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PREFACE

Thc main purposc of this monograph is to present a thcoretical analysis
of the propcerty of polyelectrolytes. Polyclectrolytes exhibit various
intercsting phenomena becausc of their dual character as highly charged
clectrolytes and flexible chain molcecules. Very low ionic activity and
extreme scnsitivity of molecular conformation to the ionic condition, for
cxample, have strongly attractcd peoplc in the field of physical chemistry
of electrolytes and polymers. '

In thc past twenty years, most of those phenomena havc bccome
theoretically understandable. ldealized treatment based on thc simplest
modcl has becn found to bc very uscful to extract essential fecaturcs of
polyclectrolytes. In this sense, the theory of polyelectrolytes yiclds an
cxccllent ecxamplc in which the theory is highly cvaluated in its intrinsic
function.

Thercfore, in this monograph | have tricd 1o draw a unified picture of
“thc polyelectrolytes™ on the basts of fundamecental laws of statistical
thcrmodynamics without complex mathecmatics and dctailed chemistry.
Expcrimental data arc choscn only for this purposc and efforts arc madc
for visualizing the theoretical results. Great carc is given to making up a
consistcnt framcwork of the theory for comprchending polyclectrolytes
as a wholc.

Accordingly, this monograph i1s far from a full description of past
cxpecrimental and theorctical works on polyclectrolytes. As shown in the
Contcnts, the problems trcated are very himited. Emphasis ts placed on
thermodynamic cquilibrium propertics. Dynamic bchaviors of poly-
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electrolytes are not much discussed except in a few sections. Nevertheless,
1t 1s hoped that this monograph can give enough basic knowledge on the
possible sources of various characteristics of polyelectrolytes.

Biological systems such as muscle, membranes, and protoplasm i1n
general may be regarded as organized polyelectrolytes. Some of their
properties can be understood from this standpoint, and others can not.
The theory of polyelectrolytes must be extended in this dircction. This
monograph i1s expected to present a base for such extension.

Description of this monograph 1s made mainly along the line of the
study developed in the group of polymer physics and molecular biology in
Faculty of Science of Nagoya University. I wish to express sincere
thanks to all colleagues 1n this group, particularly to Dr. N. Imai for his
long collaboration. Stimulating discussions with him have enabled me
to continue the work on polyelectrolytes. Drs. S. Asakura, A. Ikegami,
and A. Minakata in this group also have made fine contributions in this
field and given me useful suggestions.

[ was originally initiated into the field of polyelectrolytes by Professor
I. Kagawain Faculty of Engineering of this University, who made pioneer-
ing works on polyelectrolytes in Japan and proposed very early the idea
of the counter ion condensation. Professor M. Nagasawa in the same
Faculty has led me to theoretical analyses by giving beautiful experi-
mental results. To these researchers I wish to express sincere thanks.

Publication of this monograph was made possible by critical reading
of the manuscript by Professor J. Marinsky. I am very grateful to him.

Nagoya, Japan FuMio OosawA
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Chapter I

INTRODUCTION

[. CHARACTERIZATION OF POLYELECTROLYTES

Polyelectrolytes are macromolecules having many ionizable groups. In
solution they are dissociated into polyvalent macroions (polyions) and
a large number of small 1ons of opposite charge (counter ions). The high
charge of the macroion produces a strong clectric ficld which attracts
these counter ions. This strong electric interaction between the polyvalent
macroion and counter ions is a source of the characteristic properties of
polyelectrolytes. The activity coeflicient of counter ions is very low even at
low concentrations of polyelectrolytes, and the dielectric constant of
polyelectrolyte solutions is extremely large.

The electrical effect of the highly charged macroion is expected to be
screened when an increasing concentration of small ions is introduced,
c.g., by the addition of simple electrolytes. Experiments, however, lead to a
stmple empirical law which describes the thermodynamic and transference
properties of polyelectrolyte—simple electrolytes mixtures as a -super-
position of the contributions of 1ons from polyelectrolyte and the simple
electrolytes. This result is also attributable to the characteristic interaction
between the polyvalent macroion and small 1ons.

As in the casc of nonelectrolytic macromolecules, the morphology of
polyvalent macroions is one of the central problems of polyelectrolytes.
Most of the macroions are long flcxible chains having a large extcnsion in
solution. Their size and shape depend on the charge and the interaction
with counter ions. With increasing charge, the fiexible chain changes its
shape from a contracted random coil to a fully extended one. This cor-
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relation betwecn thc shape or the conformation and the clectric state is
another source of the characteristic propcrties of polyelectrolytes. Some of
the macroions can form regular sstructurcs, for example, helical ones, by
spccific intrachain and/or intcrchain binding. In this case, the idca of the
discrete states of macroions is introduced and the transition betwcen them
can bc analyzed as another cxample of the morphology of polyelectrolytes.

The coupling between the conformation and the clectric state at the
molecular level 1s organized into typical systems of energy transformation
or information transduction when polyelectrolytes make higher order
structures. The polyelectrolyte gel, as is well known, can be a trans-
former of chemical energy to mechanical work.

The effect of interactions among ionized groups, counter ions, and
solvent molecules is amplified by the high charge density of the macroion.
A small differcnce in the interaction may have great influence on the
propertics of polyelcctrolytes. Thercfore, polyelectrolyles are most
sensitive to structurc and environment. The complcete selective binding of
polyvalent countcr ions by the macroion and the sensitive insolubilization
of the macroion by specific small ions are examples of the result of such
amplification. The analysis of structure- and enviro-scnsitive properties
from this standpoint is a method of approaching the complicated problem
of the origin of polyelectrolyte specificity.

Systematic studies of synthetic polyelectrolytes, whose chemical
structures are wecll defined through their -controlled construction from
repeating units, have been made. A simplified model, a flexible chain with
many charges, is In most cases an appropriatc base for the theoretical
interprctation of properties common to various polyelectrolytes. The main
purpose of this monograph is to develop the theory by using a simplified
mode] to which idealization and approximation will be freely applied,
if they appear to be useful, in order to reach an understanding of the
fundamental nature of polyelectrolytes. It is intended here to treat the
electrostatics, thermodynamics, and morphology of polyelectrolytes
systematically. A consistent picture of polyelectrolytes will be obtained by
elucidating the interrelation among various characteristic properties.
Limited reference to experimental and theoretical results obtained with
diffcrent polyelectrolytes by various rcsearchers will be made only to
facilitate this objective.

Anothcr aim of this monograph is to provide insight with regard to the
biological functions of natural polyelectrolytes such as proteins and
nuclecic acids (biopolymers). The polyelectrolyte properties of biopolymers
are cxpected to be in the background of various biological phenomena.
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JI. CHEMICAL STRUCTURE

Scvcral cxamples of the chemical structurc of the simplest polyelcctro-
Jytes arc given in Fig. 1. The first of thesc, polyvinyf sulfonic acid, is shown
to bc complctely dissociated into macroions having many necgative
charges and hydrogen 1ons when dissolved in water. In the sccond example,
polyacrylic acid, a macromoliccule most frequently used tn experimental
investigations of polyelcctrolytes, the degree of dissociation of the carboxyl
groups is small in pure watcr. On thc addition of alkali, e.g., sodium
hydroxide, the carboxyl groups arc dissociatcd and the macroion gains an
increasing number of negative charges, producing sodium counter ions.
The number of dissociated groups or charges depends on the amount of
added alkali and is reflected 1n the pH value of the solution. Accordingly,
thc chemical structurc of the macroion in the solution may bc expressed
as a copolymer of monomers having COOH groups and COO™ groups.
At a given pH value and concentration of macroions, only the average
proportion of thcse groups is dctermiined and the solution is a mixturc of
macrolons that have diffcrent distributions of two thermally fluctuating
groups. When alkali equimolar to the acidic groups is added, the sodium
polyacrylatc macroions in the rcsulting solution arc almost fully dis-
soclated.

The third example in Fig. 1 1s a copolymer of two kinds of monomers,
vinyl alcohol and acrylic acid. The latter monomer is charged by the
addition of a sufficicnt amount of alkali. The number of charges per
macroton is rcgulated by the ratio of the two kinds of monomer in the
copolymer. In this casc the distribution of charged groups in cach
copolymer is detcrmined by its original chemical structure.

The stcrcoregularity coming from the arrangement of ncighboring
monomcrs is also a factor in polyelectrolytes; e.g., in the case of poly-
mthaclyylip acid, isotactic, syndiotactic, and atactic polyacids are
distinguished by their structure and properties.

The fourth example of chemical structure prescnted in Fig. | is the
polybase, polyvinyl-N-n-butylpyridiniumhydroxide, which is positively
charged by the addition of acid '

Thec next two examples in Fig. 1 arc the polypeptides, polyglutamic acid
and polylysinc. They contain optically active carbon and can be composcd
of two kinds of monomer, /-amino acid and d-amino acid. As a consc-
quence, poly-f-amino acid must be distinguishcd from the copolymer
poly-d-l-amino acid. Protcins are generally copolymers of various kinds of

I-amino acids. They have both positive and ncgative charges on side
chains.
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Fi1G. 1. Examples of the chemical structures of polyelectrolytes. (a) Polyvinyl sulfonic
acid; (b) Polyacrylic acid partially neutralized by sodium hydroxide; (¢) Copolymer of
acrylic acid and vinyl alcohol; (d) Poly-N-n-butyl pyridinium hydroxide; (e) Poly-
glutamic acid and polylysine; (/) Deoxyribonucleic acid neutralized.
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The last examplc in Fig. 1 presents the chcmical structure of a natural
polyelectrolyte, deoxyribonucleic acid (DNA), a polynuclcotide in which
the main chain is formed from the repetition of a definite unit and each
side chain has one of four kinds of base.

The degree of polymerization, 1.e., the number of monomers in a
polyelectrolyte molecule, is usually 10% to 10* but may bc more. 1n somc
cases the degrec of polymerization is continuously controlled from the
monomer limit to almost infinity. With synthetic polyelectrolytes, however,
1t 1s almost impossible to obtain a solution of polyelectrolyte in which all
macroions have the same degree of polymerization and the same chemical
structure. On the other hand, with natural polyelectrolytes, such as
purified protein, all solute macroions may have the same chcmical
structure.

The length of cach monomer along the chain is about 2.5 A in the first
example of Fig. 1. Since the radius of each atom in the main chain is of the
order of 1 A, the main chain is apparently a flexible cylinder as shown in
Fig. 2 for models of polyacrylic acid and DNA. When the side chain of
ionizable groups is short, the macroion looks like a cylinder having many
charges on its surfacc. When it is long, the macroion looks like a cylinder
having short branches from the surface, the ends of which are charged.

ITI. PHYSICAL MODEL

The flexibility of the macroion comes from the freedom of the internal
rotation of bonds in the main chain. In the first example of Fig. 1 each
bond, as 1s well known, can rotate around the neighboring bond, keeping
the bond angle constant. The intrinsic free energy of the rotation is a
function of the relative position of three neighboring bonds. Usually
there are three energy minima, one at the ¢rans (T) position and two at the
gauche (G) positions. The difference in energy between the frans position,
corresponding to the stretched form of the chain, and the gauc/he positions,
corresponding to the contracted form, 1s a most important factor on
determining the flexibility of the chain.



Fi1G. 2. Examples of three-dimensional structures of polyelectrolytes. (a) Polyacrylic
acid; (b) Deoxyribonucleic acid.
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In polypeptides the four neighboring atoms along the main chain
must lie in the same plane. Rotation is possible only around the two kinds
of bonds. The polypeptides are regarded as a series of planes lincarly
connectcd with two freedoms of rotation.

The macroion as a flexible chain thus has an extremely large number of
possible conformations that arc spccificd by a series of variables designating
the rotation.angles of neighboring bonds. The frec encrgy of each con-
formation i1s determincd not only by thc intrinsic free energy of thc
rotation but also by thc interaction among side chains, main chains,
and solvent molccules or ions. The conformation of such a chain has two
classifications, random coil and helix. In the random coil the series ol
rotation angles of successive bonds spccifying the conformation has no
Jong rangc regularity, 1.e., there 1s no regular repetition of a certain angle
or angles. The mean square of the end-to-end distance of the chain i1s
proportional to the number of monomers if the number is sufficiently
large, indcpendcent of the flexibility of the chain. In the helix, the scrics of
rotation angles has a long range regularity; there is a repetition of an angle
or angles. The mean end-to-end distance is dircctly proportional to the
number of monomers.

In the case of thc random coil, there are usually a number of con-
formations having equal or approximately equal free encrgies. Each chain
assumes these conformations from time to time. The two kinds of con-
formation, random coil and helix, are i)llustrated in Fig. 3a, b, and ¢. The
random coil in Fig. 3a 1s only one of the many equally possible con-
formations. The rapid transformation among these conformations is an
essential property of thc random coil. The number of equally possiblc
conformations and thc rate of the transformation are determincd by the
structure of the chain and the environmental condition.

The random coil conformation does not necessarily refer to a spherically
contracted state of thc chain. Extended and contracted states fit in thc
random coil category if there are no regularly repeatcd structures. Actually
charged macroions can assume various random coil conformations over
a wide rangc of extension, depending on the charge and the environment.
At extrcmely high charges they may take a rodlike or cylindrical con-
formation. Atlow charge orin the absence of charge, they take a spherical
conformation. The spherical random coil can have a wide range of thc
apparent radius. For cxample, polyacrylic acid, whose dcgree of poly-
merization is 1000, takes a spherical random coil form with a radius of
about 200 A at low pH. With increasing pH, the macroion extends
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first spherically and then beccomes rodlike. Its eventual length is 2500 A
in its most stretched form. The average local curvature of the chain
decreases gradually, as shown in Fig. 3d.

(-

(a)

(b}

! W

(c)

~ —*a “\/

(d)

Fi1G. 3. Different conformations of linear chainlike macroions. (@) Random coil; ()
Helix; {¢) Different hclical conformations expressed by sequences of internal rotation
angles; (1) TTT..., (2 TGTG...,(3) TGGTGG...; (d) deformation of contracted random

coil to extended one.
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1V. ELECTRICAL POTENTIAL AROUND THE MACROION

Let us consider a macroion in the spherical random coil conformation.
Many discrete charges are distributed on the macroion as shown in
Fig. 4a. Each of them is the source of an electric field. The resultant field
in and around the macroion is given by the superposition of contributions
from these charges, if the contribution from counter ions is neglected.

(b)

(a)

(1)

(2)

(¢c) (d)

F1G. 4. (a) A spherical macroion with charged groups. () The potential profile along a
line crossing the volume occupied by the spherical macroion. (¢) A cylindrical macroion
with charged groups. (d) Thc potential profiles along the lines crossing the volume
occupied by the cylindrical macroion; (1) perpendicular to the cylinder, (2) along the
cylinder.

The profile of the potential along a line passing through the macroion
is shown in Fig. 4b. At a point where the line passes a charge, the potential
curve has a decp and sharp hole. The potential curve in and near the region
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occupled by the random coil has the form of a trough as a result of the
superposition of many such holes. The slope of the curve in the trough is
rather gradual. Beyond thc region occupied by the random coil there is a
sharp risc in the potcntial. The potential profile is well represented by a
trough with many holes.

The potential profile of an extended rodlike macroion of Fig. 4c is
shown in Fig. 4d. Along a line parallel to the rod, the potential takes the
form of a trough with sharp holes; along a line perpendicular to the rod
it has a deep valley at the position of the rod.

Let us suppose that a random coil occupies a spherical volume v of
radius a. If n ionized groups of the charge —e, are uniformly distributed
in this volume, the potential drop at the edge is given by ney/eoa, where
g 15 the dielectric constant of the solvent. The ratio of the potential energy
of a charge +e¢, at the edge to the kinetic energy kT is ney’/eqakT. If the
fully neutralized polyacrylic acid ion with a degree of polymerization of
1000, the length of which is about 2500 A in the most stretched state, is
coiled into a sphere with a radius'of 200 A, the value of the above ratio
is of the order of 35 in water at ropm temperature. Many counter ions are
consequently forced to enter into the spherical region of the potential
trough. As counter ions enter into the sphere, the potential drop is
decreased by the cancellation of the charge. However, even with 909
of the counter ions in the sphere and 109, of the charge remaining
uncancelled, the potential drop is still larger than the kinetic energy, the
value of the ratio being about 3.5. The number of counter ions in the
central region of the spherical trough is larger than the number at the
peripheral region. The base of the potential trough thus becomes flatter
and the potential drop at the edge becomes better defined when the
presence of counter ions is taken into account.

A similar examination can be made of the rodlike macroion. If »
charged groups are uniformly distributed on a rod of length / and radius a,
the potential drop from the distance R to the surface a of the rod is given
by 2(ney/eol) In (R/a), if I> R > a. The ratio of the potential energy to the
kinetic energy is equal to 2(ney*/eokT!) In (R/a). If n=1000, / =2500 A,
and R/a = 100, this ratio is about 26 in water at room temperature. Most
of the counter ions must be bound to the rod.

For a macroion in the coiled conformation, the most realistic features
of the potential which i1s derived from the model are as follows. Each
charged group makes a sharp and deep potential hole at its position.
Each linear part of the chain makes a sharp and deep potential valley
along its length, as shown 1n Fig. 5. The coiled chain as a whole makes a
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(spherical) potential trough in its apparent volumec. The whole volume of
the solution is divided into four potential regions; holes at charged groups,
thc cylindrical valley along the chain of the macroion, the spherical
trough in the apparent volume occupicd by the macroion, and the region
outside the macroion. A macroion in the extended conformation has no
spherical potential trough.

F1G. 5. Three regions for counter ions bound in and around the macroion. (1) The
potential hole at charged groups; (2) the potcntial valley along the cylindrical region
occupied by the chain of the macroion; (3) the potential trough in the region apparently

occupied by the macroion as a whole. The area marked by (4) is the outside region for
free counter 1ons.

Counter 1ons are distributed in these four regions. Counter ions in the
first thrce regions can be defined as bound to the macroion. However, they
arc mobile in the cylindrical potential valley and in the spherical potcntial
trough. When trapped by the sharp potential holes, thcy are localized at
charged groups, forming ion pairs. The binding of counter ions to thc
macroion may be classified as localized and mobile as shown in Fig. 5.

If the assembly of charged groups and counter ions in the potential
valley or trough 1s regarded as a closed system of an electrolyte solution,
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the relation between the two kinds of bound counter 1ons, localized and
mobile, 1s analogous to that between free 1ons and 1on pairs 1n simple
electrolyte solutions. In the case of n charged groups uniformly distributed
in & spherical volume v, the concentration of charged groups is given by
nfv which, in the previous numerical example, is equal to 0.06 mole/liter.
At this concentration the degree of ion pair formation, 1.e., localized
binding, 1s small in the case of strongly dissociative groups. In the potential
valley along the chain, however, the concentration of counter 1ons is
much higher than the above value, 0.06 mole/liter, for the uniform

spherical distribution. Some of counter 1ons in the potential valley are
then localized at holes.



Chapter 2

DISTRIBUTION OF COUNTER IONS

I. EQUILIBRIUM BETWEEN BOUND AND FREE COUNTER IONS

According to the previous discussion, counter ions in a polyelectrolyte
solution are classified into three categories: counter ions freely moving
outside the region occupied by macroions, those bound but mobile in this
region, and those bound to individual charged groups of the macroion.
The second category may be further divided to distinguish counter ions
bound but mobile in the potential valley along the chain and those in the
potential trough made by the coiled macroion as a whole. The equilibrium
between free counter ions and bound but mobile ones is most important in
determining the thermodynamic properties of polyelectrolytes. The
essential feature of this equilibrium can be extracted by using the following
two-phase approximation proposed by the author (/).

In a polyelectrolyte solution each macroion has a large charge. The
repulsive force acting between them, as long as the charge isnot completely
cancelled by bound counter ions, tends to prevent their overlap during
their movement. The whole solution can be divided into two regions. One
region is occupled by macroions, the total volume of which is equal
to Nv, where N is the total number of macroions and v is the apparent
(effective) average volume occupied by each macroion, as shown In

Fig. 6. The other region is the space free of macroions; its volume is equal
to V—Nv, where V i1s the total volume of the solution.

In the absence of simple electrolytes the total number of counter ions
of charge ¢, In the solution is equal to the total number of charges of the
macroions. Some of the counter 1ons, the number of which is denoted by

13
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n’, move in each volume v and the remaining counter ions, the number of
which 1s nN—n'N, move 1n the volume V— Nv. If the average potential

FiG. 6. Spherical macroions in a solution.

difference between the two regions i1s denoted by &Y, the distribution

equilibrium between bound counter ions and free eounter ions 1s given by
the equation

(n—n*)[v = n*N/(V— Nv) exp (— ey /(kT) (1)

or

In (1—B)/B = In ¢/(1— $)—eodW/KT (2)

where n*=n-—n', B=n*/n, and the apparent volume concentration
Nv/V is denoted by ¢. The quantity ~—n*e, defines the apparent charge
of each macroion, and f is the apparent degree of dissociation of the
macroion. The average potential difference oy is a function of n* and the
size and shape of the macroion.

On the basis of this two-phase approximation, two typical cases are
analysed below.

II. SPHERICAL M ACROIONS

Lct us consider macroions occupying spherical volume v of radius a
in a solution, the dielectric constant of which is ¢¢ (Fig. 6). If the average
distance between centers of two neighboring macroions is denoted by
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2R, the avcrage potential difference between the inside and the outside of
the macroion is approximatcly given by

oy = —(n*eo/eo) (1/a—1/R) 3)

Since R is equal to the radius of the volume of the solution per macroion,
namely (4n/3) R®*=V/N or (af/R)’ = Nv/V = ¢, the equation for the
distribution equilibrium may be rewritten as

In (1~$)/B = In ¢[(1— $)+pP(1~ ') (4)

where P = neglegkTa, which is a nondimensional gquantity giving a
measure of the intensity of the potential of the macroion. The product

BP is proportional to the apparent macroion charge n*e,. At low con-
centrations, the above equation is reduced to

In(1-pB)/B = In ¢+ P )

The relation between the apparent degree of dissociation S and the
apparent volume concentration ¢ for a =200 A at different values of the
number of charges (200 and 450) or of P (8 and 16) is shown in Fig. 7a.
The apparent degree of dissociation increases with decreasing concen-
tration, tending to unity at zero concentration. The value of § is smaller
for larger values of n or P. The number of free counter ions increases
very slowly with n, as shown in Fig. 7b. Equation (4) shows that for large
values of P, the value of BP or n* isinsensitive to the increase of P or n.

In this approximation of the distribution equilibrium, the activity of
counter 1ons must be proportional to the molar concentration of free
counter ions n*N/(V—Nvy) in the volume outside of the macroions.
Since the total molar concentration of charged groups or counter ions In
the solution ¢, is equal to #N/V, the activity coefficient y is given by

y = (n*f[V/"N)(V/(V—Nv)) = BI(1—¢) (6)

This approximation also requires that the osmotic pressure of the solution
against the solvent (water) be proportional to the concentration of free
counter 1ons outside oF the macroion, and the osmotic coeflicient g be
equal to the activity coefﬁment B. The quantity /(1 — ¢) is obtained from
Eq. (4) as a function of the volume concentration ¢ and the charge P.
This result is included in Fig. 7a. With decreasing concentration of
macroion the activity coefficient slowly decrcases at high concentrations,

reaching a minimum at about ¢ =0.05, and then increases at low con-
centrations, approaching unity at zcro concentration.



1.0

P =16. (——): The activity coefficient v; (-

M e r + |
_ 0.005
(1)
L .
TTTTe-~(1) - 0.05
N f |
T (2) 100|- ~
> l
' b g 1 I I | |
0.1 0.2 0.3 0.4 1000 2000 3000
$ n
(a) (b)
T t ]
{1}
.
-/
L
0.2|- -
L
L]
\
0.1~ -
°\ (2)
&\ 4
\\
Awm{3)
] | ]
0.01 0.05 0.10
€, (g/100 mi)

(c)

FiG. 7. (a) Relations of the apparcnt degrec of dissociation of counter ions S and the
activity coefficient of counter ions y to the apparent volume concentration ¢ at various

values of the charge density P in solutions of spherical macroions. (1) =8 and (2)
): the degrec of dissociation g (7).
(b) Rclations of the apparent degree of dissociation B or the number of the effective
charge n* to the charge density P or the total number of charged groups n at various

concentrations ¢, of macroions in solutions of spherical macroions. The radius of the

macroion a= 350 A, ¢okT]ee2=1.4x10" cm~! and the concentration of macroions
cpiscxpressed in monomer-molc/liter (4).(c) Theexperimentalrelation between the osmotic

coefficient, g, and the concentration of macroions, ¢, (2). (1) Sodium carboxymethyl
amylose (lincar polymer); (2) sodium carboxymethyl amylopectin [branched (spherical)

polymer]; (3) sodium carboxymethyl glycogen.
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It 1s gencrally expected that the activity coefficient of the solute should
become unity at extreme dilution and should decrease with increasing
concentration. The above change of the activity of counter ions with
dilution that is predicted by the present approximation is thus reasonabile.
Asis shown in Fig. 7¢ (2), this behavior of y has indeed been observed in
the casc of a kind of branched chain macroion, which probably takes a
spherical form in the solution over a wide range of concentration.

It must be pointed out, however, that small values of the molar
(weight) concentration of polyelectrolytes correspond to fairly large values
of the apparent volume concentration because of the extension of the
macroion. The radius of the free volume R is related to the concentration
c, (mole/liter) of charged groups or counter ions in the solution through the
equation

(47/3) R® = /(6 x 10*%)c, (7)

For example, when »=1000, the concentration c,= 0.1 mole/liter
corresponds to R =150 A and ¢, =0.001 mole/liter to R =700 A. If the
macroion is sufficiently coiled, its radius a can be considerably smaller than
the above values of R and the apparent volume concentration will be small.
However, if it is somewhat extended and the radius a is as large as 230 A,
about 1/10 the length of the most stretched form of the macroion of
n = 1000, the apparcnt volume concentration is 0.04 at ¢, = 0.001 mole/
liter and attains a value of unity at ¢, =0.03 mole/liter. The correspon-
dence of such low values of c, to large values of ¢ suggests that the isolated
spherical random coil model for chainlike macroions is applicable only in
a very limited condition, because at large ¢ it is not reasonable to divide
the solution into spherical volumes occupied by macroions and outside
volumes unless the macroions are compact spheres of a fixed radius. More-
over, the highly charged macroions at low concentrations are in a more
stretched conformation. In other words, at such low concentrations of
macroions and counter ions where the spherical free volume model may be
applied, most real chainlike macroions can not be in the spherical form.

ITI. RODLIKE OR CYLINDRICAL MACROIONS

Macroions as flexible chains having many charges are usually in the ex-
tended conformation. The end-to-end distance of each chain is longer than
the average distance between neighboring chains, except in the extrcmely
dilute solution. In such circumstances the rodlike or cylindrical model
of macroions is preferable to the spherical model (Fig. 8). Let us suppose
that each macroion is stretched to a cylindrical shape and the charged
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groups are distributcd in a cylindrical region of volume v and radius a in
which the potential profile is of the form shown in Fig. 4d. The averagc

)]

FiG. 8. Cylindrical macroions in a solution.

potential difference 0y between the inside and the outside of this volume
Is given approximately by

o = —2(n*eq/eol) In (R/a) (8)

where 2R is the average distance of two neighboring rodlike macroions or
R 1s the radius of the cylindrical free volume of each macroion, and
| is the end-to-end distance of the macroion. Accordingly, aR*/ = VN
and na®l = v; therefore a?/R* = Nv/V = ¢. If the average distance between
neighboring charges on the macroion along the cylinder is denoted by
d = l/n, the potcntial diffcrence 1s expressed as

o = —(feofeod) In (1/¢) ()

Strictly speaking, this expression is valid only [or a rod of infinite
length in a cylindrical free volume. For rods of finite length /, a term of the
order of (Be,/eo)(2/[2)(R?* — a*) must be added. However, the influence of
such a correction is small enough to be neglected if the conditign
2RI (1 — @) < (1/P) is satisfied. For example, at ¢ =0.1, if [> 3R,
the crror docs not cxcced 109/, If «//=1/1000, Eq. (9) is applicable when
¢ is larger than 2 x 1074,

By employing Eq. (2), the distribution cquilibrium between bound and
free countcr 1ons may bc written as

In (1=P)/B = In )1 —¢)+[QIn (1/9) (10)
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where Q=c %[¢,kTd. For thc cylindrical model, this nondimensional
quantity Q is the most important paramcter dectermining the intensity of
the binding of counter 1ons. It should bc noted that the right-hand side
of thc above equation is rcduced to the form |

(1~B0) In ¢ (11)

for sufficiently small valucs of ¢.

Results of somc numerical calculation, shown in Figs. 9 and 90,
reveal onc of thc most charactcristic propertics of polyelectrolytes. At a
constant length / of the macroion, the value of Q increases with increasing
number of charges pcr makcroion. The relation between f and ¢ expressed
by Eq. (10) depends on the value of Q. For valucs of Q smaller than unity,
the apparcnt degree of dissociation [ increascs with decreasing ¢;
approaching unity at zero concentration, just as in the case of the spherical
macroion. On thc other hand, for valucs of Q larger than unity, 8 does not
tend to unity, but approaches 1/Q at zero concecntration. The activity
cocfficient, y, of thc counter ions, /(1 — ¢}, also approaches 1/Q when QO
1s larger than unity. Thus, at infinitc dilution

y — 1 for 0L Q<

(12)
Y — 1/Q for 1< Q0

For largc values of Q, with increasing concentration the activity
coeflicient y docs not decrease but increases slightlty. From Eq. {10) it is
found that (¢f/d$) 4.0 >0 when Q becomes larger than 2.

Such bchavior of the activilty of solute molecules or 1ons has not been
obscrved 1n ordinary solutions of nonelectrolytes or electrolytes. In the
case of polyclectrolytes, however, cxperiments givce rcsults in good
agreement with the theoretical predictions of Figs. 9a and 90. The data of
Nagasawa and Kagawa (3) that are presented in Fig. 9¢ show that the
activity cocflicicnt of counterionsis very low cven at low concentrations of
polyelectrolyte and i1s almost constant over a wide range of concentration.
When the number of charges /2 is increased with the degree of esterification
of the polymer, the activity of counter 1ons changes as expccted. At high
values of Q, the activity is not increased with n, y being nearly proportional
to 1/Q or //n, as shown in Fig. 94 (3). Similar results have been obtained
in a number of cxpcriments (4). The experimental data in Fig. 7¢ that
were obtained by Inoue(2) also provide a valuable test of the prescnt modcls
because two kinds of macrotions, spherical and linear, are compared. Both
macroions show the bchavior predicted by the above theory.
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Fi1G. 9. (@) Relations of thc apparent degree of dissociation of counter ioas, f, and the
activity cocfficient of countcr ions, ¥, to the apparent volumc concentration at various
values of the charge dcnsity Q in solutions of cylindrical macroions; (1) 0=1, (2)
0=2 (3) 0=4, and (4) Q=8. (—): The degrcc of dissociation f; ( ): the
activity cocfhficient y; and (—.): the activity cocfficient under the condition that y*
= 0.6 (/). (Sec Scction 1V). (b) Relations of thc number of free counter ions, SQ, to the
charge density, Q, at various conccntrations of macroions in solutions of cylindrical
macroions; (1) in the limit of dilution, (2) thc apparcent volume concentration ¢ = 0.05
and 0. 1. (¢) The cxpcrimental relation betwcen the activity cocfficient of counter ions and
thc concentration of macroions. Sodium polyvinyl sulfate in pure water. The dcgree of
esterification (the charge density); (1) 0.725, (2) 0.692, (3) 0.740, (4) 0.711, (5) 0.494,
(6) 0.431, and (7) 0.301 (3). (d) The rclation of the activity coeflicicnt ¥ (O) and thcactiv-
ity YQ (x) or the conccntration of free countcr ions to the degree of esterification (the
charge density) derived from the data in Fig. 9(c).
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In water (¢0=2380) and at room temperaturc, the condition Q=1
corresponds to d = 7 A for monovalent charged groups and counter ions.
The theory suggests that when the average distance between neighboring
charges on the macroion becomes less than about 7 A with the increase
of the number of charges, a further increasc of charge docs not resultin an
incrcasc of thc apparcnt charge of the macroion even at low concentra-
tions of macroions. The cxcess numbcr of counter ions are retained in the
cylindrical region along the macroion.

In the above model the degree of dissociation and the activity are
determined by the quantity Q or @, the charge density on the macroion,
and are independent of the total number of charges, i1.e., the degree of
polymerization of thc polyelectrolytc. This cstimate of the situation is
supported by experiments.

Of course, in actual cascs each macroion is not fully stretched to a
straight rod even in the extended conformation. It has curvature and takes a
wavy form. The cylindrical model, however, may be applied to each nearly
cylindrical part of the macroion which is long enough to satisfy the con-
dition that the potential difference is given approximately by Eq. (9). The
length of the cylindrical part is requircd to be longer than the distance
between neighboring cylinders as shown in Fig. 8. For instance, when
$ =0.0l (a=10A and R =100 A) and the length of thc cylindrical part
is 200 A, the crror in the avcrage potcntial difference given by Eq. (9)
1s less than 109%. This estimate suggests that the cylindrical model has a
wide applicability, even when the macroion is coiled to a certain extent..

An 1solated macroion in a morc or Icss coiled conformation makes two
regions for bound but mobile counter ions; the cylindrical volume (the
potential vallcy) along the chain and the spherical volume (the potential
trough) apparently occupied by thec macroion as a whole. Therefore,
equilibria must be establishcd among these rcgions and the outside. The
equifibrium bctween counter ions in the cylinder (thc potential valley)
and 1n the sphere (the potential trough) may be describcd by an cquation
analogous to Eq. (10), and the equilibrium betwcen counter ions in the
spherc and thc outside may be described by an equation analogous to
Eq. (4). At high values of the chargc density of the macroion along the
chain, most of the countcr ions arc retained in the cylinder and the
apparcnt charge of the chain can not cxcecd a limit defined by Equation
(10). Conscquently, the concentration of counter ions that are mobile in
the sphere is rclatively low and not very diffcrent from the concentration
of frce counter ions in the outside region. In this casc the spherical region
assumed above is not important in detecrmining the equilibrium con-
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centration of free counter i1ons, and the simple cylindrical model can
adcquately cxplain the expcerimental facts.

The theoretical calculation show that the activity coefficient of the counter
ions does not tend to unity but approaches 1/Q at infinite dilution. This
result, which seems to contradict the requirement of the general theory of
solutions that y approaches unity, 1s due to the assumption that the
~length [ of the macroion is infinitc. Since the length / of real macroions i1s
finite, R must exceed / at infinite dilution. Jn most cases, however, such an
extremec dilution is not realized in practice before the measurement of the
activity or the osmotic pressure becomes impossible, or before the number
of hydrogen ions and hydroxyl ions in water becomes significant.

IV. CouNTER ION CONDENSATION

The previous section has madc clear one of the characteristic properties
of polyelectrolytes. Lct us now increase the number of charges of each
macroion at a constant total concentration of macroions in the solution.
An increasing number of counter ions are distributed inside and outside of
volumes occupied by macroions. When the number of charges and counter
1ons 1s small, counter 1ons are equally distributed in the solution. With the
increase of the number of charges, the electric field becomes strong and -
relatively more counter 1ons are retained in thc volume of the macroions.
At infinite dilution, however, the counter ions are free from macroions -
1f the number of charges is smaller than a certain critical value. Assuming
that the cylindrical modcl can be applied to the macroion or at least to
parts of the macroion, this critical value is given by the condition that the
charge density along the cylinder #n/l or 1/d is equal to €,kT/ey”, or the
average distance between neighboring (monovalent) charges d is equal to
eo%/eo,kT, which is about 7 A in water at room temperature.

When the number of charges increases beyond this critical value, the
apparent degree of dissociation f decreases, becoming equal to I/Q=
gokTd/ey” at low concentrationi; of macroions. Then the concentration
of free counter 1ons outside of the macroion is proportional to c,/Q or
nd, which becomes independent of #. In spite of the increase of the number
of charged groups and countcr ions in the solution, the concentration of
free counter 1ons is kcpt constant and only thec number of bound oncs is
increased, as shown in Fig. 10.

This phenomenon 1s a kind of condcnsation. Lct us consider a gas
composed of a large numbcr of molecules among which attractive forcc
acts. When the number of molecules is increascd at a constant total
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volume of the gas, the condcnsation to liquid takes placc at a ccrtain
critical valuc of the number or the density of gas molecules. Above this
critical point the increasc of the number of moleculcs docs not increase the
number or thc density in thc gas phase. Only the amount of the liquid
phasc is incrcased (Fig. 10).

In analogy to this gas—liquid condcnsation, the concentration of free
counter ions above the critical valuc of the charge density corresponds to
the saturated vapor pressurc cocxisting with the liquid. The counter ions
in the volume of macroions correspond to the molecules in the liquid
phasc. Counter ion condensation is a characteristic phenomenon in poly-
electrolytes. In comparison with thc usual condensation caused by the
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FiG. 10. (@) The countcr ion condcnsation in comparison with the gas-liquid condensa-
tion. The abscissa is the charge density of macroions, or the total number of counter
ions, or the total number of molccules. (——): The number of frce counter ions or the
density of the gas phase; (— —): the number of bound countcr ions or the amount of the

condenscd liquid. (b) Illustration of counter ion condcnsation with increasing charge
density.

increasc of the density in the gas phase, it is to be noted that, in the system
of counter ions and macroions, the number of charged groups of the macro-
ion is incrcascd in parallel with the incrcase of the number of counter
ions. In other words, the source of the attractive force in the liquid phase
1s increascd. Thc quantity kept constant above the critical condition is the
number of free counter ions or the apparent charge density of macroions.
What is the causc of this phenomenon of ““‘counter ion condensation’?
The distribution equilibrium represented by Eq. (2) denotes the equality
of the chemical potential of counter ions in the two phascs, the region
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occupied by the apparcnt volume of the macroions and the region outsidc
of this volume. The chemical potential is the sum of energy and cntropy
terms. The contribution of thc entropy is cxpressed as AT xIn (con-
centration), and the difference in thc entropy between the two phases
contains the term A7 % In (volume ratio). For a long cylinder having a
uniform charge dcnsity, thec coulomb potential around the cylinder is
expressed as a logarithmic function of the distance. Thercfore, the energy
diff erence between two phases is also proportional to In (volume ratio).
If the volume outside the cylinder is increased, the entropy difference and
the energy difference are both increased according to the logarithmic
form of the volume. Infinite dilution does not resuit in the predominance
of the contribution of entropy to the chemical potential, and counter ions
can not leave the volume of the macroion.

On the other hand, in thc usual systems where molecules interact with
each other only at short distance, the energy difference between the free
state and the bound state is independent of thc volume of the free space.
Only the difference of entropy increases with the increase of free space.
Therefore, at infinite dilution complete dissociation always takes place.

Let us assume that at a certain value of the volume concentration the
number of free counter ions is too large to establish equilibrium between
two phascs. Then, some of the free counter ions are forced to enter into
the bound state. This flow of counter ions from the free state to thc bound
state can not be stopped by dilution or by the increase of free space. The -
number of free counter 1ons must dccréase to a critical value where the
balancc between the contributions of energy and entropy is just satisfied
almost indcpendently of the volume concentration by the condition that

kT = n*ey*/e,l (13)
or

O = 1 (14)

Suppose that at the condition (13) counter ions are in the equilibrium
distribution and an additional charge and its counter ion are newly
produced in the macroion. If this additional counter ion escapes from the
macroion into the free space, the potential energy difference increases
and becomes predominant ovcr the cntropy difference, namely k7 <
(n*+ Dey?/eol. The counter ion must as a consequence be retained in the
macroion. Thec increase of the cntropy difference rcsulting from the
retention of the countcr ion 1s much smaller than the change of the poten-
tial energy causcd by libecration of the counter 10n into the free space, if the
volume concentration is low. Thus, the apparent charge can not beincreased.
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The above analysis is valid for sufficiently small values of thc volume
concentration ¢. In the case of the cylindrical modcl, the apparent volume
concentration is not so much different from thc net concentration of the
chain of thc macroion, while1n the case of the spherical modcl the apparent
volume i1s very much larger than the net volume of the chain. In the former
casc thc molar concentration of charged groups c,=0.01 mole/liter, for
instancce, corrcsponds to a fairly small value of ¢ (between 0.01 and 0.001).

In thc prcsent case, the mathcmatical rcquircment for counter ion
condensation is that in Eq. (10) the term —In ¢ is sufficiently larger than
other terms. Since —In ¢ can be large enough only when ¢ 1s extremely
small, the abovc analysis seems to be valid only at extremcly low con-
centrations. Fig. 9a, howcver, shows that the activity cocfficicnt 1s not
greatly changed with conccntration, and this indicates that countcr 1on
condcnsation is numcrically insensitive to the concentration, cspecially
when ¢ i1s lower than 0.1.

Another approximation in the two-phasc model was that all bound
counterions are fully active in thc volume ». Somec of them may be localized
or at least produce an 1onic atmosphcrc around each charged group. Such
an cfifect decreases thc activity of the counter 1ons 1n v. Therefore, if the
apparent activity coefficient p* of counter ions in » is introduccd, the
left-hand sidc of Eq. (1) is replaced by y*(n—r*)/v and the left-hand
side of Eq. (10) must include the term In p*. However, at low concen-
trations of macroions, introduction of the quantity In p* has littlc eflfect
on thc rclation of the apparent degrce of dissociation or the activity
coefficient of countcr ions to the concentration, as is shown in Fig. 9a.
The critical valuc of the charge density for counter 10n condcnsation 1s not
changed. Estimation of thc magnitude of y* will be given later (Chapter 6,
Section 1).

The discontinuous condcnsation of counter 1ons becyond a critical
condition 1s not found in the case of spherical macroions. However, as
mentioned in thc previous scction, Eq. (5), which corresponds to Eq.
(13). indicates that for large values of the charge density P, the apparent
charge 3P increases very slowly (only logarithmically) with increasing 2P.
A situation approximating °‘‘condcnsation of counter ions’ occurs,
although for spherical macroions therc is no specific critical value of the
chargc density P and the valuc of the apparent charge depends on the
concentration .




Chapter 3

ELECTRIC POTENTIAL AND FREE ENERGY

I. THE FUNDAMENTAL EQUATIONS

We have scen in the preceding scction that a simple model can be
employed for a rather successful thcoretical interpretation of the pheno-
menon of ‘“‘counter ion condensation’ that is characteristic of poly-
electrolytes. In this model the distribution equilibrium of counter ions was
considered to occur betwecn two discrete phases, each of which was
regarded as a uniform solution of counter tons. Actually the coulomb
Interaction between ions and charged groups is of long range so that the
approximation of uniform phases appears to be too simple and should be
reexamincd by a more critical consideration. This i1s performed on the
basis of the Poisson—-Boltzmann equation (J).

Let us consider a random coil macroion or a cylindrical macroion
occupying volume o, in which n groups of charge —e, are distributed.
The electric potential s and the charge density p or the concentration ¢ are
related to each other as functions of spatial coordinates x through the

equation
AY = —(4n/eg)(pm+p+) = (47/eg)eglcm(X)—c (X)) (15)

where A is Laplacian; p,, and p, are charge densities and c,, and c. are
number concentrations of charged groups and counter ions, rcspectively.

Both potential and density in the abovc equations are statistically
averaged quantities. The average distribution of the charged groups p,,
can be exprcssed approximately as a continuous function of the coordi-
nates. (The validity of this approximation will be discussed later.) Ata given

27
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distribution of thc charged groups countcr i1ons are mobile and thcir
distribution i1s determined by thc balance between the clectric potential
energy and the cntropy. The electrochemical potcntial u, of the counter
ions can be written as

py = kT In ¢ (x)+eqh(x)+ p4.° (16)

wherc u,° is the chemical potential in the standard state. The clectro-

chcmical potential must be constant throughout the solution and the
Boltzmann equation can be used to express the concentration of counter
1ons at any point (x) in the solution.

ce(X) = A exp (—e(x)/KT) (17)

where the constant A is determincd by the condition on the total number
of countcr ions. If a frece volume, V/N, in which electroneutrality is
satisfied, 1s assumecd for each macroion, the total numbecr of counter ions
in this volume must be n. Then,

A = nN|V’
with
V' =N [ exp (—eoy(x)/kT) dv (18)
VIN

If the potential /(x) is small in the volume V/N, V'1s nearly equal to the
volume V.

By combination of this equation with Eq. (15) the Poisson-Boltzmann
equation is obtained:

A = (dneofe)cn(®)—A exp (—eop/kT)] (19)

The average potential y and the average ion distribution p are determined
by solving this equation under suitablc boundary conditions. At the
surface of the free volume, the average electric ficld must be zero.

The elcctrical internal energy w, per macroion with #n counter 1ons i1s
given by the following integral in the frce volume:

u, = (1/2) | (pmtp+)¥ dv

VIN

= VgN(go/Sn)(grad W)? dv | (20)

The cntropy s of the distribution of countcr ions 1s given by

—Ts = kT | ¢, In(c,/c%) dv (21)

VIN 7/

\!
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where ¢° is the number concentration of solvent molecules and c./c? is
the molar fraction of counter ions (6). The frece cnergy per macroion with
Iits countcr ions is given by

S =u~Ts (22)

The above procedure for the derivation of the free energy 1s composcd of
two processes. The first brings the ions to the distribution in the final
equilibrium and thc sccond charges the ions and thc macroion, their
distributions being kcpt constant.

Anothcr method for the derivation of the {ree cnergy gives the expression

S = Jo(VIN,n)+/, (23)

where f, is the standard free energy of an ideal solution of countcr ions
without charge, and

€o

Je =2 j “e(deo/eo) (24)

0

This i1s proved by the usc of the partition function Z given by
Z=1J...Jexp(—cy® ), u;/kT) U dx;, (25)
i,/ :

where the coulomb intcraction energy between the ith ion (or charge) and
the jth ion (or charge) is proportional to the square of the charge ¢,°
and written as e,’u; j» The frec energy is given by

= ~kTInZ (26)
Therefore,

df|deq = —kT d(In Z)/de,

L' ) (“‘230//‘7:) 2 Ui €XP (:eo2 > ul kD [, dx;
f-.-Jexp(—eo® 2 uylkT) [ dx
= 2u,fe, (27)

Thus, by integration of this equation, wc have Eq. (23) with Eq. (24).

In thc above method the idcal solution of countcer 1ons is first considcred
and thc ions and thc macroion are then charged, thc ion distribution
being changed with charging. The two expressions of the free cnergy,
Eq. (22) and Eq. (23), are equivalent to each other. This 1s shown by
proving the relation

—kT

d(u,—Ts)[deq = 2(u/eo) (28)
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with », and s given by Eqgs. (20) and (21). From Eq. (21) we have
~d(Ts)|dey = kT(dfdey) | cy In c dv
= A7 { (dcfdeo) In c,dv
= "“eoz I (dc+/deo)(b dp (29)
where we put ¥ = ¢,. On the other hand, from Eq. (20)
dufdeo = (1/2)(dldeo) | co™(Cpt c)® do
= e [ (cpt+cs)P dv+(eo?/2)(d[deo) | (¢t c+)P dv
= 2u,leq+(eo?/ ) (dey/deg)® dv+ [ (et c + )(dB/de g)dv]

(30)
Thereforc,
d(u,~Ts)[dey = 2u,/e,+ (20”/2) j [(cy+c i XdD)dey)— (dc,[deg)]dv
31
Since

AV = —4dnfeq(cp+cy)
the second term of the right-hand sidc of Eq. (31) can be rewritten
J [(cm+c4)(dD/de o) —(de., [de )] dv
= —(q/dn) | [AD(dD/dey)—D(dAD/dey)) dy
= 0

Thus, the relation (28) was derived and the equivalence of the two expres-
sions of the frce encrgy was proved.

The chemical potcntial of the solvent molecule u, and that of the
counter lon i, can be obtained by differentiation of the free energy. In
the present mcthod of approximation, diffcrentiation with respect to the
number of solvent molecules mcans differcntiation with rcespect to the
sizc of the free volume. Performing such differentiation by using the

expression (22) with (20) and (21), we can find that the chemical potential
of the solvent pg, 1s given by |

o = ~kTc,(R)/c®+const (32)

where R dcnotes the coordinate at the surface of the frec volume. Namely,
the chemical potcntial 1s determined by tlie molar concentration of counter

ions at the surface R, where the clectric field is zero and solvent moleculcs
have no clectrostriction.

The chemical potential of the counter ion is given by

t+ = kT In ¢, (R)+const (33)
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This is directly dewtived from Eq. (16) and also confirmed by diffcrentiation
of the free energy, Eq. (22), with respect to the number of counter 1ons.

The osmotic cocllicient g and the activity coefficient y of counter ions
are thus given by

'y. = g = ¢, (R)/(nNJV) = ¢, (R)/c, (34)

The free energy derived above contains only the contribution of the
counter ion distribution in and around the (fixed) macroion. Besides the
atmosphere of countcr 1ons around the macroion as a whole, each ion or
charged group has an ionic atmosphere about itsclf. The contribution of
such atmospheres must be included i1n the total free energy.

The free volume of each macroion in which electroncutrality is satisficd
1s not nccessarily equal. Because of the Brownian motion of macroions,
the electroneutral volume around each macroion must fluctuate. This
fluctuation also makes some contribution to the free energy.

In relation to thesc corrcctions, the validity of the Poisson-Boltzmann
cquation must be recxamined. Such recxamination was partly carricd out
in Rcf. 5.

Now, despite neglect of scveral terms, the above expression for the free
cnergy 1s uscful for the analysis of the characteristic properties of poly-
clectrolytes. The central problem in the following scctions 1s to solve the
Poisson-Boltzmann equation and calculate the free energy and also the
osmotic coefhicient. |

The Poisson—-Boltzmann cquation can be solved exactly onfy in a special
casc, 1.e., for a rodlike macroion with counter 1ons in a cylindrical frce
volume. This case will be trcated in Section III of this Chapter. In other
cases various methods have been devised to obtain approximate solutions
of the Poisson-Boltzmann cquation. One of them is the Debye-Hiickel
approximation, in which the electrical potential energy |e,¥| of counter
10as 1s assumed to be much smaller than the kinetic cnergy AT everywhere
in the solution. Herman and Ovcrbeck first applied this approximation
to a spherical random coil macroion with smoothed charge distribution
in a salt solution and calculated the free cnergy as a function of thc
extension of the macroion (7).

In their carly work, Kaichalsky, Kunzle, and Kuhn started from purc
coulomb potcntial duc to charged groups of the macroion without counter
1ons (8). The total clectric cnergy was calculated by summing up coulomb
interaction cncrgics among all groups. Actually, counter ions arc accumu-
Jated by the coulomb potcntial. The encrgy must be corrected by taking
jnto account these accumulated counter ions. Later, Katchalsky and
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Lifson assumecd the Dcbye—Hiickel atmosphere of counter 1ons around
each charged group of thec macroion and gave the clectric free cnergy as
the sum of intcractions betwcen charged groups with the counter ion
atmosphercs (9).

Such Debye-Hiickel approximation may be valid for macroions of
small charges in salt solutions. However, in highly charged macroions
which we are interested in, the fact that |eq|/AT>1 in and around the
macroion is csscntial for the characteristic propertics of polyelectrolytes.

The other method of approximation is based on the Donnan equilibrium
bctween two phases, thce uniformly charged random coil macroion and
thc outside. As a first approximation, the charged groups in the macroion
arc assumed to bc complctcly neutralized by counter ions except at the
surface. Kimball calculatcd the extensive force of the macroion under this
first approximation (/0). Deviation from the Dénnan equilibrium must
produce correction terms. Along this line, expansion of the frce encrgy
or the cxtensive force as a power series of the rcciprocal of the ionic
strength was tried by Flory and others. This method was applied to a
spherical macroion in concentrated salt solutions (/7).

The two phase model in the previous chapter is, in a sense, a variation
of thc latter mcthod, although it was applied in a wide range of the
condition where thc charge of the macroion was not necessarily assumed
to be mostly cancelled by countecr 1ons in it.

The following section will trcat two typical cases; one is a spherical
random coil macroion in which deviation from neutrality i1s small, and
thc other is a rodlikc macroion which can give an cxact solution of the
Poisson—-Boltzmann cquation. In both cases the polyelectrolyte solution
will b~ assumed to contain no simple electrolyte ions other than macroions

and their counter ions. Polyclcctrolytes in the presence of simple electro-
lytes are discusscd in Chapter 6.

II. SMALL DEVIATION FROM NEUTRALITY

Suppose that a random coil macroion occupies a spherical volume v
of radius a, as shown in Fig. 1la. The charge density arises from charged
groups of the macroions and countcr ions. The former is assumed to
bc expresscd as a uniform density in the spherical volume, v, namcly,

P, = —eunfv  inv
and

Pm =0 outside of v (35)
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If the macroion 1s placed at the center of the spherical free volumec of
radius R, the potential i/ 1s a function of the distancc r from the center and
the Poisson-Boltzmann equation for this system 1s difficult to solve. A
method of approximation has been devised on the basis of the following
fact. When there are many charged groups 1n v, counter 1ons are strongly
attracted by them and most of the counter 1ons are retained in ». Conse-
quently, most of the charges in v are canceled and the remaining apparent
charge becomes much smaller than the original charge of the macroion

(9).

(a) (b)

Fi1G. 11, (a) A sphcrical macroion with the uniform distribution of charged groups in a
sphcrical frec volume. () Atmosphcres of counter ions around individual charged groups
on the chaia of the macroion.

According to the notations in the previous chapter, n* is considered to
be much smaller than n or the apparent degree of dissociation f# is much
smaller than unity. This kind of relation can be assumed everywhere in v.
If a new quantity A is defined as a function of r by

(nfv)d = (n/v)~(nN/V') cxp (— e /kT) (36)

A is very much smaller than unity in »

A<l (37)
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By neglecting the quadratic and higher-order tcrms of A, we have from
Egs. (35) and (18)
AL = yx*L  inv (38)

1* = (4neo?[eokT)(n/v) (39)

This diffcrential cquation, which is of the same type as the Dcbyc~Hickel
cquation for simple elcctrolytes, can be casily solved. The charge density
or A and the clectric potential ¥ in v are given as functions of distance r by

A = In (V'/NvC) sinh yr/(xr cosh ya) (40)
e [kT = In (V'/NvC)[sinh xr/(xr cosh ya)] —In (V‘/Nv) (41)
wherc thc integration constant Cis determined by the boundary conditions,
that is, by the continuity of the potential and its decrivative at the surface
of v (at r = a@). Actually the term In C comes from the contribution to the
potcntial of counter ions outside of v. If this contribution is small, In C is
negligiblc.
The apparcnt charge of the macroion n* 1s approximately given by
n* = n{l) = (gkTaley®) In (V'/NvC){1 —sinh ya/ya cosh ya}  (42)
where <,{> — !A dv/u

where

and the potential at the surface of v 1s given by
eoW(a)/kT = In (V'/NvC)(sinh xa/(xa cosh ya))—In (V'/Nv)  (43)

With the above approximation the distribution of counter ions is not
uniform in v. As shown in Eq. (40), the deviation from complcte neutrality
(1=0) is very small in the central part of v and relatively large in the
peripheral part. The maximum value of 4 is taken at the surface r = a.
This maximum is small if ya> 1. Undecr this condition, the potential
V(r)is almost uniform in v.

The factor V’/N is determined by thc integration of exp (—egtf/kT) in
the total frec volume V/N. The previous two-phase approximation cor-
responds to the condition that

V'IN = [(n—n*)/n*}(V— Nv)/[N (44)

If this relation is put into Eq. (42) and the term In C is neglected, the
encrgy u, and thc frce cnergy f calculated according to Egs. (20) and (22)
are found to be given approximately by

u, = (1/2n**eq®/e0a (45)
[ = —(1)2)n*2e,*cqa+kTn In (n—1*)/vc) (46)
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and the activity coefficient of counter i1ons is given by

y = (*[m)(V/(V—Nv)) = B/(1— ¢)

which i1s the same result as obtained by the previous two-phase model
although the prescnt calculation initially has taken into consideration the
nonuniform distribution of counter ions in v. As discusscd in the previous
chapter, the above result agrees well with expcrimental data. (See also
Ref. 5).

The quantity y, defincd by Eq. (38), has the same meaning as the x
parameter which appears in the Dcbye-Hiickel theory for simple electro-
lytes and the quantity 1/y 1s the radius of the counter ion atmosphere
around each charged group in the macroion whose concentration i1s given
by n/v. If this radius is very much smaller than the radius a of the volume
v, most of the charges of the macroion are screened by counter ions inside of
v. Only in the periphcral region, the thickness of which is of the order of
1/x, are the charges not expected to be screened effectively, as shown in
Fig. 11b. This is the origin of relatively large values of A at the surface.
Therefore when

xa> 1

the “small deviation from neutrality’” approximation is applicable.

As a numerical example, if #=1000 and ¢ =230 A in water at room
temperature, 1/y becomes about 24 A, and is much smaller than a. The
thickness of the peripheral region where the deviation from neutrality
1s appreciable 1s about 1/10 thc radius a. Thus, the spherical macroion
appears to have a thinly charged layer at its surface.

A more detailed mathematical treatment of the Poisson-Boltzmann
equation is necessary for accurate analysis of the 1on distribution in and
around the macroion. A useful method may be to take into account the
higher-order terms of deviation from neutrality as perturbation for the
solution of Eq. (38). Such refinement, however, is not expected to bring a
large change of the result.

‘Thus, the approximate treatments in the earlier chapter and in this
section are very reasonable. The approximation “‘small deviation from
neutrality’’ can bc applicd to any shape and size of macroion having a
diffuse but dense distribution of charged groups. When a flexible macroion
1s extended from spherically coiled conformations to stretched ones

with the increase of charge, an ellipsoidal modcl may cover the whole
range.



36

The other important assumption in the present method consisted of
represcnting the asscmbly of discrecte charges of the macroion by a
continuous function p,,(.x) or ¢,(x). This assumption i1s vald if the atmos-
phere of counterions around cach charged group overlaps with each other;
in other words, it is valid if the avecrage distance 4 between neighboring
charged groups in the macroion 1s smaller than or of the same order as the
diamcter of thc ionic atmosphere around cach group, as shown in Fig.
115. This condition 1s expresscd by

vyd 51

(3¢0*/eckT)(n]a)!® < 1 (47)

In the Dcbye—Hiuckel theory of simple electrolytes it was shown that the
average distance betwecn ncighboring ions of the same charge in the
solution 1s always smallcr than or of thc same order as the radius of the
ionic atmosphcre, except in an extrcmely concentrated solution. Similarly,
the above condition is satisfied in the wide range of the number of charges
and the volume of the macroion. For instance, when n=1000 and a =
230 A, the avcrage distance d in the sphere is equal to 23 A whichis of the
same order as 1/y. As shown in Eq. (47), the quantity xd is Insensitive to
the change of thc number 72 and the radius a.

If thc atmosphceres are overlapped, the discrcteness of the charges in the
macroion has no great cffect on the determination of the distribution
of counter ions in and around the macroion. As long as the domain
occupied by the macroion can bedefined separately from the outside domain
in the sense that the average concentrations of charges in two domains
are considcrably diffcrent, it is reasonable to rcprescnt the charge distri-
bution In thec domain by a continuous function of the spatial coordinates.

or

III. ANALYTICAL SOLUTION FOR A RODLIKE MACROION

In the previous scctions the average electric potential in and around a
macroion was described by the Poisson-Boltzmann equation. As shown by
Fuoss, Lifson, and Katchalsky and by Alfrey and Morawetz in Ref. 12
and 13, respectively, this cquation can be exactly solved for an infinitely
long rodlike macroion with counter ions 'in a cylindrical free volume.
This result is bricfly described herein, special attention being given to the
“counter 1on condensation’ phenomenon.

In this case, n discrctc charged groups on the rodlike macroion of
length / and radius a are rcpresented approximately by a uniform charge
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density n/l =1/d, where d is the average distance between neighboring
groups on the rod. This representation i1s valid when the condition

(eo”/eokT)(d[a®) S 1 (43)

(Instead of Eq. 47) is satisfied by a sufficiently high charge density on the
macroion. In water at room temperature, Eq. (48) i1s rewritten as
7(d/a*) S 1, where d and a are expressed in the angstrom unit. The equation

to determine the average potential and the ion distribution outside of the
rod is then expressed as

AV = —(4mey/ep)cs(r) = —(dmep/eg)A exp (—eo¥/kT) (49)
wherg

A = (d/dr®)+(1/r)(d]dr)

and

R
A = nf{ exp (—eo[kT) 2nr dr

The potential Y must be a function of the distance r from the center of the
rod. The radius of the free volume R 1s chosen to satisfy the condition
NizR? = V. Counter ions are assumed to be excluded from the rod itself,

and its radius a denotes the minimum distance of approach of counter
ions to the macroion.

The boundary conditions for the electric field at a and R are then given
by

(O[0r), = 2eofeoad;  (OY[or)g = O (50)

respectively. The analytical solutions of the above Poisson-Boltzmann
equation were found to be (12, 13)

eV /kT = In {(2Q/B*)[r*/(R*~a?)] sinh? (B In br)} (51)
when the integration constant B is real, and

eoW /KT = In {(20/|1BI»)[r*/(R*—a*)] sin® (|B] In &r)} (52)

when it is imaginary. The integration constants B and & must satisfy the
relations:

0 = (1—-B?%/[1+ B coth (B In (R/a))]
"Blnb= —BlIn R—tanh™ B (53)
for Eq. (51) and |
0 = (1+|B1"/{1 +|B| cot (8] In (R/a))]

|B|Inb = —|B|in R—tan™!|B| (34)
for Eq. (92).
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The constant B 1s rcal and 0< B<1 for low charge densitics in the
rangc 0 < O < In (R/a)/[l +In (R/a)]. (O = eq?[exhT d). It becomes imagin-
ary for high charge densities where Q = In (R/a)/[1+In (R/a)]. When a is
sufficiently small, or more exactly when the ratio a/R is sufficiently smaller
than unity, the solution has a mathematical abnormality at Q cqual to
unity.

The electric energy and the elcctric frce encrgy calculated from the
above solutions according to Eqgs. (20) and (24) are expressed as (14)

u, = (nkT/0){(1 + B*) In (Rla)+1n [((1 + Q)*—B»/(1—B“))+ Q}

(55)
and

fe = =t +nkT In {[(R*~a®)/a*][(1 - Q)*— B?]/2Q) (56)
for real B and -

u, = (nkT/Q){(1—|B[*) In (Rla)+In [((1 + Q)* +|BA)/(1+|B)]+ Q}5 )
. (57

and
f. = —u,+nkT In {[(R* —a*)/a*}[(1 — Q)" +|BI*)[20) (58)

for imaginary B. This frec encrgy yields the following expression for the
osmftic coefficient or the activity coefficicnt of counter ions:

v = (1-B89)/20—¢/(1—¢)  for real B (59)
y= (1+B)R20~d/(1—-¢)  for imaginary B (60)

Numerical examples of the value of B as a function of Q are given In
Fig. 126 (Ref. 74). It is found that at values of Q larger than unity, the
increase of B is very slow and thc activity coefficient y is almost propor-
tional to 1/Q. With the ratio R/a incrcasing or with the conccntration ¢
dccreasing, B tends to 1 — Q at Q smaller than unity and approaches zero
at O larger than unity. The activity cocflicient thus tends to 1-Q/2 at Q
smaller than unity and to 1/2Q at Q larger than unity; namely,

v>1=02 for0< Q<1
v 1120 for 1 < Q (61)

as 1s shown 1n Fig. 12c.

There results agrec qualitatively with those obtained previously with the
more simple approach. Thus, thc simple two-phase model provides a
reasonably meaningful path to the clucidation of a characteristic pheno-
mcnon of polyelectrolytes ‘‘counter ion condecnsation.” The numerical



3. ELECTRIC POTENTIAL AND FREE ENERGY 39

value of the activity coefficient obtained here, however, is different from
the value cstimated previously. In the limit of dilution the activity coeffi-
cient decreases with increasing Q even at O smaller than unity and becomes
equal to 1/20 instead of 1/Q at Q larger than unity. In the present cal-
culation that is based on the analytical solution of the Poisson—-Boltzmann
equation, the concentration of counter ions outside of the macroion
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F1G. 12. (a@) A cylindrical macroion with the uniform distribution of charged groups in a
cylindrical free volume. (b) The valuec oftheconstant B as a function of the charge density
Q at various values of the volumec concentration; () In ¢ = -2, (2) In ¢ = -5, and
(3) In ¢ = —00. (¢) The rclation between the activity coefficient y and the charge
density O in the limit of dilution, and thc relation between the activity yQ or the
number of frec counter tons and the charge density Q in the limit of dilution.
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continuously decreases with the distance from the macroion. The con-
centration of counter ions at the surface of the free volume is therefore
less than is estimated with the previous approximation of a uniform phase
outside of the macroion. A simpler method to derive this result, Eq. (61),
is described in Chapter 6, Section III.

Here we add an analysis of the Poisson—-Boltzmann equation for a rigid
spherical macroion in a spherical free volume, for comparison with the
case of tife rigid rod. The Poisson-Boltzmann equation is written

Ay = —(4ney/eg)A exp (—egy/kT) "(62)
where .

A = d*|dr®+(2/r)(d/dr)
and

R
A = n/ | exp (—eo/kT)4nrdr

and the boundary conditions are given by
(dy/dr), = neoleoa*; (dy/dr)r = 0 (63)

The differential equation (62) can not be solved analytically, but approxi-
mate solutions were derived by Imai (/5). For a highly charged spherein a
very large spherical frec volume, the potential energy |e, Y| is expected
to be very much larger than the kinetic energy A7 in the neighborhood
of the sphere. Under such a condition, the approximate solution of
Eq. (62) was found to be written in the form

eoW/kT = —Insinh? (4 B'[r+b")+const (64)
in the neighborhood of the spherc, and in the form T
eoW/kT = —2B'|r (65)

in the region distant from the sphere. The apparent charge of the sphere
n*e, 1s related to the constant B by the equation

2B'|a = n*ey*leokT a = BP

From the above equations it was shown that the apparent charge n*
increases logarithmically with dilution and is insensitive to the increase
of the total number of charges of the sphere. At extremely large values of
P, the value of P tends to the order of In (1/¢). (n—n*) counter ions are
condensed in a thin layer on the surface of the sphere, the thickness of
which is very much smaller than the radius a, that is, its ratio to the radius

1s of the order of 1/BP. These results are very similar to those obtained
from the spherical random .coil macroion.



Chapter 4

VALENCE AND SIZE OF COUNTER IONS

I. EFFecT OF VALENCE OF COUNTER IONS

The valence of counter ions strongly influences thc counter ion con-
densation phenomenon. Let us consider a macroion having a total charge
— ne, and counter ions of charge +zey. The number of counter fons must
be n/z. The equation of the distribution equilibrium between counter ions
in the simple two phasc model 1s written:

In (1=5)/B = In ¢/(1 = ¢p) —zeodp /KT (66)

where f3, as before, is the apparent degree of dissociation, i.e., the ratio of
the apparent charge n*e, to the total charge ney. The number of free
counter ions is given by n#*/z. The only difference from Eq. (2) comes from
introduction of valence z in the potential energy difference. If the cylindrical
model 1s applied,

In (1=B)/B = In ¢(1 —¢$)+pzQ In (1/¢) (67)

It is found that for values of Q smaller than 1/z, the degree of dissoci-
ation slowly decreases with decreasing concentration ¢, and then increases,
tending to unity at zero concentration. For values of Q larger than 1/z,
however, the degree of dissociation slowly decreases with decreasing
concentration, tending to 1/zQ at zero concentration. Infinite dilution
can not result in complctec dissociation. With increasc of the total charge of
the macroion, the number of free counter ions first increases but then
levels off at O = 1/z. In the casc of divalent countcr 1ons, for example,
the critical value of Q corresponds to an average distance of about 14 A«

4]
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between (monovalent) charged groups on the macroion in water at room
tempcraturc. The number of frcc counter ions, n*/z, can not cxcced
n/z* Q, which is inversely proportional to the squarc of thc valence. With
higher valcnce of counter 10ns their condensation takes place at a lower
density of charges and a smaller number of free countcr ions. The critical
valuc of the chargc density is determincd by the balancc between the
entropy and energy diffecrence of bound and frec counter ions.

In the two-phase approximation, counter ion condcnsation is not
influecnced by thc valence of each chairged group on the macroion at a
given value of thec charge density as [ong as charged groups can be repre-
scnted by a uniform charge density along the cylinder. It should be noted,
however, that the radius of the ionic atomosphcre around each multi-
valent group is small so that reexamination of the applicability of the
approximation of uniform chargc density is rcquired.

[I. MixTURE OF COUNTER IONS OF DIFFERENT VALENCES

In a mixture of two kinds of counter ions which have different valence,
the characteristic phcnomenon is deduced from the rcquirement that
equilibrium must be established separately for each of the two kinds of
counter ions (/).

The number of counter ions of charge ze, pcr macroion is denotcd by
m and that of charge z'e, by m’; the total charge of each macroion must bc
equal to mzey,+m'z’e, = ne,. The degree of dissociation, f and f’, of the,
two kinds of counter ions, respectively, are given by the ratio of the number
of thesc 1ons inside and outside of v. The ratios ¢ and ¢’ defined by mz/n.
and m’z/n, respcctively, arc the proportions of the charges carried by the
two kinds of counter ions (¢g+q"=1). For the cylindrical model the
equilibrium conditions are then given by

In(1-B)/B = In ¢/(1—-P)+(Bg+P'q)zQ In (1/¢)
In (1-p)/B" = In ¢/(1 =)+ (Bg+Fq)z'Q In (1/) (68)

if the two-phase approximation is cmployed. For the spherical model, QO
is replaced by P and In (1/¢) is replaced by (1— ¢!/3).

When the valuc of Q is smaller than both 1/z and 1/z’, thc degrec of
dissociation of both counter ions tends to unity at zero volume con-
centration. When, however, Q becomes larger than either 1/z or 1/Z’,
counter ion condensation takes place even at zcro volumec concentration,
and thc condensation of two kinds of counter 1ons has correlation. Under
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thc assumption that z’ is larger than z, it 1s convenient to classify the value
of QO into thc following four catcgorics for analysis of the bchavior of
f and B’ at infinitc dilution. The degrce of dissociation tends to differcent
values dctermined by thc value of Q.

p— 1 and f’ — 1 for 0<Q <1/Z

B—1  and B - (1/g'0z)—(glg) for 1/z' < Q < gz
B—1 and ' =0 for 1/gz < O < 1/qgz
B—1/g0z and pB'—= 0 for 1l/gz < Q (69)

Thesc results are obtained from the equations listed under (63).

Now, suppose that the chargec of the macroion and the number of two
kinds of counter 1ons are increased at a constant ratio g or g’. Such a
situation can be rcalizcd experimentally by the addition to a solution of
polyacid of a mixture of alkali having two cations of different valencies.
With increasing Q, the dissociation of counter ions of thc larger valcnce
z' begins to be suppressed at O = 1/z’. This critical value of Q 1s independ-
ent of the ratio g of the two kinds of counter 1ons present. With further
increase of Q, the degree of dissociation ' of counter ions of higher
valence is decreascd and is evcntually fully suppressed at 0= 1/gz’. All
counter 1ons of higher valcnce are bound to thc macroion. At larger
valucs of Q all free counter 1ons are of lower valence. The dissociation of
counter ions of smaller valence begins to be suppressed at O = 1/gz. With
further incrcase of O, the degree of dissociation of thcse counter ions
dccreases in proportion to 1/Q. These features of 1on condensation are
shown 1n Figs. 13a and b.

The completc suppression of the dissociation of counter 1ons of higher
valence is a characteristic property of polyelectrolytes. The difference of the
valence is remarkably amplified.

Condensation of countcr 1ons of higher valence begins to take place
when the charge density QO excecds the critical value 1/z°. The degrce of
binding increases with increasing Q as if all of the counter ions prescnt in
thc solution were of the same valence z’. The apparent chargec number »*
of the macroion 1s equal to #[l — (1 —p)qg'] =n(g+p’q’) when the degrce
of dissociation of countcr ions of valence z’ i1s ' and that of counter ions
of valence z is equal to unity. As long as the value of (n*/n)Q or (g+'q")Q
is larger than 1/z’, the binding of counter ions of valence z’ must continue.
Thercfore, // must attain a value dctecrmined by (g+ f'q)Q = 1/z". The
condition of counter ion condensation is determined by the charge density
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FiG. 13. (a) Illustration of binding of countcr ions of diffcrent valences to a cylindrical
macroion. With the incrcase of thc charge density from (1) to (2), bound divalent
countcr ions increasc and only monovalent countcr ions recmain in the free statc.
(b) Reclations between the degrees of dissociation of counter ions 5, f° and thc charge
density Q in a mixturc of two kinds of counter ions having diffcrent valences z and z’
at infinite dilution. (¢) Rclations between the degree of dissociation of counter ions
of the larger valence z’ and the ratio of two kinds of counter ions at various valucs of the
chargc density Q. (d) Rclations between the osmotic pressurc and the ratio of two kinds
of countcr ions of diffcrent valences (z°/z = 2) at various values of thc charge density

Q; (N 0O0=12,2)0=1,3) 0=2,and 4) Q =4.
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of the macroion. It 1s independent of the number of free ions that are
prcsent. When Q is larger than 1/gZ’, the value of (#n*/n)Q can not be less
than }/z’ even at ' = 0. Therefore, the binding continues to increase until
all countcr 1ons of valence z° are lost from the outside of the macroion.
For this reason the degrec of dissociation of counter ions of valence Zz’
must be cqual to zero at Q larger than 1/gz’. During decrease of the
degree of dissociation of counter ions of higher valence from unity to
zero, all of the counter ions of lower valence are in the frec state. The
binding of these counter ions begins after O becomes larger than 1/gz.
Therefore, in the range of QO betwcen | /gz" and 1/gz, all counter ions of
higher valence are bound and all counter 1ons of lower valence are free.
Such a rangc of Q cxists independently of the magnitude of the difference
between thc valence of the two kinds of counter ions.

Figure 13¢ shows the rclation bctween the degree of dissociation and
the ratio of two kinds of countecr 1ons at a constant value of the charge
density of the macroion. At the beginning of the addition of countcr 1ons
of higher valence they arc all bound to the macroion until the apparcnt
charge density i1s dccrcased to a critical valuc for their condcnsation.
At this critical value, further addition begins to produce free counter ions
of larger valcnce.

Consider a macroion of high charge density (Q > 1) with monovalent
counter 1ons preserving electroneutrality. Some of the counter ions are
condcnsed in thce volume of the macroion. In this condition the charge
density is, of course, higher than the critical value for condensation of
countcr ions of higher valence. If, therefore, divalent counterions are added,
all of them are bound. Bound monovalent counter 1ons must be frecd and
the apparent charge is maintained at the critical value for condensation
of monovalent ions, thercby facilitating the exchange of bound counter
ions.

The activitics of two kinds of counter ions are given by /(1 —¢) and
pB’'[(1 —¢), respectively. The osmotic pressurc of this solution is propor-
tional to thc total concentration of frec counter 1ons:

(mp+m'f)[(1 = @) = nl(gB/2)+(q'B/z))/(1— ¢) (70)

Figurc 13d shows the dependence of the osmotic pressure on the ratio g
of two kinds of counter ions at various values of thc charge density of the
macroion.

The above analysis was made in the limit of extreme dilution by employ-
ing the two-phase approximation. It is impossible to obtain an exact
solution of the Poisson—Boltzmann equation for the mixture of counter .
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ions of different valence. Results in the preceding chapters suggest that
the counter ion distribution derived from the solution of thc Poisson-
Boltzmann equation 1s dilfercnt from that of the two-phase approxi-
mation. The differcnce is in the distribution outside of the volume of the
macroion. Comparison bctween the results of Egs. (12) and (61) shows
that the real distribution outsidc of the macroion is not uniform; that
is, the concentration of counter ions at the periphery of the free volume,
which is rclated to thc activity or the osmotic pressure, is considerably
smaller than thc avcrage conccntration outside of the macroion. The
ordinatc of Fig. 136 gives the dcgree of dissociation of counter ions which
is relatcd to the average concentration outside. The activity coeflicient of
counter 1ons must bc smaller than this ordinate.

Many experimental data support the theoretical rcsults obtained. It has
often becn observed that polyvalent counter ions are strongly and com-
pletely bound by macroions in polyclectrolyte solutions (/6). The replace-
ment of bound monovalent counter ions by polyvalent ones has been
frequently observed as well. Experimental rcsults similar to the theoretical
predictions developed in Fig. 134 have becn obtained in studies of the
osmotic pressure or the extensive force of polyclcctrolyte gels (17).
Previously such behaviors werc apt to be attributcd to a special interaction
between polyvalent counter jons and charged groups of the macroion,
for instance, the salt bridge. The present theory, howcver, indicates that
thesc phcnomena can occur without such a spcaal interaction. It s simply
duc to the coulomb potential of the macroion in which the cffect of the
valence of counter ions is greatly amplificd.

III. EFFeCT OF Size OF COUNTER JONS

Both thc chain of thec macroion and the counter 1on have finite sizes
from which other molccules or 1ons arc cxcluded. When their sizes are
large, the minimum distance between the counter ion and the chain must
be large, as shown in Fig. 14a. As a conscquence, thc avcrage potcntial
difference between bound and free counter 1ons 1s small. Morcover, the
space around thc chain of thc¢ macroion in which bound counter ions
are mobile 1s also small. To analyzc such cffects of thc size of countcr
ions, Kagawa and Gregor applicd thc Poisson-Boitzmann equation

1@9) with the boundary condition that counter ions can not cnter into the
cylindrical volume, the radius of which is given by thec sum of thc radius
of thc cylindrical macroion and that of spherical counter ions (/8). The
dcpendcence of the clectric potential of bound counter ions on their sizes
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obtaincd by this method was found to agree well with experimental results.
Hcre, however, we apply the simpler two-phase approximation and extend
the analysis to the mixture of countcr ions of diflerent sizes.

Instead of Eq. (1), the equilibrium is given by
(n—r*)/v* = n*N/(V — Nv) exp (—e,0¥/kT) (71)

where v* is the effective volume of the potential trough or valley in which
bound counter ions are mobile. This volume must be distinguished from
the total volume v of the potcntial trough made by each macroion. In
other words, the cflective volume »* 1s given by subtracting from v the
voiume of the chain skeleton (including charged groups) from which
bound 1ons arc excludcd. (This excluded volume incrcascs with increasing
numbecr of bound countcr ions.) The potential difference oy was previously
given by —eod{i/kT =2[Q In (R/a) for a cylindrical macroion in which the
quantity a was dcfincd as the radius of the cylindrical volume apparently
occupicd by the macroion. However, the quantity a in the above equation
must be modified to give thec correct valuc ofthe average potential of bound
counter ions. It can have different values for diffcrent chains and counter
ions. When the chain skelcton has a large average radius, the distribution
of charged groups in the cylinder is diluted and a larger value must be
uscd for a in the above cxpression of the potential difference. The large
radius of. counter 1ons has a similar effect. Thus, by introducing the.
effective radius a* in the average potential, the following equation is
obtained:

In(1-0)/f =1n ¢/(1— )+ SO In (1/¢)+1n (v*/v)+BQ In (a/a*)
(72)

The new terms In (v*/v) and In (a/a*) are independent of thc apparcnt
volume conccntration ¢(= Ny/V) and thc charge density Q, and are

dctermincd by the radii of the chain skeleton and the countcr ion, or by
thc volumes cxcluded 1n their intcraction.

In the case of spherical macroions, the samec correction In (v*/v) must
be introduccd, but there sccms to be no reason for the above type of
correction in the potential difference.

According to Eq. (72), the size has no influcnce at extreme dilution or
in the limit of ¢ =+ 0. Thc dcgree of dissociation tends to unity for Q
smaller than unity and tends to 1/Q for Q larger than unity. The two
correction terms In (v*/v) and In (a/a*) both bccome more negative for
larger radii of counter 1ons or of the chain skcleton and at finitc con-
centrations the dcgrec of dissociation increases with incrcasing radii.
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Now, let us consider a mixture of two kinds of counter ions of the same

valence and dilfercnt radii. The equations for the distribution equilibrium
of thesc counter ions are given by

In (1—=p)/B = In ¢/(1 —¢)+In (0*/v)+(Bg+p'q")OlIn (1/¢)
| + In (a/a*))
In(1—=p")/p = In ¢/(1—¢)+In (* [v)+(Bg+B'q")QlIn (1/$)

+1n (a/a*")]
(73)

where g = 1 —q’ is the fraction of one kind of countcr ions. The correction

terms due to v*, a* and v*’, a*’ must bc distinguished for the two kinds
of ions. In very dilute systcms and for large values of Q

Ba+pq = Q7! (74)

and

In(1—-B)/B—In(1-p)/f" = In 4 (75)

where In A4 is the diffcrence in In (0*/v)+In (a/a*) between two kinds of
counter ions, being positive when the counter ion of fraction g has a
smaller radius than that of fraction q’, (g+q’=1). As a consequence, the
degree of dissociation 8 for the smaller 1on-radius is aiways less than f’
for the larger 1on-radius. The relation of the degree of dissociation f and
p’ to the charge density QO and the fraction g has been calculated according
to Eqgs. (74) and (75) and the results are shown in Fig. 146.

For Q smaller than or equal to unity, both 8 and ' are equal to unity
at ¢ =0 over the whole range of gq. For Q larger than unity, counter 1on
condensation takes place. Equation (74) shows that the apparent charge
density of the macroion is limited at Q = 1, independent of the ratio g and
the size or the sizc difference of counter ions, and that the total number of
two kinds of frec counter ions or the osmotic cocfficient g at infinite
dilution is kept constant for Q= I, indepcndent of the size diffcrence and
the ratio g. Howcver, thc numbecer of each kind of frece counter ions changes
with ¢ and Q. The value of fQ which is proportional to thec activity of
counter ions of the smaller radius increascs slowly with incrcasing fraction

q, tending to Q' at g= 1. The initial gradicnt of the increase of the
activity is given by

[2(B9)/0g)gv0 = Q7 /[A— Q™ (A—1)] (76)
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In the example presented, the constant A4 is larger than unity and the
denominator of the right-hand sidc of the cquation is larger than unity.
The initial gradicnt (6(9)/0g),.. ¢ is thus larger than Q ™%, which is the value

0-

1.0

(b)

Fi1G. 14. (a) Illustration of binding of counter tons of diflfcrent sizes to a cylindrical
macroioii. () Rclations between the degrees of dissociation of counter ions £, f° and
the ratio g of two kinds of counter ions in a mixturc of counter ions of diflcrent sizcs,
at various values of thc charge density Q; and rclations between the numbers of free
countcr ions of different sizes fQq and £°’Q(l —¢q) and the ratio of two kinds of counter
ions at various valucs of the charge density Q. The value of the constant In 4 which

rcprescnts the effect of the size diflerence was put cqual to In 4.

of fq at g = 1. When countcr 1ons of smaller size arc added to a solution
of macroions containing counter ions of larger size, the activity of the
added 1ons becomes lower than that expected 1f no correlation between the

RO
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two kinds of countcr 1ons is assumed. Bound counter ions of larger size are
prefercntially rcplaced by counter ions of smaller size. This selcctive
replacement by smaller 1ons 1s enhanced by larger values of the charge
density Q. The selective binding of counter 1ons, howevcer, is not as sensi-
tive to counter ion sizc as it is to counter 1on valence.

At finite concentrations the degree of dissociation of two kinds of counter
jons must bc obtaincd dircctly from Eq. (73). Although the calculation is
complicated, results are similar to thosc obtained for the infinite dilution
casc described above.

Summarizing thc above analysis, we havce learncd that the critical value
of thc charge dcnsity for condcnsation docs not depend on the size, but
thc composition of bound counter 1ons depends on the size. In other words,
the osmotic pressure is not affccted by the sizc diff crence, while the activity
coefficient of each kind of counter ions depends on the size. Such behavior
of counter ions of diffcrent sizcs (for instance, the sclective replacement by
counter ions of smaller sizec), has becen observed in thermodynamic and
transfcrence measurcments (/9).

In thc above trcatment the effect of the sizec on the intcraction between
countecr ions was neglected. A limit to the mutual approach of counter 1ons
mustbctakenintoconsideration at high concentrations of counterionsinthe
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