractive index 
measurements. Among various divalent cations, the volume change 
associated with the binding of barium ions is larger than that associated 
with the binding of magnesium ions, as shown in Fig. 27. Barium poly­
acrylate has the hydration region of a smaller volume than magnesium 
polyacrylate. It is likely that the structure COO Mg+ is more stable and 
soluble than the structure COO Ba +. The latter has a higher tendency 
to make a linkage of the form COO Me OOC than the former. Such a 
difference is expected to be amplified when the density of charged groups 
COO - in the polyanion is not too large. Thus, the species specificity of 
counter ions manifests itself in the intermediate range of the degree of 
neutralization. This interpretation is also supported by the result of 
titration experiments in the presence of divalent cations (40). 
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'l'HI!: EFFECT OF LOW MOLECULAR SALTS 

I. THE ADDITIVITY LAW 
In the earlier chapters only salt-free polyelectrolytes were considered 

for an analysis of characteristic properties. In this chapter the effect of the 
addition of simple salts to polyelectrolytes i s  examined. The number of 
small ions becomes larger than the number of charged groups in  macro­
ions on the addition of salts. All small ions of charge opposite to that of the 
macroions (counter ions) come from polyelectrolytes and the simple salts 
added, and all ions of the same charge (co-ions) come from the salts. 

If a large charge is fixed in a solution of simple salt, the effect of the 
coulomb potential from this charge is screened by the ionic atmosphere 
due to the small ions. This screening becomes more effective with an 
increase in the salt concentration. It may therefore be expected that the 
apparent charge of a macroion in polyelectrolytes decreases with the 
addition of simple salt. For instance, let us consider that sodium chloride 
is added to a solution of polyacrylic acid neutralized by sodium hydroxide. 
In the absence of sodium chloride, some sodium ions are already retained 
in  the macroion. The activity of sodium ion is given by the concentration 
of free ions outside the macroion. The charge of the macroion is not 
completely canceled by bound counter ions and a sizable potential drop 
between the inside and the outside of the macroion continues to exist 
according to Eq. (2). When sodium chloride is added to this solution, 
sodium ions added ar.:: attracted by this potential drop and chloride ions 
are repelled. As a consequence, the apparent charge of the macroion is 

87 
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decreased. The activity of sodium ions may then be expected to be smaller 
than the sum of the contribution from the sodium ions of the poly­
electrolyte (in the absence of sodium chloride) and sodium chloride (in 
the absence of the polyelectrolyte). 

However, experiments give the following characteristic results. The 
activity of counter ions is best expressed as a sum of the independent 
contributions of counter ions from the polyelectrolyte and the added salt ; 
i.e., the activity is 

(130) 

where cp and c. arc concentrations of counter ions from the polyelectrolyte 
and the added salt, respectively, 'Yp is the activity coefficient of counter ions 
of pure polyelectrolyte in the absence of added salt, and 'Ys + is the activity 
coefficient of counter ions of added salt in the a.bsence of polyelectrolyte. 

The osmotic pressure (against the pure solvent) of polyelectrolyte 
solutions containing simple salt is also given by the sum of the osmotic 
pressure of the polyelectrolyte solution without salt and of the salt. The 
electric conductivity is found to be the sum of the conductivities of the 
pure polyelectrolyte and the pure salt as well. 

The experimental results of Mock and Marshall (41), and Nagasawa 
et a!. (42) and Alexandrowicz (43) for neutralized polyacids, and those to 
Iida and Imai (44) for proteins are presented in Fig. 29a, b and c to 
demonstrate this unique behavior of polyelectrolyte-salt mixtures. 

The thermodynamic and transference properties of salt-containing 
polyelectrolytes are thus described as a superposition of the individual 
properties of the pure components by an additivity law. The counter ions 
from added salt seem not to be bound to macroions. This apparent 
capability of a macroion to distinguish counter ions originating from itself 
and from added salt is at first glance a most surprising result. The secret 
to this riddle appears to reside in the lonlg range coulomb potential of the 
highly charged macroion. The examination of this feature which follows 
shows the additivity law to be an essential rather than accidental property 
of polyelectrolytes. 

II. THEORETICAL DERIVATION OF THE ADDITIVITY LAW 

We have seen that the most characteristic property of polyclectrolytes, 
counter ion condensation, was well explained by applying a two-phase 
approximation to a cylindrical model of the macroion. The logarithmic 
form of the potential that resulted fro m  the use of this model provided 
good insight with respect to this property. Here, the additivity law is 
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FIG. 29. (a) The relation betwcen the activity of counter ions and the concentration of 
macroions. The activity of hydrogen ions was measured in solutions of vinyltoluene­
styrene copolymer sulfonic acid in the presence of various concentrations of HC!. The 
ordinate represents the value of H* when the activity of hydrogen ions or pH of the 
solutions is expressed as pH = - log (H' + HO), where HO is the activity of hydrogen 
ions in solutions of HCl at the same concentrations in the absence of rnacroions. The 
fact that all data at various concentrations of HCI are on a line supports the 
additivity law (42). (b) The relations between the activity coefficient of counter ions 
(sodium ions) and the concentration of macroions (polyvinylsulfonate) in the presence 
of various concentrations of salts (NaCl). The NaCI concentrations are: (A) 0.1 N; 
(B) 0.05 N; (C) 0.02 N; (0) 0.01 N; (E) 0.005 N; (F) 0.001 N; (0) O. Solid lines are 

, 

calculated from the additivity law at these concentrations of salts (43). (e) Sodium ion 
activity against added NaCI concentration at three pH's in tropomyosin solutions. The 
ordinate represents the difference betwcen sodium ion activity in tropomyosin solutions 
and in simple salt solutions at the same salt concentration. (e) pH 9.98, (0) pH 
8.14, and pH 7.06 (44). 

derived by use of the cylindrical model once again and the logarithmic 
potential is found to play an important role as before. The following 
treatment is based on (45). 

Let us employ the Poisson-Boltzmann equation for a cylindrical or 
rodlike macroion in a cylindrical free volume (Fig. 1 2a) j 

(131) 

where, in  the presence of simple salt, the charge density on the right-hand 
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side is composed of charged groups, counter ions, and co-ions ; i denotes 
the ionic species. If the spatial coordi nate, the distance from the center of 
the rod, is represented by the relative distance, ria = x, the ratio of the 
distance to the radius of t he rod, the above equation is transformed into : 

where 

and 

d2<p!dx2 + ( I /x)(d<fJldx) = I A i  exp (- Zi<P) (132) 
• 

, 

cP = �o"'/kT 

R/_ 
Ai  = (47t�o2/tokT)(lIiz'!l)l J exp (- Zi<P) 2nx dx ( 1 33) 

1 

The boundary conditions are written as 

[x(d<fJldx)]R/Q = 0, (1 34) 

where d = 1111 is the average distance between neighboring charges on the 
maeroion and IIi is the total number of smal l  ions of the ith species per 
maeroion. The electro neutrality condition is satisfied in the cylindrical 
volume of radius R. 

The above set of equations shows that the potential energy-kinetic 
energy ratio 4>(= eol/llkT) can be expressed as a function of the ratio ria 
and the ratio RIa. Consequently, it is easily found from Eq. (32) that the 
electric energy u. and the electric free energy Ie can both be expressed as 
functions of the ratio Ria. They do not contain R or a separately. (This 
situation is found also in the previous result i n  Chapter 3, Section III.) 
The total free energy per macroion is thus always of the form 

1 =  I.(R/a)+/o( vIN) ( 1 35) 

where the standard free energy 10 is a function of V/N or (R2 - a2). 
The additivity law expressed i n  osmotic pressure terms can be derived 

from the fact that the electric free energy is a function of the ratio RIa. 
The osmotic pressure n of the solution (against pure solvent) is given by 

II = -N(af/av)d .• , .• = -(1 /2nR2/)[R(iJl/aR)1 (1 36) 

because the addition of a solvent molecule simply leads to an inerellse of 
the free volume, i.e., the radius R. S ince the free energy Ie is a function of 
Ria, 

( 137) 

The derivative of the electric free energy with respect to the radius of the 
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free volume is related to its derivative with respect to the radius of the 
maeroion. Therefore, 

or 

R(o//oR) = -a(o//oa) + a(% /aa) + Rca/o/aR) 

= -a(a//oa) + 2 V(a/% V) 
\ 

2rrR2m = 2(V/N)no +a(iJ//aa) 

(138) 

where 1C(R2 _a2)1 = (V/N) and TI o  is the osmotic pressure of a hypo­
. the tical solution of counter ions and co-ions in the absence of macroions. 

If the osmotic pressure of two solutions is compared, the following 
equation is obtained: 

• 

-where ( V/N) is nearly equal to rrRl/. Subscripts i n  the equation denote the 
kind of solution. If solution 1 denotes polyelectrolyte without simple salt 
and solution 2 denotes polyelectrolyte with simple salt, the difference 
in the osmotic pressure of two hypothetical solutions (fI20 - TIl 0) can be 
approximated by the osmotic pressure TIs of a solution of salt without 
polyelectrolytes 

(140) 

The term (o//aa) denotes the free energy variation due to the change of the 
radius of the macroion. I n  the absence of simple salt, it consists of the 
variation of the elcctric energy of the macroion and bound counter ions 
and of the entropy of bound counter ions. In other words, (a//aa), is 
related to the pressure llP, acting on the surface of the rod by the equation 

(141) 
and this pressure is expressed as: 

( 142) 

where the first term comes from 1 he energy of the electric field E( = - a 1/1 /ar) 
at the surface and the second term comes from the osmotic pressure 
of the solution of counter ions at the surface (46). Equation (1 42) can be 
derived by dilTerentiation of energy II, and entropy s given in Chapter 3, 
Section I with respect to the radius a. 

I f  the charge density on the maeroion is low, the concentration of 
counter ions c+(a) at the surface is finite when radius a becomes 
infinitely small. On the other hand, the electric field E i ncreases infinitely 
in proportion to I/a. Therefore, when a is sufficiently small and the charge 
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density is lower than a certain critical value, the term (a/Jaa)! consists 
only of the energy of the electric field, i.e., 

(c.oJ8n)£2(a) = (n2e / J2nEioa2[2) 
and 

(143) 

This situation is not changed by the addition of simple salt because the 
concentration of ions at the surface still remains finite. Therefore, the 
same expression as the above can be applied to (a/Jaah of a solution of 
the same macroion in the presence of simple salt. That is, 

Then, 
( 144) 

The osmotic pressure of a polyelectrolyte i n  the presence of simple salt 
is given by the sum of the osmotic pressure of the polyelectrolyte solution 
without salt and that of the salt solution without the polyelectrolyte. 

When the charge density of the macroion exceeds the critical value 
given by Q = I .  the condensation of counter ions begins at the surface of 
the macroion. Even if the radius a of the macroion becomes infinitely 
small, the number of condensed counter ions n-n* is not decreased but 
remains constant. Therefore, the two terms of Eq. ( 142) are given by 

(eo/8n)£2(a) = (1I*2eo2/2neoa2[2) (145) 
and 

Since both terms are of the same order as functions of a, 

a(a/laa)! = -n*2eo2Jeo[- 2kT(n-n*) 
= +f1*kT- 2nkT 

= [(f1JQ) -2n]kT ( 146) 

This expression of a(a/Jaa) can be shown to be insensitive to the addition 
of simple salt. By resorting to the two-phase equilibrium concept developed 
in the previous chapter, equations corresponding to (10) can be assumed 
to describe the distributions of counter ions and co-ions. Then, at high 
values of Q the equation for counter ions requires the existence of a limit 
to the apparent charge density onhe macroion at infinite dilution. This 
limit is given by the condition that PQ- I = 0, where p is the ratio of the 
apparent charge lI*eo to the total charge lIeo of the macroion. Therefore, 
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the value of n * at the limit is independent of the presence of simple salt. 
Since co-ions are repelled from the small region v, the same value of n* 

means that approximately the same number of counter ions are condensed 
in v. The change in the number of counter ions bound in  v by the addition 
of salt is sufficiently smaller than the total number of counter ions bound 
in  v. (The change is not exactly zero.) Consequently, the tel m a(a/laa) in 
the presence of salt has approximately the same value as that given by 
Eq. (146) in the absence of salt. The additivity of the osmotic pressure is 
thus satisfied even when the charge density of the macroion becomes 
large. 

By use of the expressions 

(147) 
and 

n.lkT = g.c. 

where gp and g. are the osmotic coefficients, the additivity law ( 143) is 
rewritten as 

(148) 

In this treatment the osmotic pressure is nearly proportional to the sum 
of the concentration of counter ions and co-ions at the periphery of the 
free volume R. The additivity of the osmotic pressure is directly related 
to the additivity of the total ion concentration at the periphery and the 
additivity of electrical conductivity is satisfactorily explained. 

The additivity of the osmotic pressure does not always mean the addi­
tivity of the concentration of each kind of ion, for instance, counter- ions 
alone at the periphery. By assuming, however, that the co,llccntration of 
co-ions at the periphery in  the presence of the macroion is approximately 
equal to that in the absence of the macroion, the concentration of counter 
ions is expected to be given by the sum of the concentration in  the absence 
of salt and in the absence of the macroion. The additivity of the activity 
of counter ions is then approximately established. Actually the activity 
coefficient of co-ions is not very much smaller than unity. Even if it 
changes with the concentration of salt, the change is small. 

The expressions of a(iJ/laa) in Eqs. (143) and (146) were approximate. 
If at a constant concentration of simple salt, thc radius a of thc macroion 
or the concentration of the macroion is made infinitely small, they arc 
exact. In  actual cases, however, the radius of the macroion and the con­
centration are finite and the ratio aiR is not always sufficiently small. 
Moreover, real macroions may assume shapes varying from cylindrical 
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to spherical, depending on the charge density and the concentration. For 
spherical macroions, the Poisson-Boltzmann equation must contain 
a spatial coordinate besides the relative distance rJa; then the additivity 
law can not be readily derived for this conformation. 

Experimentally, however, the additivity law is found to be satisfied 
over a wide range of concentrations of macroion and added salt. One 
reason for this may be that the macroion retains its cylindrical character 
even when the macroion as a whole is coiled. It has also been theoretically 
shown that in the cylindrical model offiilite thickness, or even in the spheri­
cal model, the additivity law is approximately satisfied if the charge 
density of the macroion is sufficiently large. Katchalsky proved the 
additivity law of the activity coefficient of counter ions under the assump­
tion that the activity coefficient of co-ions is always equal to unity, 
independent of the shape of the macroion (47). Alexandrowicz (48) 
derived the additivity law from the approximate solution of the Poisson­
Boltzmann equation for the mixture of simple salt and macroions of high 
charge density. By applying the cluster integral method to a rodlike macroion 
having discrete charged groups in simple salt, Manning and Zimm found 
that the additivity law is approximately satisfied (49, 50). 

Thus, it is concluded that the additivity law which describes one of the 
most characteristic properties of polyelectrolytes is a result of the special I 
feature of the integrated coulomb potential due to the macroion. 

• 

III. MIXTURE OF SALTS 

The additivity law was derived with counter ions of the same species. 
It can be applicd. to counter ions of any valence and size, as long as they are 
of the same species. It is of interest to examine its applicability in a mixture 
of different salts. It has already been shown that in a mixture counterion 
condensation depends on the valence and the size of counter ions. The 
valence changes the critical value of the charge density for condensation. 
The size changes the amount of condensation at finite concentrations of 

• 

macrolOns. 
Let us consider a macroion with monovalent counter ions. When salts 

having polyvalent counter ions are added to the solution, these poly­
valent ions arc selectively bound to the macroion and the effective charge 
of the macroion is changed. The derivative (aJJaa) can not be kept 
constant as is required for the additivity law to be satisfied. In such a case 
it is convenient to consider first the equilibrium between the macroion and 
polyvalent counter ions. Polyvalent counter ions are condensed to the 

, 
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macroion until the effective charge is reduced to the critical value given by 
n*eo2/eokTI = l/z or zPQ = 1 ,  where z is the valence. 

If the total number of polyvalent counter ions in the solution is smaller 
than that necessary for this reduction of the effective charge, all of them are 
condensed and no free polyvalent ions remain, as mentioned in Chapter 4. 
Such a phenomenon is expected to occur independent of the amount of 
monovalent counter ions coexisting. Then the equilibrium between the 
macroion and monovalent counter ions is established at the charge density 
to which the macroion was reduced by the binding of polyvalent counter 
ions. It is not necessary to take into consideration the direct correlation 
between two kinds of counter ions. 

In general, when the total number of polyvalent counter ions is smaller 
than that corresponding to the total charge of the macroion, it is conven­
ient to define solution I to contain macroions, all ofthe polyvalent counter 
ions, and sufficient monovalent counter ions to equal to the total charge 
of the macroion. Solution 2 is obtained by the addition of the remaining 
monovalent salt. This addition of monovalent salt to solution 1 does not 
change the effective charge or the number of condensed counter ions on 
the macroion. The additivity law can be satisfied by the osmotic pressure 
of solution 1 and 2 defined above. If solution 1 is defined as containing 
macroions and monovalent counter ions and solution 2 as containing 
polyvalent salt in addition, the additivity law can not be satisfied. 

When the total number of polyvalent counter ions is larger than that 
corresponding to the total charge of the macroion, these ions are bound 
until the effective charge of the macroion is reduced to the critical value 
and no monovalent counter ions are bound. Therefore, the addition of 

, 

monovalent salts does not change the effective charge or number of 
condensed ions. 

Let us next consider a mixture of two kinds of monovalent counter 
ions of different size. At sufficiently low concentrations of macroions, the 
effective charge of the macroion can not exceed a critical value common to 
monovalent counter ions. If the charge density of the macroion is larger 
than the critical value, i.e., if Q is larger than unity, some of the mono­
valent counter ions must be bound. The ratio of the numbers of two kinds 
of bound counter ions is determined by their size and the charge density 
of the macroion. (See the analysis in Chapter 4.) However, the total 
number of bound ions is determined by the charge density alone, since 
the remaining charge of the macroion must always be equal to the critical 
value. Therefore, the value of (of/oa) is approximately independent of the 
ratio of two kinds of bound counter ions. Solution 1 is then supposed to 

, 
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contain macroions with two kinds of monovalent counter ions and 
solution 2 also contains a mixture of monovalent salts i n  addition to the 
macroions and the counter ions. The values of (oJ/oa) for the two solutions 
are equal and the additivity law is expected to be satisfied when applied 
to the osmotic pressure of the mixture. 

As mentioned in the previous section, however, counter ions of smaller 
size are bound more than those of larger size. Therefore, the additivity 
law can not be expected to describe the activity of each kind of counter 
ion in the mixture. If salt of counter ions of smaller size is added to a 
solution of maeroions with counter ions of larger size, bound counter 
ions must be exchanged. 

IV. OSMOTIC PRESSURE AGAINST SALT SOLUTIONS 

Equation ( 1 38) is rewritten as 

TI = TIo + (N/2V)a(oJ/oa) ' 

For a salt-free polyelectrolyte 

(149) 

TIo = nNkTf V (I SO) 
If  the expressions of a(oJ/oa) in Eqs. (142) and ( 145) are put into Eq. \ 
( 149), the same result as Eq. (6 1 )  is obtained for the osmotic pressure at 
extreme dilution. In the presence of simple salt the osmotic pressure is 
obtained by adding the osmotic pressure of the salt solution. Then we have 

TI = (nN kTf V)(I - Q /2) + TIs 

TI = (nNkTf V)( 1 /2Q) + TIs 

O :S; Q :s; 1  

I < Q ( 1 5 1 )  

This procedure of caleulation to derive Eq. ( 1 5 1 )  indicates that the 
expression (61) or ( l S I )  of the osmotic pressure as a function of the charge 
density Q results from the fundamental property of the Poisson-Boltzmann 
equation for a cylindrical system which led us to the additivity law. 

It must be remarked, however, that the above osmotic pressure TI refers 
to the pure solvent. In the presence of salt the osmotic pressure that is 
measured experimentally refers to the salt solution since the semiper­
meable membrane for measurement is impermeable only to macroions. 

The activity of  counter ions and that of co-ions in a solution of macro-
• • • 

IOns IS wntten as 

and 
( 1 52) 
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; 
respectively, according to the additivity law. If this solution is in osmotic 
equilibrium with a salt solution of concentration c,o ,  the relation 

( 153) 

must be established. This is the equilibrium condition for transfer of simple 
salt across the membrane. Thus, the concentration of salt c, in  the solution 
of macroions is given as a function of the concentration of macroions 
and of the salt outside. 

The osmotic pressure TI '  of the solution of macroions against the salt 
solution is given from Eq. (148) by 

(1 54) 

This is the equilibrium condition for transfer of a solvent (water) molecule 
across the membrane. From Eqs. (1 53) and ( 1 54) the osmotic pressure can 
be solved as a function of concentrations cp and C.o .  In the present method 
of approximation it is meaningless to distinguish osmotic coefficients and 
activity coefficients, as described in Chapter 3. Therefore, here we put 
"I, = gpo 2"1, = g. and 2"1'0 = gsO '  Then we have 

( 155) 
where 

x = 2y.ocso/Ypcp 

The quantity Ypcp gives the osmotic pressure TI in the absence of salt and 
the additivity law indicates that this Yp is independent of the salt con­
centration. Thereforc, thc ratio of the osmotic pressure in  the presence of 
salt to that in  the absence of salt is a function only of the ratio x. The 
relation of this osmotic pressure TI '  to the macroion concentration at 
a constant value of thc salt concentration is shown in  Fig. 30a. 

Figure 30b shows the relation of the osmotic pressurc to the concen­
tration of salt at a constant concentration of macroion. The pressure 
dccreases with the addition of salt. At low concentrations of salt, i.e., for 
small values of the ratio of thc salt concentration to the countcr ion 
concentration originating in the macroion x, the pressure is approximately 
given by 

TI'/kT = ypcp-2y.ocso + 2Yso2C.o2/ypcp (156) 

Thc osmotic pressure of a polyelcctrolyte against a salt solution of low 
concentration is approximatcly given by thc difference between the osmotic 
prcssure of the polyelcctrolyte against the pure solvent and that of the salt 
solution against the pure solvent. The correction term i n  Eq. (1 56) is the 
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product of the ratio x and the osmotic pressure of the salt solution divided 
by 2. 

According to Eq. (J  55), at high concentrations of salts or low con­
centrations of macroions the osmotic pressure n' is given by 
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FIG. 30. (a) The relation between the osmotic pressure and the concentration of macro­
ions at a constant concentration of the salt solution outside. x = 2Y,oc,o/r.c • .  (b) The 

relation between the osmotic pressure and the concentration of salts outside at a con­
stant concentration of the macroions. 

Thermodynamically, however, in the limit of low concentrations of 
macroions the osmotic pressure against a salt solution must be given by , 
the number conccntration of macro ions. The contribution of the mixing 
entropy of macroions was not taken into account i n  the expression of the 
osmotic pressure (1 54). Therefore, Eq. ( 1 57) must be rewritten 

(1 58) 

which is regarded as a ,series expansion of the osmotic pressure with respect 
to the concentration of macroions. The second term gives the second virial 
cocfficient of the osmotic pressure A 2 against the salt solution ; 

( 159) 

The positive value of the second virial cocfficient is a consequence of the 
repulsive force between macroions. The repUlsive force is decreased by the 
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addition of salts. The fact that the virial coellicient is inversely propor­
tional to the salt concentration has been experimentally confirmed and this 
result IS shown in Fig. 3 1  a and b (5 J). 

The light scattering of a polyelectrolyte solution i n  the presence of 
simple salt is mainly due to the fluctuation of the concentration of macro­
ions i n  the salt solution. [t  is inversely proportional to the derivative of the 
osmotic pressure D'  with respect to the concentration of macroions at a 
constant external salt concentration e, o .  From the above expression of TI' 
the scattering intensity is found to be increased by the addition of salts. 
Some experimental data are in qualitative agreement with the result 
derived from Eq. (1 58) (52). 
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Fig. 3 1 .  (a) The relation between the osmotic pressure and the concentration of sodium 
pectinate solutions in equilibrium with various concentrations of NaCi. The numbers on 
the lines denote the Nael concentrations (N). (b) The relation between the second virial 
coefficient Az and the concentration of low molecular salts obtained from the data in 
Fig. 3 1a. (51). 
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All of tne above tneoretical results werc obtained from tne additivity 
law and the equivalcnce between tne osmotic coefficient and the activity 
coefficien t. 

-
It must be noted tnat the second vi rial coefficicnt is obtained experiment-

ally from tne gradient of the change of the osmotic pressure or the light 
scattering with concentration by extrapolation to infinite dilution. 
Another theoretical method of determination of A2 must be calculation 
of the interaction between two macroions placed in a salt solution. This 
problem is discussed in later chapters. 

Finally it is  emphasized again that in the absence of salts the osmotic 
pressure is determined by the concentration of free counter ions, while 
in the limit of high concentrations of salts it is detcrmined by the (number) 
concentration of macroions. Between these two limits, the salt concentration 
greatly changes the osmotic pressure and various other properties of 
polyclcctrolytcs. 
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Chapter 8 

CHEMICAL POTENTIALS AND THE 
SALT CONCENTRATION 

I. THE CHEMICAL POTENTIAL OF MACROJONS 

The effect of simple sail on the chemical potential, flp, of maeroions 
with counter ions is analyzed below by employing the additivity law 
derived in the previous chapter. In the absence of salt the free energy f 
of polyelectrolyte solution per macroion with its counter ions is given by 
expression (22). The total free energy of the solution containing N macro­
ions is then Nf. (The mixing entropy of macroions in the solution must be 
added to this free energy, but this entropy term has no influence on the 
discussion in this chapter.) The chemical potential of the macroion with 
counter ions can be obtained by differentiation of this total free energy 
F= Nfwith respect to the number, N, of macro ions. In the differentiation 
it must be remembered that the free energy fis a function of N through the 
size of the free volume of the macroion. The chemical potential, Ji o, of the 
solvent molecule is obtained by the differentiation of F= Nfwith respect 
to the number of solvent molecules lloN ( = No). In this differentiation the 
free volume also changes. The total volume of the solution V is written as 

( 160) 

where DO is the volume of the solvent molecule, v+ is the volume of the · 
counter ion, and Dm i s  the volume of the macroion. Therefore, we have 

103 



lip = (aFja N) = 1+ N [Dlj(7( Vj N)][a( V/ N)/aN] 

= 1+ ( al/ac V! N)][ - (110VO)] 

110 = (O F/a N 0) = N [aJjiJ( Vj N)][iJ( V/ N)/iJN oj 

= [aJ!o( v I N»)vo 

From these relations it is found that 
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(161) 

(1 62) 

F = NJ = N(lIp +nollo) ( 163) 

This is a thermodynamic relation which must be generally satisfied 
between the free energy and chemical potentials. 

In the presence of simple salt 

(164) 

where II. is the total number of salt molecules per macroion and lis is the 
chemical potential of the salt (including both counter jons and co-ions). 

The chemical potential of the salt fl., if we consider the additivity law 
• 

to be valid, may be expressed as 

(1 65) 
where cp is, as i n  the previous section, the concentration of counter ipns 
from the macroion and Cs is the concentration of counter ions and co-ions 
from the salt. The additivity law, theoretically derived for the case of 
rodlike or cylindrical macroions in the previous chapter, has been experi­
mentally established over a very wide range of macroion and salt con­
centrations, and the assumption that it provides a general relationship 
between the chemical potential of salt and its concentration is felt  to be 
appropriate. 

When the free energy is written i n  the form of Eq. (1 64), the thermo­
dynamic relation 

( 166) 

must be satisfied in the arbitrary combination of two components i andj. 
As a special case, we have 

oJlplocs = n(alls/OCp) 

The right-hand side can be calculated from Eq. (\ 65) to be 

n(Olls/aCp) = nkTYp( l + a  In  ypja In cp)/(Ypcp+ y/c,) 

(1 67) 

(\68) 
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The differencc between the chcmical potential of macroions (with 
counter ions) in the absence and in the presence of salts can be calculated 
as fol lows, by the use of Eqs. (1 67) and ( 1 68) 

-
C,. 

{l.(c.) - {lp(O) = J (all.lacs) dcs 
o 

( 1 69) 

In the integration i t  was assumed that the derivative a I n  y.la I n  cp is very 
much smaller than unity and the activity coefficient of salt ions is replaced 
by its average over the entire range of the salt concentration. This simplifi­
cation is reasonable because the activity coefficient of counter ions i n  the 
absence of salt is insensitive to the concentration of the macroion, as shown 
in Chapter 3. The chemical potential of macroions with counter ions is 
thus obtained as a fu nction of thc salt concentration. Si nce the above 
derivation is bascd on the assumption that the additivity law is obeyed 
over thc whole range of salt concentration, the relatioll is only as appl ic­
able as thc additivity law. 

Expression ( 1 69) can bc interpreted as follows. Let us suppose that small 
molecules are added to a solution of macromolecules. Small molecules 
are assumed to have different affinities for macromolecules i n  different 
states. The chemical potential of macromolecules i n  a state having a strong 
affinity for small moleculcs is decreascd to a large extcnt by addition of 
such small moleculcs (54). If a repulsive force acts between small molecules 
and macromolecules, their addition increascs the chemical potential of 
macromolecules. In expression (1 69) the add it ion of simple salt to macro­
ions (with their counter ions) i ncreases the chemical potential of macroions. 
This result corresponds to the case of repulsive i nteraction, the repulsion 
between macroions and salt being stronger the larger the value of yp '  
Thus, i n  the conformation having a larger apparent charge or a larger 
concentration of free counter ions, salt ions as a whole arc repelled more 
strongly by macroions. Since the concentration of free counter ions is 
larger i n  the extended conformation than i n  the coiled one, the repulsion 
is weaker i n  the latter, and consequently, the addition of salt increases the 
concentration of macroions i n  the coiled conformation. 

This situation can be u nderstood from the osmotic equilibrium of a 
solution of macroions with a salt solution, where the concentration of salt 
ions i n  the solution of macroions is lower than that i n  the salt solution 
outside. (See the concentration of co-ions.) The difference is larger for 
macrojons having the larger apparen t  charge. 
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If small molecules are bound to a macromolecule in state j with the 
binding constant KJ at l1!j binding sites, the chemical potential of macro­
molecules in state j is decreased by the addition of these small molecules 
by 

(170) 

where c is the concentration of free small molecules. This expression is  
analogous to Eq. (169) except for the negative sign. That is, according to 
Eq. ( 1 69) the influence of salt ions on the chemical potential of macroions 
is as if they have a stronger affinity for maeroions in  the state having a 
smaller activity coefficient of counter ions, although actually the inter­
action between maeroions and salts is repulsive. 

II. HYDROGEN ION EQUILIBRIUM IN THE PRESENCE ·OF SALTS 

Another example of the application of the additivity law is given below 
to describe the effect of salt on the titration behavior of  polyacids or 
polybases (55). In the case of partially neutralized weak polyacids or 
poly bases the solution can be regarded as being composed of four com­
ponents; solvent molecules (e.g., H20), polyacid or polybase molecules 
(e.g., polyacrylic acid), alkali or acid (e.g., NaOH), and neutral salt 
molecules (e.g., NaCl). The total number of these molecules in the solution 
are denoted by noN, N, n.N, and I1.N, respectively. The chemical potentials 
are denoted by !J.o,  !J.p' II., and !J. ..  respectively. All small ions and charged 
groups on the macroions are assumed to be of the same valence and, 
moreover, counter ions from alkali or acid and those from neutral salts 
are assumed to be of the same species. Each macroion has approximately 
n. charged groups on the average. The degree of neutralization of macro­
ions Cl is given by the ratio 11./n. 

The total free energy of the system must be written as 

(l7l) 

It should be noted that instead of taking the partially neutralized macroion 
as an independent component, we define the polyacid (polybase) and the 
alkali (acid) as two independent components. Then, derivatives of the 
chemical potentials with respect to the number of component molecules 
yield thermodynamic relations of the type introduced in Eq. (166). One of 
them may be written as 

(172) 
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where Ca is the number concentration of alkali (acid) added. In the 
present case application of the additivity law for expression of the activity 
of counter ions gives the relation -

(173) 

the concentration of counter ions from macroions being equal to Ca ' 
Here, Yp designates the activity coefficient of these counter ions in the 
absence of salt. 

By the use of Eqs. ( 1 72) and ( 173), the difference between the chemical 
potential of alkali (acid) i n  the absence and in the presence of salt ean be • 

calculated as was done previously for the macroion with counter ions. 
The result is 

c. 

PaCcs) - piO) = J caps/aca) dcs o 
= kTca(Ypca)/aca)/Ys +) In (I  + '1. + cs/Ypca) (174) 

On  the other hand, the chemical potential of counter ion is given by the 
additivity law and the difference between the potential in the absenee and 
in the presence of salt is given by 

kT ln (1'pca + 1'/cs) - kT ln Ypca = kT ln ( I  + '1. +cs/Ypca) (175) 

Since alkali is  composed of counter ions and hydroxyl ions, the ehemi.cal 
potential of hydroxyl ions is obtained by subtracting Eq. (1 75) from 
Eq. (174). The chemical potential of hydrogen ion is  then given by 

JlH(C.) - JlHCO) = -kT{[a(1'pca)/acal/1'/ - I } In (I + 1'/ cshpca) (1 76) 

We learn from this result that at a constant value of the degree of neutra­
lization, IX, the pH of the solution is changed by the addition of neutral 
salts i n  accordance with 

pH (cs) -pH (0) = {[a(1'pc.)/aca]IYs + - I } log! 0 (I + 'Is + cshpca) (177) 
• 

The derivative [ac1'pc.)/oc.], which corresponds to the increase of free 
counter ions with increase of the degree of neutralization in  the absence of 
salt, is usually positive but smaller than unity. Therefore, the coefficient 
on the right-hand side of Eq. (1 77) is negative. That is, the pH decreases 
with increasing concentration of simple salt in  proportion to the term 
logl o ( I  + 1'. + cs/1'pca)· The ratio 'Is + c./1'pCa defines the number of free 
counter ions from added salt relative to that from alkali. When this ratio 
is small, the pH change is proportional to the salt concentration c.; when 
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i t  is large, the pH change is  proportional to the logarithm of the salt 
concentration. 

In Fig. 32a the pH of partially neutralized polyacrylic acid solutions is 
plotted against the salt concentration at various dcgrees of neutralization 
(56). A logarithmic decrease of pH is found at high salt concentrations. 
The gradient of the straight line in this figure is plotted against the degree 
of neutralization i n  Fig. 32b. The value of the derivative [GI(I'pc.)/Glc.] or 
[a(l'pa)/Gla] estimated from the gradient by the use of Eq. (1 77) is also 
given in  the same figure. At high degrees of neutralization the derivative 
becomes very small, so that I'p!X. becomes almost constant. 

This result is consistent with the earlier experimental and theoretical 
analyses on activity of counter ions described in preceding chapters. 

In Fig. 32a the val ue of the salt concentration at which the extra­
polated straight line (the pH vs. log c. line) reaches the horizontal line 
corresponding to the pH observed at zero salt concentration must satisfy 
the condition l'pc. = Y/ cs • The relation between I'pc. and the degree of 
neutralization obtained by this method is shown in Fig. 32c. The value of 
I'pc. increases with increasing degree of neutralization and is almost 
saturated at high degrees of neutralization. Such behaviors of ypc. agree 
well with previous experimental and theoretical results. 

The other experimental example is concerned with a rodlike protein, 
tropomyosin. The relation obtained between the pH and the salt con­
centration at constant concentrations of tropomyosin and alkali i n  the 
neutral pH region is shown in  Fig. 33a (57). At high salt concentrations 
the pH decreases in proportion to the logarithm of the salt concentration. 
In the whole range of salt concentration the relation observed is in very good 
agreement with Eq. ( 177), as shown in Fig. 33b. In this case independent 
measurements of the activity of counter ions were carried out i n  the same 
solution. The value of the activity directly measured coincides with the 
activity estimated from the intercept of the extrapolated straight line (the 
pH vs. log Cs l ine) with the horizontal line corresponding to the pH at 
zero salt concentration in Fig. 33a. In Fig. 33b the value of I'pc. obtained 
by this method was used to determine the value of the abscissa. 

Tropomyosin molecules exist as long fibrous polymer strands in  the 
absence of salt and they are depolymerized into monomer with the 
addition of salt. In spite of this sizable change in the state of polymerization 
the relation between the pH and the salt concentration is well explained by 
the present thcory. This success of thcory is due to the fact that the activity 
of counter ions is determined mainly by the charge density along the rodlike 
molecule, which is not significantly changed by polymerization. 
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FIG. 32. (a) The relation between pH and the logarithm of the salt (NaCl) concentration 
log c .• at constant dcgrccs of neutralization iX in 7.1 mN polyacrylic acid solutions 
neutralized by NaOH. (e) Observed in the absence of salts, and (C) intercepts obtained 
by extrapolation of straight lines at high salt concentrations (sec text) (56). (b) The 
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III. THE ELECTRIC POTENTIAL AT THE MACROION 
In Eq. (1 24), which gives the relation between the pH and the degree of 

neutralization, the effect of simple salt must come from the change of the 
electric potential difference <>I/! with the salt concentration. By comparing 
Eqs. ( 177) and (J 24) we have 

-(eo/kT)(hl/!(Cs) -<>I/!(O)l = {[o(y pc.)/oc.l/ys + - I }  In (J + Ys + cs/Y pC.) 
(178) 
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log (1 + yS csly,c.) 
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FIG. 33. (a) The relation between pH and the logarithm of the salt (NaCI) concentration 
log c, at a constant degree of neutralization in a tropomyosin solution neutralized, by 
NaOH. (b) The relation between pH and log (I + v,c,.ly,c.) where y.c. in the absence 
of salls was independently mC3sured to be 1.27 x 10- 3 mole (44). 

The potential difference hI/! decreases in proportion to the logarithm of the 
salt concentration at high salt concentrations. At low salt concentratiops 
the potential decrease is  proportional to the salt concentration. 

• 

It has often been stated that the coulomb potential of highly charged 
macroions is screened by the addition of a small amount of simple salt. 
The above result indicates, however, that this screening effect is not very 
large. Appreciable screening takes place only after the amount of salt ions ' 
added is comparable to the amount of free counter ions from macroions 
in the absence of salt. 

The depression of the potential takes place in a logarithmic way and the 
effect of the integrated coulomb potential from the highly charged macroion 
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is still sizable in the presence of a large amount of salt. In other words, 
even at high salt concentrations the further addition of salt can continue 
to depress the potential. The extensive force of the flexible macroion due 
to the electric free energy, for example, is not completely eliminated even 
at high salt concentrations. This is discussed in  some detail in a later 
chapter. 

The concentration of counter ions c' i n  the vicinity of the macroion, 
i.e., in  the potential valley, is given by the product of the concentration of 
free counter ions outside the macroion and the factor exp (-eof5t/J!kT). 
The concentration of free counter ions is equal to the activity and i t  is 
easily shown with Eq. (1 78) that the change of concentration of counter 
ions in  the potential valley due to the addition of salt can be given by 

In c'(c.) - In c'(O) = U8(ypco)/Oc.]!y. +}  In (1 + Y. + c.!Ypc.) (179) 

As previously mentioned, the derivative [8(Ypc.)!8c.] is very much smaller 
than unity, so that the change of the counter ion concentration in the 
potential valley is small. In the ideal case of counter ion condensation the 
apparent charge density of the macroion can not exceed a certain limit and 
the derivative [8(ypc.)!8c.l should become zero above this limit. Then, the 
counter ion concentration in  the potential valley should not be changed by 
the addition of salt. Such constancy of the counter ion concentration was 
anticipated by the theoretical derivation of the additivity law in  the 
previous chapter. Experimentally, the derivative [8(ypc.)!8c.] is not zero 
but takes a small positive value. The number of counter ions condensed 
on the macroion is increased slightly by salt. 

The decrease of the absolute value of the potential at the macroion due 
to the addition of salt denotes the change of the charge density around the 
macroion. The charge density ncar the macroion must increase with 
increasing concentration of salt. The increase of the number of counter 
ions must exceed the increase of the number of co-ions. The additivity 
law does not imply that the ion distribution is additive everywhere in  the 
solution. 

Finally, the relation between pH and the salt concentration at various 
degrees of neutralization must satisfy Eq. ( 1 77) in the polyelectrolyte 
solution in which the activity of counter ions satisfies the additivity law. It 
is not always true, however, that when the pH is expressed by a relation 
of the type of Eq. (1 77) as a function of the salt concentration, the addi­
tivity law is found for the activity. It must be noted here that a relation 
apparently similar to Eqs. ( 177) or ( 178) has been derived from a quite 
different theoretical foundation (58). 





Chapter 9 

IN'IERACTION BETWEEN MACROIONS 

I. INTERACTION BETWEEN PARALLEL RODLIKE MACROIONS 
Repulsion is expected between macroions of the same charge. It  is 

depressed by counter ions accumulated in  the neighborhood of these 
macroions. Such depression of the force by the ionic atmosphere was first 
analyzed on the basis of the Debye-Hiickel approximation by Verwey 
and Overbeek (59). However, their analysis is not readily applicable to the 
case of highly charged macroions, because of large electric potential 
around macroions. In this chapter a more appropriate method is presented 
and the force between parallel rodlike maeroions is obtained as a function 
of the charge density of macroions and the distance between them (60). 

As shown in Fig. 34, two fodlike macroions of charge - neo , length I, 
and radius a are placed in parallel at distance X in a large cylindrical free 
volume of radius R, where e1ectroneutrality is satisfied. The middle point 
of X is assumed to coincide with the center of the free volume. In the 
absence of simple salt, 2n counter ions of charge eo are distributed in the 
free volume. The Poisson-Boltzmann equation for this system was solved 
analytically without approximation by Imai (61) and the force between 
the rods was calculated by the use of this solution (62). Here, however, 

this system is treated by a simple theoretical method which is the same as 
that uscd in the derivation of the additivity law. Without knowledge of 
details of the solution of the Poisson-Boltzmann equation, the exact 
expression can be derived for the force between thin rods which approach 
closely (60). 

113  
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In the cylindrical coordinates (r 0) with the origin at the center of the 
free volume, the Poisson-Boltzmann equation can be written as 

W(p/ox2) + (I lx)(o</Jlox) + ( I lx2)(02</Jlo02) = A exp (- </J) (180) 

A = (4rr2I1co2/sofkT)1 J J exp ( - </J)x dx dO 

where the relative spatial coordinate x = ria was used instead of r and the 
ratio of the potential energy to the kinetic energy </J was used i nstead of 
!/t. The boundary conditions are given by 

J x(oNox)dO = 0 at x = Ria 

J y(o</Jloy)d(p = -2nco 2/sofkT 

f= • 

20 __ 20 

X'-

R 

( 181)  

FIG. 34. Two parallel rodlike macroions in  a free volume where the electroneutrality is 
satisfied. 

at the surface of each rod (y = I), where (y, cp) are the cylindrical co­
ordinates with the center at the center of the rod, and )'2 = x2 + b2 - 2xb 
cos 0, where b = Xj2a. Therefore, the solution of the above Poisson­
Boltzmann equation </J must be expressed as a function of the relative 
coordinates x, 0 and the constants Ria and X /2a. Then, the electric 
energy and the electric free energy contain only the ratios among R, a, 
and X as quantities specifying the geometry of the system, They do not 
contain R, a, or X separately, Thus, the total free energy f per macroion 
must be expressed as : 

(1 82) 

where fa is  the st3.ndard free energy of the non charged system, which is a 
function of the volume n( R 2 - 2a2), and fe is the electric free energy. 
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Now, the force between two rods is given by the derivative ca//a X). From 
Eq. (J 82) the derivative is transformed into : 

xca//aX)a." = X(iJ/./iJX) •. R = - a(a/./aakx -R(a/./oR) • .  x 

= - a(o/Joa)".x-R Ca/JaR) • .  .\" + a (% /aah,x 

= - a(o//iJakx + 2C V/N)[c( R) - cpJ ( 1 83) 

where cCR) is the concentration of counter ions at the periphery of the 
free volume R, and cp is the average concentration of counter ions in the 
whole volume, that is, cp == 2nN/V. The fi,rst term a(a//iJa)".x is the self­
extensive force of the rods. 

For sufficiently thin rods, this extensive force has been calculated as a 
function of the charge density i n  Chapter 7. Since the present system is 
composed of two rods, it is found from Eqs. (143) and (146) that 

a(iJ/JiJa) = -2J1QkT for 0 ::;  Q s I 

= - 2(211-II/Q)kT for I ::;  Q ( 1 84) 

where Q = ne//eoleT/. 
The concentration of counter ions at the periphery R can be easily 

calculated jf the radius of the free volume R is very much larger than the 
d istance X. Under this condition c(R) can be approximated by the 
concentration of counter ions at the periphery for the single rod syste.m 
having the charge density 2 Q  placed at the center of the free volume. Then, 

( I  85) 

which is equivalent to Eq. ( 1 38), is available and c( R) is obtained from the 
value of a(o//oa) for the single rod having 2Q. The result is 

c(R) = ci l - Q) 

= cp/4Q 

for 0 ::;  Q ::; 1 /2 

for 1 /2 ::; Q 

From Eqs. ( 1 83), ( 1 84), and ( 1 86) we have 

- X(iJ//OX) • . R = (2nkT) Q for 0 s Q ::; 1 /2 

for 1 /2 ::; Q ::;  I 

( 1 86) 

= (2I1kT)(2- Q - I/2Q)  

= (2J1kT)( 1 /2Q) for I s Q (1 87) 

Figure 35a shows the relation between the force and the charge II or the 
charge density Q. Since Q is proportional to II, the force (o//oX) is pro­
portional to 1/2 for small values of /I and it becomes constant for large 

• 
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values of 11 or for Q larger than unity. The ratio of the force to the charge 

i s  nearly constant for Q between 1 /2 and I ,  having a maxi mum at an 

i n termediate valuc of Q (  = 1 /\1'2). Such behavior of the force as a fu nction 

of the charge 11 is a characteristic property of macroions resulting from the 

counter ion condensation. The force is proportional to 1 /  X for small values 
o f  distance X. 

It i s  necessary to compare this result with the result expected from the 
pure coulomb repulsion between two infinitely th in  rods with n o  counter 

ions. The coulomb repulsion is proportional to the square of the charge, 

being given by 2112CO 2/1 X = 211 QkT/ X. As shown i n  Fig. 35a, for Q smaller 

than 1 /2, the force between two rods that approach closcly in a solution 
of countcr ions coincides with the force d ue to pure coulomb repulsio n ;  

i n  the l imit  of X -+ 0 or R -+ co ,  no counter ions are condensed on or 

between two rods. For Q larger than 1 /2, h owever, even i n  the l imit  of 
X -+ 0 or R -+ co ,  the force between two rods becomes considerably 

smaller than the pure coulomb repulsion ; the two rods come i n to contact, 
keeping some of the counter ions in  their close vici nity. This is reasonable 
because when two rods comc i nto contact, the total charge of two rods, 

2Q, exceeds the critical value, unity, for the counter i o n  condensation. 

At Q = I ,  the force between two rods is just half the pure coulomb 

repulsion. The repulsion is equal to the extensive force of a single thin rod 

having the charge density Q = I .  This reduction of the force i s  due to 

counter ions condensed on the two approaching macroions. For Q larger 

than unity, the repulsion is kept constant at the value for Q = I .  Such 

saturation is understood frol11 the fact that the apparent charge of each 

macroion can not exceed the critical value corresponding to Q = 1 , 

because of the -counter ion condensation. In the case of monovalent 

charged groups and counter ions, the condition Q = I corresponds to a n  

average distance o f  about 7 A between neighboring charges on the rods 

at room temperature in water, and the condition Q = 1 /2 to an average 

d i stance of about 1 4  A. 
When the valence of counter ions is z, a similar calculation shows that 

the force between two parallel thin rods of the u n i form charge density 

in  a large free volume is given, instead of by Eq. ( 1 87), by 

- X(�r/aX)a.R = (2nkT) Q 

= (2nkT)(2jz- Q - 1 /2Z2 Q) 

= (2nkT)(1 /2z2 Q) 

for O :$;  Q :$; 1 /2z 

for 1 /2z :$; Q :$; liz 

for l /z :$; Q ( 188) 
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The repulsive force becomes weaker for counter ions of the larger valence. 
The force, however, is always repUlsive. For Q = l /z, the force is 1/2z2 
of the direct coulomb repulsion between two rods of the charge density 
Q = l iz. The force for the case of z = 2 i s  compared with that for z = I 
in Fig. 35a. 

Since the concentration of counter ions at the periphery c(R) must 
i ncrease with i ncreasing distance X, for largc distance the force between 
two rods decreases more rapidly than in  proportion to I IX. The force is 
expected to become zero when the distance X is of the same order as R. 
That is, the equidistant arrangement of parallel rods must be most stable 
in the solution. Figure 35b shows the relation between the force and the 
distance obtained from the analytical solution of the Poisson-Boltzmann 
equation for this system (62) . 

, 
I .-

• 
I " 

Q 
(a) 

, 
1 

o :c-___ --L. ___ � ----l 0.0 1 0.1 
XIR 
(b) 

FIG. 35. (a) The relation of the repulsive force between two parallel rods and their 
charge density. The broken line gives the direct coulomb force. (b) The relation of the 
repulsive force between two parallel rods and the distance between them at two different 
chargc densities (62). 

II. EXTENSIVE FORCE OF AN ASSEMBLY OF RODLIKE MACROIONS 

The above method of calculation can be extended to an assembly 
of paraliel charged rods. Let us suppose therc are 111 rods i n  the central 
region of the free volume ; the position of each rod is given by the 
cylindrical coordinates (ri ' OJ), i= 1 , 2, . . . , m. Consider only the pro­
portional extension of the assembly to (ar;, 0;) with a common value of 
C( for each rod. Then, the coordinates of the assembly can be represented 
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by only one variable, the extension of the assembly which is denoted by X 
as in the previous case. The free energy of this system is found, as before, 
to be a function of the relative coordinates RIa and X/a. Therefore, 
Eq. ( 1 83) is applicable to the present case. The sum of the self-extensive 
force of /II rods, each of which has the charge density Q, is given by 

a(allaa)x,R = -mnQkT 

= -m(2n-II/Q)kT 

for 0 ::;; Q ::;; 1 
for 1 ::;; Q (189) 

which is obtained by mUltiplying ml2 by a(al/aa) for the two rod system. 
If the extension X is very much smaller than R, the concentration c(R) 

can be approximated by the concentration at R when a single rod of 
charge density mQ is placed at the center of the free volume. The second 
term of Eq. (183) can be obtained with this approximation. The final 
result for the extensive force of the assembly is found to be 

- X(allaX) •. R = n/ll(IIl - I) QkT 

= IIm(2- Q - l/mQ)kT 

= IIm« m- I)lmQ)kT 

for 0 ::;; Q ::;; 11m 

for 11m ::;; Q ::;; I 

[or 1 ::;; Q (190) 

For Q smaller than I /m, the extensive force is equal to thc direct coulomb 
repulsion due to /II rods. For Q larger than 11m, the force is suppressed 
by the accumulation of counter ions among the rods, as shown i n  Fig. 36. 
In the limit of fusion of III rods into a single rod of the charge mQ, the 
apparent total charge density can not exceed the critical value mQ = 1 .  
At Q equal to unity, the extensive force of the assembly is  I/m of the direct 
coulomb repulsion. For Q larger than unity, the increase o[ the charge 
density does not increase the extensive [orce. 

When the number of rods is very large, namely, when m is sufficiently 
larger than unity, Eq. (190) is rewritten as 

- X(al/aX) • .  R = 11111(2- Q)kT 

= (111111 Q)kT 

for 0 ::;; Q ::;; 1 

for I ::;; Q (191) 

Since the apparent volume of the assembly of 111 rods is proportional to 
X2, the extensivc force of the volume v is given by 

-(allav) = (II111lv)(I - QI2)kT 

= (1I11l/v)(J/2Q)kT 

[or 0 ::;; Q ::;; 1 
for 1 ::;; Q (192) 
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In the derivation of this result it was assumed that the extension of the 
assembly, X, is very much smaller than the free volume and that the 
number of rods is very large. In such a case, the system can be regarded 
to be composed of two phases; the assembly phase and the outside phase. 
Most of the counter ions are condensed among the rods and the charge 
of the rods is almost completely neutralized in  the assembly phase. Then, 

+ 2 m = CO 

+ 
+ + + 

~ 
m = 4 

+ 
+ � 

'-'''' + "' ''' m = 2 � 
+ '\' 1 

+ 
+ + 

+ + 

,--�,-----,----.. � 
o 

(0) (b) 
FIG. 36. (a) Illustration of the extensive force of an assembly of m rods. (b) The extensive 
force of the assembly as functions of the charge density. When III tends to infinity. the 

force becomes equivalent to the osmotic pressure of the phase of many parallel rods. 

the extensive force (oJ/ov) means the osmotic pressure of this phase. The 
quantity II/Il/V, in the right-hand side of Eq. ( 1 92), means the average 
concentration of counter ions in  this phase. Therefore, the remaining 
factor ( 1 - Q/2) or 1/2Q corresponds to the osmotic coefficient (or activity 
coefficient of counter ions). It  is quite remarkable that these expressions 
of the coefficient are just the same as those obtained for a simple solution 
of charged rods in previous chapters. (See Eqs. (61)  and ( l51� 

As long as the proportional extension of the assembly as a whole is 
concerned, Eq. ( 1 92) is always applicable for any arrangement of m rods. 
This corresponds to the situation that the osmotic coefficient is almost 
independent of the concentration of charged rods in the solution, as 
discussed previously. 
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I I I. INTERACTION IN THE PRESENCE Of SALTS 

The interaction between macroions having many charges is expected 
to be screened by the addition of simple salt. At high concentration of salt 
the repulsion between macroions of the same charge may be greatly 
suppressed. Such an effect of salts on the interaction was now analyzed 
by a method similar to that used in  the above sections. The result showed 
that the current understanding on the screening eITect of salts must be 
corrected (60). 

Let us consider once again parallel rods in a large free volume. Even in 
the presence of simple salt the electric free energy of this system must be a 
function of the relative coordinates R/a and X/2a, because in  this case also 
the Poisson-Boltzmann equation can be expressed in the form of Eq. (1 80) 
where A exp (- ifJ) must be replaced by the summation �j A j  exp (- zjlj}) 
including counter ions and co-ions. Therefore, Eq. (1 83) is applicable. 
The concentration c(R) denotes the total concentration of small ions 
at the periphery R of the free volume. If the distance Xis very much smaller 
than R, i t  can be replaced by the concentration at R in a single rod system 
of the same total charge. For the single rod system, the additivity law was 
proved in  Chapter 7. That is, the concentration of small ions at R i n  the 
presence of simple salt is nearly equal to the sum of the counter ion con­
centration in the absence of simple salt and the average concentration 
of added salt ions. In  other words, the concentration difference c(R)­
(cp+ cs) is almost independent of the concentration of added salt. If the 
rods are sufficiently thin and long, the extensive force of each rod is also 
independent of the salt concentration as proved i n  Chaptcr 7. Conse­
quently, the repulsive force between rods given by Eq. (183) is not changed 
by the addition of salt. Thus, it is concluded that under the restrictive 
condition that if (a) the rods arc sufficiently thin, (b) the ratios aiR and 
X/ R are sufficiently smaller than unity, and (c) the salt concentration is 
not too high, the repulsive force between charged rods is  not depressed 
by the addition of salt. 

• 
This strange result, which is contrary to the current concept of the 

screening effect of salt ions, is due to the special character of the i ntegrated 
coulomb potential around rodlike maeroions that was essential for the 
additivity law. 

It is instructive to consider again the assembly of many charged rods 
to understand the above result. The extensive force of the assembly in a 
large free volume is just the osmotic pressure of the assembly phase. When 
simple salts arc added, the osmotic pressure against the salt solution can be 
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calculated by employing the additivity law, as shown in Chapter 7, 
Section IV. lf  the salt concentration is low, the decrease of the osmotic 
pressure by the addition of salts is proportional to the salt concentration 
and -

(al/av) = - (11111/V)ykT + 2c,akT (193) 

where y is the osmotic coefficient in the absence of salts given by the same 
formula as Eq. (192). The quantity (11111/V)'I is the concentration of counter 
ions retained but mobile in the assembly phase and Csa i s  the salt con­
centration in the outside phase. For a dense assembly of many rods, 
(I1m/v),/ is large. From Eg. ( I 93) we see that if the condition 

I1l11yll1. � (X/R)2 (1 94) 

is satisfied, the e(fect of salt on the extensive force of the assembly is 
negligible. 

• 

In the case of two rods, an analogous criterion can be stated as fol lows: 
As long as the concentration of counter ions at the middle point of the 
distance X between two rods is sufficiently larger than the average con­
centration of salt i n  the whole free volume, the depression of the repulsive 
force by salt is negligible. 

When the salt concentration is  high or when the distance X is  large, the 
extensive force is depressed by salt to an appreciable extent. In this case; 
however, it is difficult to obtain an exact expression of the force. For a 
large distance X the concentration of small ions at the periphery can not 
be approximated by that for the single rod system. The deviation becomes 
appreciable when the ratio X/R becomes larger than 0.01 (62). Then, the 
additivity of the concentration of small ions at the periphery or the 
constancy of c(R) -(cp + c,) is not guaranteed i n  the presence of added 
salts. 

Another way to estimate the effect of salt on the interaction betwcen 
macroions may be achieved in the following manner. When macroions 
in a solution are uniformly d istributed at an equal distance from neigh­
boring macroions, no repulsive or attractive forces act between them. If 
t,wo macroions approach, repulsion begins to appear. If this repulsion is 
small, the fluctuation of the macroion concentration in the solution 
becomes large. The concentrati on fluctuation th us provides a measure of 
the magnitude of the repulsive force between macroi ons. 

Now, the concentration fluctuation is in general determined by the 
d erivative of the osmotic pressure with respect to the concentration (63). 
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For the fluctuation of the free volume per macroion, it is found that 

<Cvr- <vrW)/<vr)2 = (l/n)(I /oCTI'/kT)/oc.) (195) 

In  this formula the free volu me per macroion is denoted by vf and the 
average of vr' <vI)' is equal to V/N. In the presence of salt the osmotic 
pressure n' must be the pressure against the salt solution. By the use of the 
result in Chapter 7, Section IV, the right-hand side of Eq. (195) can be 
calculated. In the absence of salt 

(196) 

The fluctuation of the macroion concentration is much smaller by the 
factor 1/I1Y than that expected in  the case of nonc\ectrolytic macromole­
cules, but it  is' larger than that expected i n  macroions interacting through 
pure coulomb force without counter ions. The repulsion between macroions 
is much stronger than that betwecn noneharged 'maeromoleeules but is 
weaker than direct coulomb forec. 

At low salt concentrations, from Eq. (156) 

o(rI'/kT)/oc. = Yp(I -2Ys/cso2Jy/c/) (197) 

The derivative decreases with the addition of salt and the fluctuation 
consequently increases. The ratio y>ocso/y.c" determines the cffect of salt 
on the fluctuation and the increase of the fluctuation occurs according to 
the square of this ratio. Therefore in  the range of ypcpJysocso � I ,  the fluctu­
ation is not greatly affccted by the addition of salt. In other words, the 
repulsion between macroions is not much depressed. 

At suftkiently high salt concentrations the electric potential must be 
small cverywhere in the solution, so that the Debye-Hiicke1 approximation 
is available to solve the Poisson-Boltzmann equation . In this case the 
interaction was analyzed in details by Verwey and Overbeck (59). By the 
use of the potential derived by them, the radial distribution function for 
two macroions was also calculated (Q4'I., At the infinitclv,hi1!D saltJ:ooccll=-_ 
tration, the interaction vanishes and the right-hand side of Eq. ( 195) 
tends to unity ; a result corresponding to the case of non-electrolytic 
macromolecules. . 

Finally it must be noticed that all of the above analyses were made 
under the condition that the number of charged groups on the macroions 
is kept constant, independently of the distance between them. However, 
this i s  not always true in actual systems. For example, in the case of weak 
polyacids at the intermediate degree of neutralization, the number of 
charged groups may be decreased when two maeroions approach at a 
fixed value of pH. 
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IV. ATTRACTIVE FORCE DUE TO THE COUNTER ION FLUCTUATION 
In  the above theory the force between two macroions was calculated 

for the average cquilibrium distribution of counter ions. The counter ions, 
however, are not fixed at the average distribution. On account of thermal 
fluctuation, the distribution deviates from the average one. This fluctuation 
gives rise to the transient dipole moment of the macroion as described in 
Chapter 5. The cloud of counter ions around a rodlike maeroion is momen­
tarily concentrated in  some places and diluted in others, although on the 
average it is uniform along the rod. When two macroions approach cach 
other, the fluctuation of the counter ion distribution around them is inter­
related. The fluctuation giving the lower i nteraction energy takes place 
more frequently. This correlative behavior results in  an attractive force 
bctween thc macroions, just as in  the case of van der Waals interaction 
between atoms and molecules. The large polarizability of macroions 
that was proved in  the previous chapter suggests the existence of the large 
attractive force as a consequence of the counter ion fluctuation. 

For example, let us consider two rodlike macroions placed in parallel 
• 

at a distance X from each other which is very much smaller than the length 
1 of the macroion, as shown in Fig. 37a. The average (equilibrium) density 
of counter ions condensed on each maeroion is denoted by n'/I. At a 
certain time t and position x along the rod, the density deviates from the 
average by bc+(x). For the sake of simplicity, the charged groups on th.c 
macroion are represented by a fixed uniform density nil. 

The additional interaction energy between two macroions due to the 
counter ion fluctuation can be expressed approximately as 

where X1 2 = [X2 + (Xl -X2)!]I!! is the distance between two points Xl and 
X2 on the two macroions, respectively. The average of the product 
oc+(x,) ·('ic.:.(Xl) is not zero i f  the fluctuations on two macroions correlated 
with each other. When oc+(x1) is positive, OC+ (X2) becomes negative with 
higher probability because of the lower energy. Calculation of the above 
energy u. and its average may be performed by the same method as that 
employed for calculation of polarizabili ty in Chapter 5, Section III 
where the fluctuation OC + was expanded in a Fourier series. Such calcu-
lation, h owcver, is complicated and moreover, contrary to the case of 
spontaneous polarization of the macroion, i n  the case of interaction 
between two macroions approaching closely, the fluctuation of counter 
ions with the short wavelength is expected to make a large contribution. 
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The insolubilization of polyelcetrolytes caused by the addition of a 
small amount of polyvalent counter ions at high charge densities which was 
described in Chapter 6, Section IV may be understood on the basis of the 
above theoretical result. Under ordinary conditions strong repulsion acts 
between macroions in solution. The solution is characterized by a large 
osmotic pressure and a small light-scattering intensity. The second virial 
coefficient of the osmotic pressure is positive, owing to this repulsion. As a 
consequence of this repulsion, maeroions are highly soluble. However, they 
can be precipitated by polyvalent salts. Binding of polyvalent counter ions 
decreases the repulsion and introduces the attraction between macroions. 
This attraction can be regarded as a result of the fluctuation of the counter 
ion distribution, although microscopically this may be equivalent to the 
formation of a kind of bridge formed by polyvalent counter ions locating 
between charged groups of two macroions. -

Anisotropic phases of tactoid or paracrystal formed by rod like macro­
ions can be treated from the viewpoint presented above (65). One of the 
principal causes for the formation of such anisotropic phases is the 
entropic effect of long rodlike macromolecules arranged in parallel (66). 
However, the electric repulsion and attraction analyzed here both play 
important roles, as suggested by the fact that the stability of the tactoid 
phase of tobacco mosaic virus, for example, is changed by the pH and the 
salt concentration (67). The ordinary van der Waals interaction may also 
be important. It may be that parallel arrangement of actin and myosi.n 
filaments in muscle is maintained as a result of a combination of all 
these interactions (68). Actually, it was found that long actin filaments 
make paracrystals in the presence of divalent cations (69). The present 
theory is also applicable to the effect of the ionic circumstances on the 
separation of two strands of DNA (70). 



Chapter 10 

EXTENSIVE FORCE OF MACROIONS 

1. EXTENSIVE FORCE OF SPHERICAL MACROIONS 

If the macroion is a flexible chain in  the random coil conformation, 
the force to extend the macroion appears as a result of the electrical 
interaction among charged groups and counter ions. As an example, let 
us consider a macroion occupying a spherical volume v of radius a on the 
average. Charged groups are assumed to be distributed uniformly in- this 
volume. Counter ions are distributed in and around this volume. The 
equilibrium distribution is well described by the two-phase approximation. 
Among n counter ions from each macroion, n'= n-n* counter ions are 
bound in the potential trough made by the macroion, and the apparent 
charge of the macroion is equal to -n*eo'  Most of the bound counter 
ions are assumed to be mobile in the volume v. Other counter ions, the 
number of which is n* per macroion, move outside the volume v. 

The force to extend the macroion can be calculated by differentiating 
the free energy of the system with respect to the volume v at constant 
values ofthe charge or the number of counter ions 11 and the concentration 
of macroions Nj V in the solution. Although the number of bound counter 
ions changes with the change of v, this need not be taken into considera­
tion in the differentiation because the number of bound ions is determined 
by the minimum condition of the free energy. Then, with the two-phase 
approximation, it is found that the extensive force is composed of two 
parts: One is equal to the extensive force of a sphere having charge 
-1I*eo and the other comes from the osmotic pressure of counter ions 
bound in v (71). 
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The macroion tends to extend due to coulomb repulsion between 
charged groups. This extensive force, expected to i ncrease with increasing 
number of charged groups, is decreased, however, by the binding of 
counter ions. The origin of coulomb repulsion is the effective charge 
remaining on the macroion. Since the energy of a sphere having an effective 
charge -1I*eo is given by (IJ2)1I*2eo2Jsoa, the extensive force PI due to the 
decrease of this electric energy is given by 

P1JkT = ( I /2)(1I*2eo 2 JcokTa2)(i}aJi}v) 

= (\ /6)(n*2eo2/sokTa)(J/v) (204) 

Now, most of the bound counter ions are assumed to move freely i n  v. 
These counter ions are the origin of an extensive force to increase the space 
in which they can move (see Fig. 38a). This force 'P2 resembles the osmotic 
pressure of a solution. In other words, it is due to the pressure caused by 
the solvent molecules forced to enter into the solution of counter ions i n  
the potential trough of v, where the concentration of counter ions is larger 
than the outside of v. In the absence of simple salt, the pressure is  given by 
the differentiation of the entropy k(l1-n*) In v + kl1* In ( V-Nv) and is 
proportional to the difference between the concentration of counter ions 
inside and outside. 

P
2
1kT = (l1-n*)/v-n*Nj( V-Nv) 

= [(1 - fJ)-fi<Pj(l - <p )](II/V) 

= (l - y)(njv) (205) 
• 

The total extensive force is given by the sum of the two kinds offorce: 

(206) 

The relation of these two kinds of force to the concentration and the charge 
of macroions is shown in Fig. 38b. 

It was shown previously that i n  the spherical macroion the apparent 
charge 11* decreases with increasing concentration </>. Therefore, the 
electrical force, FI , decreases with i ncreasing </>. O n  the other hand, the 
osmotic force, P

2
, is very small i n  extremely dilute solutions because the 

counter ion concentrations both inside and outside of v are very small. 
With increasing concentration, force F

2 
increases because counter ions 

begin to be bound in v. For very high concentrations, however, the counter 
ion concentration outside increases and the concentration difference 
decreases. Force F2 consequently reaches a maximum value at an i nter-
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FIG. 38. (a) The extensive force of a coiled macroion and a cylindrical macroion. (b) 
The extensive force of spherical macroions with uniform charge densities. F,(- - -) is 
the osmotic force and F 1 + F ,(-) is the total extensive force. ( I ) :  the charge density 
P = 7 ;  (2) : P = 4; (3): P = 2.5. (c) The extensive force of cylindrical maeroions at various 
charge densities Q. F 1 is the coulomb force of the effective charge and F, is the osmotic 
force. The forces parallel and perpendicular to the cylinder change with the charge 
density in a similar way. 
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mediate concentration of the macroion. This maximum is found at an 
apparent volume concentration of about 0.4 (Fig. 38b). It corresponds to 
the minimum i n  the osmotic coefficient described previously and graphic­
ally illustrated in Fig. 50. 

The ratio of the two kinds of force is given by 

(207) 

At extreme dilution this ratio is very large. With increasing concentration 
the ratio decreases. At a constant concentration cp, the value of fJ decreases 
with increasing numbers of charged groups or increasing value of P and the 
value of the above ralio is found to decrease. Summarizing these analysis, 
the contribution of the osmotic pressure of counter ions bound in v exceeds 
the contribution due to coulomb repulsion of the apparent charge when the 
concentration or the charge of the macroion increases. Such situation has 
been pointed out i n  several theories (71-73). 

When the number of charged groups increases with v in such a way that 
n is proportional to v or 03, the value of P increases. Then the contribution 
due to the osmotic pressure of counter ions becomes more predominant 
for larger volumes of the macroion. In the limit, when a very large macroion 
is in a solution of counter ions, its extensive force is wholly due to the 
osmotic pressure. 

The distinction between the coulomb force and the osmotic force has n o  
absolute meaning. The osmotic force may be interpreted as being due to 
the attractive force exerted on charge groups by counter ions which are going 
to escape to the outside of the macroion because of the entropy effect. . 

In the above derivation all bound counter ions are assumed to be 
mobile. If some of them are localized at charged groups, the osmotic force 
is decreased by the apparent activity coefficient y* of the bound counter 
ions. The quantity (I -y) in F2 must be replaced by y*(1 - y) - y(l - y*)1/>. 

Expression (206) is  applicable only when extension of the macroion 
occurs, keeping a spherical shape in which bound counter ions are uniformly 
mobile. However, even when the macroion is in a more or less coiled 
conformation, most o f  the counter ions are bound and mobile i n  the 
cylindrical potential valley along the chain and the cylindrical or rodlike 
model is more suitable than the spherical model, as has been repeatedly 
emphasized. Then, the effective volume in which bound counter ions are 
mobile does not increase very much with the extension of the coiled 
maeroion. Even in the coiled conformation the osmotic force estimated 
from Eq. (205) is too large. This problem is discussed again in the next 
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chapter. The above treatment, however, is useful for understanding the 
origin of the extensive force of flexible macroions. 

II. EXTENSIVE FORCE OF CYLINDRICAL MACROIONS 

In the cylindrical case, the extensive forces are different along the long 
. axis, Fu and perpendicular to this axis, F .1 '  Each force is composed of two 
parts as before. One is due to the electrical repulsion of the effective 
charge on the cylinder and the other is due to the osmotic pressure of 
counter ions bound in the cylindrical volume of the macroions. The 
former is given by the differentiation of the energy np2Q In (Ria) by a or I, 
and the latter by the differentiation of the entropy. The differentiation 
is perfolmed, keeping the free volume nlR2 constant. 

In the absence of simple salt, the two parts of each force in the two 
directions are given by, respectively, 

and 

Fl.l = (n*2eo2/6okT)(I/a)kT = nf32 Q(I/a)kT 

F2.1 = (n-n*)(2/a)kT = n(l -f3)(2/a)kT (208) 

FI ll = nf32 Q (l/I)(1n (R/a)+2)kT 

F2 U = n(1 -f3)(I/I)kT 

The force in the perpendicular direction, FJ" is equivalent to that derived 
in the previous chapter, Eqs. (143) and (146). For Q � I ,  f3 Q  can be put 
equal to unity at low concentrations of macroion. The sum and the ratio 
of the two forces are given by 

FJ. = FlJ. + F2J. 

FU = FI ll + F211 

Fl.l/ F2J. = 132 Q/2(1 -f3) 

FI II/F2 U  = 132 Q( -(1 /2) In �+2)/(l -f3) 

One of the important differences between the spherical macroion and the 
cylindrical one is in  the force at extreme dilution. The cylindrical macroion 
of high charges has counter ions condensed in its volume even at extreme 
dilution. The contribution to the osmotic pressure of these ions must be 
taken into account over the whole range of concentration. With increasing 
number of charged groups on the macroion, the contribution of the osmotic 
pressure becomes more important and the ratio of FI to F2 decreases. The 
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contribution of coulomb repUlsion is predominant only when both the 
charge density and the concentration arc low, as shown in  Fig. 38c. 

If the extension of the cylindrical macroion is performed at a constant 
(apparent) volume nla2, the osmotic pressure docs not contribute. In this 
case, the force F* due to the repulsion of the effective charge is given by 

F* = ( 1 /2)nfJ2 Q(I II)( - In cfJ)kT = - uell (210) 

For large values of Q at low concentrations of macroions 

F* = (I /2)n[J(I/I) In ( I /rP)kT (21 1) 
, 

If the concentration of macroions is very low and the length 1 is smaller 
than the radius R of the free volume, the extensive force is given by 

, ' , 

F* = (l /2)11f32 Q{I/I) In (1Ia)kT (212) 

A more exact expression of the extensive force of rodlike macroions can 
be obtaincd from analytical solution of the Poisson-Boltzmann equation 
for this system. It should be notcd that the final relation between the 
stretching force at a constant volume F* and the electric internal energy 
Uc (Eq. 210) can be derived directly from the Poisson-Boltzmann equation 
without fesort to any approximations. From this equation and the 
boundary conditions for the rod like macroion, it  i s  found that the 
ratio l?ol/t/kT is a function of ria and R/a as spatial coordinates and of 
/ljl?o 2/&okTI as charge densities, where I1j denotes the number of charged 
groups and small ions per maeroion. The electric free energy I. has the form 

I. = l(kT/l?o)2G(Rja, I1jeo2j&okTI) 

As a function of the length I and the charge eo 

Ie = g(l?o2/ I) 

(21 3) 
, 

(214) 

By use of this expression for f. and relation (22) to relate I. and lie > i t  is 
readily shown that the stretching force at constant volume is given by 

F* = (allal) = (ale/al) = - ue/l (21 5) 

This relation is valid even when simple salt is added. Since for sufficiently 
thin rods the effective charge 11* is not changed by the addition of salt, the 
stretching force at a constant volume is not appreciably changed by salt. 

According to Eqs. (208) and (210), the extensive force of cylindrical 
macroions is proportional to II/l or the energy per unit length. The force 
is thus independent of the absolute length if the charge density is given. 
The extensive force of local linear parts is equal to that of thc total chain 
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for the same total extension. I n  a long chain the uniform extension of the 

whole chain and the local extension o f  a part, the length of the other parts 
remaining constant, give rise to approxi mately the same resistance if the 
two extcnsion modes result in an equivalent change of the total length. 

I I I .  FORCE I N  THE PRESENCE OF SALTS 

Analysis of the effect of simple salt on the extensive force of macroions 
i s  most easily achieved by applying the formula of the chemical potential 
of macroions at different salt concentrations derived in  Chapter 8 on the 
basis of the additivity law. The extensive force is obtained by differ­
entiation of the chemical potential with respect to the conformation. By 
introducing a parameter I to designate the conformation, the difference 
of the chemical potential of the macroion at f is approximately given by 

where the activity coefficient of counter ions yp(l) in  the absence of salt is 
a function of the conformation parameter f. The additivity law was assumed 
to be applicable for a solution of macroions in  which the conformation 
fixed at I is presumed to be independent of the salt concentration. Thus, the 
difference between the extensive forces in the absence and the presence of 
salt is given by 

• 

Fs = F(cs) -F(O) 

= nkT(oYp(l)/ol)/ys In ( I + y.c.lYpcp) (21 7) 

(Here, the activity coefficient yp contained in the logarithmic term must be 
interpreted to be the average in  the whole solution.) This result (Eq. 217) 
can also be derived by direct differentiation of the total free energy 
given by Eq. (1 64). 

The concentration of free counter ions usually i ncreases with increasing 
size or length of the macroion at a constant total number of charges. 
Accordingly, the derivative (oYp/of) is positive if the parameter I is taken 
as a quantity that increascs with size or length. The force given by Eq. 
(2 1 7) is thus a con tractile force. That is, the extcnsive force i n  the presence 
of salt is smaller than it  is in the absence of salt. 

The magnitude of the elTect of salt on the extensive force i s  determined 
by the sensitivity of the activity coefficient of counter ions to the con­
formation (oYp/Of), and the ratio of the concentration of added salt to 
the concentration of free counter ions from the macroion, Yscs/ypcp . 
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If the concentration of free counter ions is  not sensitively changed by 
the change of the conformation, the magnitude of the depression of the 
extensive force by salt is also small. When the ratio rscs/Ypcp is small, the 
extensive force of the maeroion decreases i n  proportion to the concen­
tration of added salt. When it is large, the extensive force decays logarith­
mically with the addition of salt. Even at fairly high concentrations of salt, 
further addition of salt continues to have sizable effect on the extensive 
force. 

For example, let us consider a very thin rod of high charge density. 
In this case fJQ = I and (arp/a!) = fJ/!. Therefore, combining the result i n  
the previous section, we have the total extensive force 

• 

= -lIkTCfJ/I)[ln (R/a) + (I - fJ)/fJ- (I h's) I n (I + r.,cs/rpcp)] 
(21 8) 

The total force is determined by the chargc density II/I and is independent 
of the total length or the total charge. The first term comes from the resul­
tant coulomb repulsion and the second term comes from the osmotic 
pressure of bound counter ions. When rp = 0.25 and rs = I ,  the last term 
is half of the second term at Yscsh'pcp = 1 2. When <p = 10-3 and rs = I ,  the 
last terin is half of the first term at r.c.il' pCp = 10. The extensive force is  
reduced by half at a salt concentration about ten times higher than the 
original concentration of free counter ions. In this range of salt con­
centration the last term can be approximated by In YscsIYpcp . 

Detailed analyses on the relation between the conformation and the' 
salt concentration will be made in  the next chapter with the comparison 
with experimental data on the viscosity. 

IV. CONTRACTILE FORCE AND FLEXIBILITY 

Linear flexible macroions can take numerous different shapes or con­
formations on account of the freedom of internal rotation of bonds in the 
chain. Each of these conformations has a different free energy, energy, 
and entropy. Each microscopic conformation can be specified by a 
sequence of the values of internal rotation angles of successive bonds in  the 
main chain and by the geometry of side chains. If the sequence has any 
regular repetition, the conformation is helical, and i fnot, i t  is random coil. 
The free energy of each microscopic conformation i s  the sum of the free 
energies from various sources. 
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The probability of each microscopic conformation i is proportional 
to the factor cxp ( -/Ci)/kT) whcre/Ci) is the frce encrgy of conformation i. 
Let us define a conformation parameter 1 such as the end-to-end distance, 
the radius of gyration, thc apparent volume, and the axial ratio. A large 
number of microscopic conformations i's correspond to the same value of 
this parameter I. The probability of the conformation specified by assigning 
a definite value to paramcter 1 is proportional to 

L exp (-/Ci)jkT) = exp ( -/(/)/kT) (219) 
i(l) 

• 

where all i states in  the summation have the same value · of 1 and IC I) 
denotes the free energy of conformation I. The free energy due to the 
variety of microscopic conformations belonging to 1 is called the con­
formational free energy le(l). The standard free enegy 10 and the electric 
free energy 1.(1) defined in the previous chapters arc also contained in 

1(1) of Eq. (219). 
It must be cautioned that separation of the total free energy into the 

above parts is not always reasonable. For example, let us make the end­
to-end distance conformation parameter I. There are many extended and 
contracted conformations along the chain that belong in  this confor­
mational category I. An extended conformation has a lower electric free 
energy than a contracted one. At high charge densities the macroion takes· 
the former conformation more frequently than the latter with the fixed 
end-to-end distance. As a consequence, each microscopic conformation 
must have different statistical weights dependent on the electric free energy. 
Therefore, the conformational free energy can not be calculated separately 
from the electric free energy. Usually, however, such correlation between 
the two free energies is not taken into consideration and the total free 
energy is expressed as the sum of free energies separately obtained. 

The most probable value of the conformation parameter / is determined 
by the maximum of the factor (219) or the minimum of the free energy 
1(1)· When the free energy 1(1) is expressed as the sum Ie +10 +1., the 
minimum is given by the condition 

(81c/81)+ (81c/8/) = 0 (220) 

which denotes the equality between the conformational contractile force 
and the electric extensive forcc. 

Now, the contractile force can be estimated in the following way. 
When bonds between monomers i n  the macroion can rotate freely, the 
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contractile force Fe = o/,/o{ is easily calculated. If the end-to-end distance 
II is taken as the parameter, we have 

II/mb = L(bFc/kT) (221) 

where L(x) is the Langevin function (eoth x- I/x), III is the number of 
monomers, and b is the length of the monomer; IIlb is consequently the 
length of the fully stretched macroion. If the rotation of monomers in the 
maeroion is restricted to a certain extent, i t  is convenient to choose the 
quantities III and b to represent the real chain as an equivalent chain 
composed of freely rotatable monomers. At a fixed value of the product 
mb, a small value of m and a large value of b mean thc low local flexibility 
of the chain. The inverse relation of Eq. (22 1 )  is written 

- (222) 

When the end-to-end vector can take all directions three-dimensionally, 
the term -2b/h must be added to the right-hand side of the above equation. 
For small values of II 

(223) 

The most probable value of the square of the end-to-end distance of a 
free chain, II 0 '  at Fe = 0 is given by 

h/ = (2/3)mb2 (224) 

The flexibility or the extensibility of the chain can be defined by the 
derivative (oil/oF,) which is calculable with the above equation. Statistical 
thermodynamics shows that the mean end-to-end distance under the 
external force F is given by 

(Iz) 
= 

f h cxp{ -fc(II)/kT+ F·h/kT}dll 
f exp{ -/c(II)lkT + F'''lkT} d" 

(225) 

Therefore, the magnitudc of spontaneous thermal fluctuation of the cnd-to­
end distance II is connected with the flexibility or extensibility by the 
formula 

(226) 

When the end-to-end distance II i s  not very much larger than the distance 
"0 in the free state, application of Eq. (223) shows that the mean square 
of the relative fluctuation of " is given by 

(227) 

• 
• 
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For example, in the free state (II = "0) the fluctuation is of the same order 
of magnitude as the end-to-end distance itself. (See Fig. 39.) Such large 
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• 

FIG. 39. Fluctuation of the end-to-cnd distance of a linear chain-like macromolecule. 

fluctuation is a characteristic property of linear macromolecules in the 
random coil conformation. 

The above equation shows that the fluctuation of the end-to-end 
distance under a constant external force i s  determined by the ratio 
<h)/ho which compares the extension with the extension in  the free state. 
The relative fluctuation is independent of the total length and of the local 
flexibility of the chain (specified by quantities m and b in Eq. (223» which 
determines the absolute value of the extension ho .  It decreases with in­
creasing relative extension "llIo . For large values of 11, fluctuation <(jh2) 
is  proportional to h02 as long as the chain is not stretched much. Notice 
that Eq. (227) can be applied to estimate the relative fluctuation of the 
end-to-end distance of a part of a long chain. 

In  the case of linear macroions the conformation fluctuation must also 
be large. The end-to-end distance of macroions is increased by the extensive 
force arising fro m  the electric interaction among ionized groups and small 
ions. Thc wide applicability of the cylindrical model for ionic balance 
described in the previous chapters suggests that this electric interaction 
does not control the overall conformation of the macroion directly but 
through the change in the flexibility or the local curvature of chain seg­
ments composed of a number of monomers. The extended conformation of 
linear chainlike macroions with many ionized groups may be approxi­
mately equivalent to the conformation of macromolecules having small 
local curvature or flexibility. They are extended but stiII in the random coil 
conformation in the sense that the mean square of the end-to-end distance 
is approximately proportional to the total number of monomers (at 
sufficiently large values of this number). If this model is  an appropriate 



138 

one, the conformation fluctuation of the extended macro ions is expected 
to be of the same order as its average conformation, according to Eq. (227). 

Let us compare the magnitude of the contractive force derived above 
with the extensive force (ole/o!). According to Eqs. (204) or (209), the ratio 
F/jkT or FajkT is of the order of nfJ In (R/a) or n(l - l'). On the other hand, 
the ratio Fc'''/kT is of the order of 1z2/mb2• In the case of a contracted 
random coil, the value of 1z2Jmb2 is of the order of unity. Therefore, if / or 
a is taken as the same order as Iz, the ratio of the extensive force to the 
contractive force becomes of the order of nfJ. That is, the extensive force 
becomes very much larger than the contractile force. Only in the almost 
fully stretched conformation can the contractile force become comparable 
to the extensive force. This comparison, however, is based on the cylindrical 
model or the uniform spherical model being applied to the whole macro­
ion directly. For actual coiled macroions the cylindrical model must be 
applied to their local parts and the extensive force of the whole macroion 
becomes much smaller than estimated. This situation is discussed further 
in  the next chapter. 



Chapter 11  

CONFORMATIONAL CHANGE OF MACROIONS 

1. EFFECT OF CONCENTRATIONS OF MACROIONS AND SALTS ON 

CONFORMATION 

Linear flexible macroions extend with increase of the number of charged 
groups and contract with increase of the concentration of macroions and 
simple salts. The most probable conformation of macroions is determined 
by the minimum condition of the free energy as a function of the con­
formation, or by a balance between the contractile force due to the con­
formational free energy and the extensive force due to the electric free 
energy. Since the electric free energy is a function of the concentration of 
macroions and salts, the extensive force changes with the change of these 
concentrations. On the other hand, the differentiation of free energy with 
respect to the concentration gives the chemical potential of the com­
ponent. Therefore, the change of the extensive force with concentration 
must be related to the change of the chemical potential with confor­
mation. It is intended in this section to discover relationships between the 
thermodynamic and conformational properties of  macroions and to draw 
a consistent picture of macroion behaviors in  solution (74). 

As in  tbe previous chapters, let us consider a solution composed of 
N macroions, IlpN counter ions from macroions, IlsN counter and co-ions 
from salt, and lloN solvent molecules. The free energy of the solution is a 
function of the number concentration of these components. When one 
concentration changes, the most probable conformation 1m changes in 
accordance with the minimum condition for the free energy, i.e. 
(af(l)/al) = O. 

139 
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Therefore, the relation between the change of concentration and 
conformation is given by: 

(JIm/ax = - (0/(Jx)W/ol)/(a21/012) 

= - «(W/)(rJI/(Jx)/(rJ21/(J/2) (228) 

where x designates the concentration or number of one of the four 
components and the derivative (ai/ax) is the chemical potential of that 
component. As discussed in the previous chapter, the second derivative 
(a21/0/2) is  related to the flexibility of the macroion or the mean square 
of the thermal fluctuation of the conformation by 

[PI/aI2 = kT/« (l- lm)2» = kT/«(jf2) 

By applying Eq. (228) to the solvent and salt components, 

rJ/",/allo = - (<'i/2)(a(llo/kT)/al) 

aIm/an, = - (i5/2)(o(Jls/kT)/a/) 

(229) 

(230) 

(23 1) 

The effect of macroion and salt concentration on conformation can be 
analyzed by these eq uations. 

We assume the additivity law to be applicable for the solution of 
macroions and salt; the chemical potentials J10 and J1s are expressed as 

J10 = -kT(gpcp+gscs) 

fl, = kTln  (Ypcp+ y/ cs)(Ys-cs) 

(232) 

(233) 

where cp = IIp/llo and Cs = 11,/110 '  The first equation represents the addi­
tivity of the osmotic pressure and the second represents that of the activity 
of counter ions. The coefficients gp and yp are for the pure components, 
being independent of the salt concentration. These coefficients are thus 
considered to be functions only of the conformation of the macroion. 
Consequently, when these expressions are combined with Eqs. (230) and 
(23 1 )  

alm/(Jcp * = - (M2)(llp/cp)(agp/o/) (234) 

olm/ocs = - (M2)(lIp/(ypcp+ Yscs»)(oYp/al) (235) 

The first equation gives the change of conformation associated with 
increase of the concentration of macroions and counter ions from macro­
ions. Designation of the derivative «(Jlm/ollp) with an asterisk denotes that 
the concentration of macroions is  changed by the removal or the addition 
of solvent; therefore, the concentration of simple salt, if present, is also 
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changed by this procedure. The second equation gives the change of the 
conformation associated with increase of the conccntration of simple salt 
at a constant concentration of macroions. Equation (235) can also be 
derived d irectly from Eq. (209), which gives the extensive force in the 
presence of salt. 

The above equations show that the conformational change of macro­
ions i s  determined by three factors. One is the magnitude of the fluctuation 
of the conformation or the flexibility of the macroion c<all». A large 
fluctuation means that the conformation is easily changed by a change of 
the medium condition. The second is the concentration of macroions (or 
counter ions from macroions) and salt ions. At low concentrations the 
conformational change is large. At the same total concentration of counter 
ions a macroion having a large number of charged groups shows a large 
conformational change. The third factor is the derivative of the act ivity 
coefficient of counter ions or the osmotic coemcient with respect to the 
conformation. If the activity coe fficient change is sensitive to the con­
formation, the conformational change due to the concentration change of 
macroions and salt ions becomes large. I t  must be remembered that 
(iJgp/iJl) and (iJy p/iJI) are derivatives obtained in the absence of salt. 

If parameter I represents extension of the macroion, the values of these 
derivatives are positive because the number of free counter ions is usually 
increased by extension of the macroion. Accordingly, Eqs. (234) and (235) 
indicate that the macroion extends with decrease of the concentration of 
macroion or salt. 

The approximate integration of Eq. (234) and (235) can be carried out 
in  the following way. Experimentally, i t  was found that i n  the absence of 
simple salt, the osmotic coefficient and the activity coefficient of counter 
ions are both almost constant over a wide range of macroion concen­
tration. The derivatives (iJgp/iJl) and (aYp/a!) are thus almost independent 
of cp o The relative magnitude of the conformational fluctuation « aI2)/ 
I,/)is also insensitive to cp and c., . Then, the variables I and cp or Cs in  
Eqs. (234) and (235) can be separated and the integration gives the 
relation between the conformation 1m and the concentration cp or Cs · 
Moreover, i f  the derivatives (a In gpla In I) and (a In yp/a In I) and the 
relative fluctuation C<()f2)/I,/) are all independent of the conformation I, 
the final result can be written as 

(236) 

(237) 
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and 
(238) 

(239) 

The change of In 1m due to dilution by the addition of solvent is expected 
to be proportional to the change of In  cpo The change of In 1m due to the 
addition of salt is expected to be proportional to the change of In c. at 
high salt concentration. 

If I i s  a parameter representing the overall extension of the maeroion, 
for example, the end-to-end distance and the radius of gyration, the change 
of In I", should be approximately proportional to the change of the 
logarithm of the viscosity per macroion. Experimental data on viscosity 
obtained at different concentrations of macroion and salt are shown in  
Figs. 40a and b. The particular data that are presented were chosen because 
the discovery of the additivity law on the counter ion activity was made 
with the same solution (42). In  the absence of simple salt, the logarithm 
of the red ueed viscosity is found to decrease in  proportion to the logarithm 
of the macroion concentration (Fig. 40c). Even in the presence of salt 
if  the salt concentration is decreased in parallel with the macroion con­
centration, the same proportionality is found between In (reduced vis­
cosity) and In (macroion concentration). The proportionality constants 
are equal in the absence and in the presence of salt (Fig. 40c), as is expected 
from the theoretical result Eqs. (236) and (237). 

The relation between the reduced viscosity and the salt concentration 
is also found to be represented very well by Eq. (238) for a wide range of 
macroion and salt concentration. In each curve of Fig. 40d the macroion 
concentration was kept constant. At high salt concentrations, In (reduced 
viscosity) decreases in proportion to In c • .  Such a proportionality betwecn 
viscosity and salt concentration was pointed out several years ago (75, 76), 
and the above analysis shows that this proportionality is observed at finite 
concentrations of macroions. Its origin is the additivity behavior of thermo­
dynamic properties. The meaning of the gradient of the straight line in  
Fig. 40d is made clear by Eq. (239). In this figure, when the straight line 
is extrapolated to low concentrations of salt, it crosscs with the horizontal 
line for the viscosity at zero salt concentration at the condition that 

Y.M = Ypcr That is, the value of Ypcp can be determined from the value of 
the abscissa at this intercept. The val ue obtained i n  Fig. 40d is in very good 
agreement with the result of independent measurements of the activity 
of counter ions YP i n  the same solutions, given i n  Fig. 29a (42). 
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FIG. 40. (a) and (b) The relation between the reduced viscosity (II,./C.) and the poly­
electrolyte (polysulfonic acid) concentration c. in the prcsence of various concentrations 
of small ions (Hel) (42). (c) The relation between the logarithm of the reduced viscosity 
[log (II .. /C,,)] and the logarithm of the polyelectrolyte concentration (log or); (A) in the 
absence of salts; (B) the polymer concentration was decreased by the addition of solvent 
to the salt solution of the polymer in which the polymer concentration was 6.0 '" 10- J g/ml 
and the salt concentration was 2.0 x 10- 3 mole/liter. Theexpcrimental data were translated 
from Figs. 40a and b (74). (d) The relation betwccn the logarithm of the reduced viscosity 
[log (11,./C.)] and the logarithm of the salt concentration (loge,) at constant concentrations 
of polyclcctrolytcs. Experimental data expressed by 0 and . were translated from 
Figs. 40a and b. PolYlller concentration; (0) 2.5 x 10- 3 g/ml. and (e) 5 x 10- ' g/ml. 
The valucs of ),.Cp determined from intercepts A and B arc about 1 x 10- 3 mole and 
5 x 10- 4 mole, in good agreement with the activity of hydrogen ions in Fig. 29a measured 
separately at the above concentrations of polyelectrolytes (74). 

The gradients of the straight lines in Figs. 40c and d that illustrate 
the relation between In  (reduccd viscosity) and In cp or In c. are found to be 
comparable. That is, whcn we write 

(240) 

(241) 

the constants A I
' 

and A /, which are determined from data of Fig. 40c 
and d, have almost the same value, A l

' 
being a l i ttle smaller than 

A2' (A l '  = 0.41 and A/ = 0.44). The expressions of A 1 and A 2 given in 

Eqs. (237) and (239) indicate that A I '  and A 2' must be of the same order. 
Such agreemcnt betwecn theory and experiment strongly suggests that 

the approximations employed in  the derivation of Eqs. (236)-(239) are all 
reasonable. 

Equation (238) can not be readily applied to the limit of zero concen­
tration of polycleetrolytes. However, since the additivity law has becn 
experimentally found to be satisfied even at very low concentrations of 
polyeleetrolytes, i t  may be expected from Eq. (238) that the intrinsic 
viscosity [17l also is approximately proportional to the -A2' power of the 
concentration of simple salts: 

[1]] ex: c; A2 (242) 
• 

Such expectation was realized in experimental data of Fig. 41  (75) where 

Az' = 0.4 � 0.5. 
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10  

• 

10 

FIG. 41. The relation between the intrinsic viscosity and the salt concentration in a 

solution of sodium polyacrylate in the presence of various concentrations of NaBr; 
translated from the original data in (75). 

• 

II. EFFECT OF THE CHARGE DENSITY ON THE CONFORMATION 
The above method can be applied to analysis of the effect of the charge 

density on the conformation of macroions. The number of charged groups 
is changed by the addition of alkali or acid in  the case of weak polyacids 
or polybases, and the number of alkali or acid molecules added is  taken as 
the variable x in Eq. (21 9). Then 

(243) 

In  the case of a polyacid, the chemical potential J1a i s  composed of the 
chemical potential of alkali ion and that of hydroxyl ion. Hence the above 
equation is rewritten as 

a In 1m/all = -«0l2)/12)Il{a[(J1+ - J1H)/kTj/a In l} (244) 

The derivative in the right-hand side is approximately equal to the 
derivative (a In  (II'/v)fa In I), where n'/v denotes the concentration of 
counter ions bound in the vicinity of the macroion (or in the potential 
valley along the macroion). The concentration of these bound counter ions 
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usually decreases with extension of the macroion. Consequently, the 
derivative is negative and the macroion extends with the addition of 
alkali or with increase of the charge density, as shown in  Fig. 42. The 
magnitude of the conformational change is determined by the change 
of the concentration of bound counter ions along the macroion with 
extension. If the volume v for bound counter ions does not change 
with the change of the overall conformation, the right-hand side of Eq. 
(244) can be rewritten as - « fJl2)/12)n(0 In n' /0 In I). From the two-phase 
approximation we have the approximate relation : 

a In I"JoCt. = «(5f2)/12)n(Yp/(/_ yp))(0 In yp/a In I) (245) 

This result can also be obtained from calculation of (a/arx)(o!e/ol) by 
using the expression for (afe/a/) derived in Chapter 1 0. 

By comparing Eq. (245) with Eq. (238) i t  is found that at low degrees 
of neutralization the effect of alkali on the conformational change is 

greater than that of neutral salts but that at high degrees of neutralizat ion 
the alkali effect is  smaller than the salt effect. 

The previous analysis showed that the activity coefficient is a function of 
the charge density Q along the chain of the macroion. The "length" I 
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FIG. 42. The relation betwccn the reduced viscosity an d the degree of neutralization 

in a solution of poly acrylic acid neutralized by NaOH. 
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is, all of the solute macroions have the same structure. On the other hand, 
consider a homopolymer which is composed of monomers with acidic 
groups. When alkali is added to neutralize just half of these groups, the 
macroion formed can be regarded as a kind of copolymer with a varied 
arrangement of ionized and nonionized groups. On the average, the number 
of ionized groups is equal to the number of nonionized groups. At a fixed 
uniform conformation, the electrical energy may be a minimum for the 
alternative arrangement of these groups. However, the distribution of 
ionized groups on each macroion is not fixed and the solution is a mixture 
of copolymers having a fluctuating arrangement of ionized groups. 

In the case of the first macroion, the distribution of ionized groups does 
not change with the confonnation. The extended macroion and the con­
tracted one have the same number of ionized groups, although the inter­
action of the groups with counter ions may depend on the conformation 
so that the apparent charge changes with the conformation. 

In the case of the second macroion, the distribution of ionized groups 
depends on the conformation. The extended macroion has a larger number 
of ionized groups than the contracted one, as shown in Fig. 43. When an 
extended macroion contracts to a certain extent, the electrical free energy 
usually becomes higher. If the number of ionized groups is allowed to 
decrease with the contraction, this free energy increase is smaller than that 
expected from the fixed number of ionized groups. Therefore, the con­
formational fluctuation is made larger by coupling with the charge 
fluctuation. 

Thus, the two kinds of macroion in the above example exhibit con­
formational fluctuation of different magnitude, even when the most 
probable value of the confonnation parameter is equal. Under the 
condition that these macroions have the same total length and the same 
intrinsic local flexibility, the half-neutralized homopolymer has a wider 
variety of conformations than the fully neutralized copolymer. Therefore, 
it is expected that the solution of the homopolymer shows a higher 
viscosity than the solution of the copolymer. 

IV. TRANSITION BETWEEN DISCRETE CONFORMATIONS 

The transition between discrete conformations of macroions can be 
treated by a method similar to the one described in the previous section. 
Let us suppose a macroion can take two kinds of conformation, for 
example, the helical and the random coil conformation. In these con­
formations the macroion has different free energies which depend on the 
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charge density, the concentrations of salt and macroion, the temperature, 
the nature of the solvent, as well as on a number of other experimental 
conditions. The macroion takes the conformation of the lower free energy. 
Consider the case where the macroion undergoes the transition between 
the two conformations with a change of the solvent condition. At the 
transition point the chemical potential of the macroion (with its counter 
ions) in the two conformations a and b must be equal. 

J.lpa = flpb (246) 
Since the chemical potential is a function of the solvent condition, this 
equation gives the solvent condition at the transition point. For example, 

(a) 

(b) 

FIG. 43. (a) The conformational fluctuation of a copolymer with a fixed alternating 
arrangement of ionized groups. (b) The conformational fluctuation of a half-neutralized 
homopolymer with variable arrangements of ionized groups. 
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the relation between the transition temperature and the salt concentration 
can be explored. 

Let us denote the transition temperature in the absence of salt as Tmo 
and in the presence of salt of concentration Cs as Tm . Then 

/lp.(T mO , 0) = /lpb(Tmo ,Q) 

/lp.(T"" c.) = /lPb(Tm , c.) (247) 
If we put 

llJlpic.) = JlpiTm,  c.)-/lpiTm, 0) U: a or b) (248) 
and 

Lab = - Tm[(o/lp./oT)- (O/lpb/oT)] (249) 
we have 

ll/lP.(c.) -1l/lpb( c.) = L.bllT",/Tm (250) 

where the shift of the transition temperature by the addition of salt 
1lTm = Tm- Tmo is assumed to be small, and Lab denotes the heat absorbed 
i n  the transition from conformation b to a. If the change of the chemical 
potential of the macroion with the addition of salt can be calculated, the 
above equation gives the relation between T,n and the salt concentration 

Cs • 
A similar equation can be derived for the relation between T,,, and the 

macroion concentration cp ; namely, 

(251 )  
where 

U: a or b) (252) 

Now, the additivity law is assumed to describe the activity and the 
, 

osmotic pressure in a solution of macroions in conformation a and b. 
The transition point is defined as the region in which equal amounts of 
macroion coexist i n  the two conformations. Then, the modified additivity 
law can be employed in  the following way : 

(253) 
and 

(254) 

where 'lpj and gpjU: a or b) are, respectively, the activity coefficient of 
counter ions and the osmotic coefficient in the solution of macroions in 
conformationj in the absence of salt and cpjU: a or b) i s  the concentration 
of counter ions from macroions in conformationJ. Such an extension of the 
additivity law to a mixture of macroions i n  different conformations is 
considered to be reasonable, although i t  has not been directly confirmed 
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by experiment. The chemical potential changes t:..jlpic.) and t:..Jlpicp), 
obtained according to the proccdure used in the previous sections where 
thermodynamic relations expressed between derivatives of the chemical 
potentials were employed, are given by 

(255) 
and 

(256) 

where Yp is the mean of two activity coefficients Ypj (at the transition point 
Ypj = (Ypa+ Ypb)/2) and the asterisk denotes that i f  salt coexists, the con­
centration of maeroion and salt i s  changed i n  the same way by the removal 
or  addition of solvent; in the derivation of Eq. (255) the derivative 
(0 In Yp)o In cp) was assumed to be very much smaller than unity. 

Thus, we have the following relations to describe the shift of the 
transition temperature with change of the salt or the macro ion concen-
tration: 

and 
(258) 

If Lab i s  positive, in other words, if heat is  absorbed in  the transition from 
b to a, the transition temperature Tm i ncreases with increasing concen­
tration of salt Cs when Ypa is larger than Ypb or when the number of free 
counter ions is larger for the macroion in conformation a than i n  b. At 
sufficiently high concentrations of salt the transition temperature i s  
expected to change in  proportion to the logarithm of the salt concentration. 

When Lab is positive and gpa i s  larger than gph , the transition tempera­
ture is  decreased by the addition of solvent in proportion to the logarithm 
of the maeroion concentration. 

A typical example of the transition of macroions between two discrete 
conformations is the melting of deoxyribonucleic acid molecules (DNA). 
With rising temperature they are transformed from the two-stranded helix 
to the random coil. The transition temperature increases with the addition 
of neutral salt. Even though dissociation of molecules is associated with the 
transition in this case, the above theoretical treatment can be applied. 

Experiments show that the transition temperature of DNA increases 
approximately in  proportion to the logarithm of the salt concentration 
and that the gradient of the temperature increase defined by (dt:..Tm/d 
log! 0 c.) is about 20°C as shown in Fig. 44 (77, 78). The charge density 
along the chain is  larger in  the helical conformation than in the random 
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betwccn 0.01 and 0.6 N. The increase of absorbancy means transition to the random 
coil. (b) The relation between the melting temperature of DNA of various origins and the 
logarithm of the salt concentration (78). 
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coil, so that the activity coefficien t  o f  counter ions is lower in the helix 
than in the random coil. Actually it is found experimentally that the 
activity coefficient difference between the two conformations, Ypa-Ypb , 
where a dcnotes the random coil and b the helix, is between 0.25 and 0.30 
(80). Theoretical estimates based on the two-phase approximation also 
give approximately the same value for Ypa- Ypb' Thc heat Lab is positive 
because the high temperature favors the random coil conformation. The 
heat per monomer (Lab/np) is found experimentally to be of the order of 
several kilocalories per mole. If we put Ypa -Ypb = 0.25 and Lab/lip = 

5 kcal/mole, the gradient (d/!"Tm/d loglo  cs) that i s  calculated with Eq. (257) 
is equal to about 20oe, a value which agrees well with the experimental 
results. This agreement between experiment and theory is gratifying and 
provides support for the assumption that the additivity law is applicable 
for the expression of the activity of DNA molecules in the helical and 
random coil conformation. 

LIST OF SYMBOLS 

a The (apparent) radius of a macroion. 
b The length of freely rotatable monomers. 
Cp = liN/ V, the total number concentration of charged groups or counter ions. 
c. The number concentration of alkali. 
c, The number concentration of the simple salt added. 
CO The number concentration of solvent molecules. 

Cm The number concentration of charged groups of a macroion. 
c +  The number concentration of counter ions. 
d = lin, the average distance between neighboring ionized groups. 

eo The electronic charge. 

f The free energy of the solution per macroion. 

/. Elcctric frcc energy of the solution per macro ion. 

g The osmotic coefficient. 

g, The osmotic coefficient of simple salt solutions. 

gp The osmotic coefficient of solutions of macroions with counter ions. 
h The end-to-end distance of a macroion. 
k The Boltzmann constant. 
I The length of a cylindrical rnacroion (or the conformation parameter). 
m The number of freely rotatable monomers. 
II The number of ionized groups on a macro ion. 
II' = 11 - 11*, the number of bound counter ions in a macroion. 
n* = n-n', the apparent number of chargcs of a macroion. 
p The axial ratio of an ellipsoidal macro ion. 
q The proportion of counter ions of different valences or sizes. 
r The distance from the centcr of a macroion. 
s The entropy of the solution per macroion. 
I The time. 



, 

The internal energy of the solution per macroion. 
The electric energy of the solution per macroion. 
The (apparent) volume of a macroion. 
Spatial coordinates. 
The valence of counter ions. 
= liN! V', the normalization factor for the counter ion distribution. 
The external electric field. 
The total free energy of the solution or the extensive force of the macroion. 
The association constant for localized binding of counter ions. 
The latent heat at the conformation transition. 
The total number of macroions. 
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= lIeo'lsokTa, a nondimensional quantity giving a measure of the electric 
potential energy in a spherical macro ion. 
= eo 2 leokT d, a nondimensional quantity giving a measure of the electrical poten­
tial energy at a cylindrical macroion. 
The radius of the free volume for a macroion. 
The absolute temperature. 
The total volume of the solution. 
= NSv/N exp (-eovr/kDdv, the normalized volume. 

-

The degree of neutralization (or the polarizability in Chapter 5). 
II'II!, the (apparent) degree of dissociation of counter ions. 
The activity coefficient of counter ions. 
The activity coefficient of simple salt ions added. 
The activity coefficient of counter ions from macroions. 
The displacement of the counter ion atmosphere of a macroion. 
The dielectric constant of the solution. 
The dielectric constant of the solvent (water). 
Specific viscosity. 
Intrinsic viscosity. 
The frictional constant for a counter ion. 
The frequency of alternating electric field. 
The relaxation time of the polarization of counter ions. 
The electrical conductivity. 
Dipole moment of a macroion with counter ions. 
The chemical potential of counter ions. 
The standard chemical potential of counter ions. 
The chemical potential of the simple salt added. 
The chemical potential of macroions with counter ions. 
The charge density of counter ions. 
The charge density of charged groups of a macroion. 
= Nv/ V, the (apparent) volume concentration of macroions, (or = eo.p/kT). 
The electric potential. 
The electric potential difference between bound counter ions and free counter 
• 

IOns. 
= {(4neo2IsokT) (11M) 1/2, the radius of ionic atmospheres around ionized 

• • groups III a macro Ion. 
The degree of deviation from neutralization. 
Laplacian. 

• 
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Additivity law, salts, low molecular, 
87-95 

Binding, of counter ions, 71-86 
localized, 71-73 

Characterization, 1 -2 
Charge density, conformational change of 

macroions, 143-147 
Chemical potential, macro ions, 103-106 
Concentration, conformational change of 

macroions, 1 39-143 
Condensation, of counter ions, 23-25 
Conformation, charge density, effect, 

\ 143-147 
concentrations, effect, 1 39-143 
counter ions, interaction with, 147-150 
discrete, transitions, 1 50-155 

Contractile force, of macroions, 1 34-138 
Counter ions, binding, 71 If. 

bound and free, equilibrium between, 
1 3-14 

condensation, 23-25 
conformation of macroions and inter­

action with, 147-150 
distribution, 5 1 -55, 58-62 
fluctuation, attractive force due to, 

123- 126 
size, 46-50 
valence, 41-46 

159 

Electrical potential, fundamental equa­
tions, 27 ff. 

macroions, 9-12, l l O-l l l  
macroions, cylindrical, 36-40 

Equilibrium,counter ions, bound and frcc, 
1 3-14 

hydrogen ion, 75, 106-109 
Extensive force, macro ions, cylindrical, 

1 3 1-1 33 
macroions, spherical, 127-131 
salts, effect, 1 33-164 

Flexibility, 1 34 
Free energy, 27 If. 

Hydration, counter ions, 80 
macro ions, 75-80 

Hydrogen ion, equilibrium in, 75, 1 06-109 

Macroions, chemical potential, 103-106 
conformational change, 1 39 If. 
contract ile force, 1 34-13 8  
cylindrical, 1 7-23, 36-40, 1 1 3-126, 1 3 1-

133 
electrical potential around, 9-12, 27 If., 

l l O-1 l 1  
extensive force, 127- 1 3 8  
hydration, 75-80 
interaction between, 1 1 3  If. 
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