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Theoretical analyses were made on the size distribution of fubular or
helical polymers of globular protein molecules in the reversible poly-
merization. In the true final equilibrium, polymerization approximates
to a kind of crystallization and the average degree of polymerization
becomes very large; nevertheless, the size distribution is of a simple
exponential type, the same as found in macromolecular chemistry (Flory,
1953). Even when spontaneous nucleation is inhibited and the number
of polymers is given, the final distribution must tend towards the
exponential type. Free energy due to deviation of the size distribution
from the true equilibrium was calculated. It is very much smaller than
the main free energy coming from the monomer-polymer equilibrium.

Kinctics showed that polymerization having characteristics of crys-
tallization wusuaily consists of three stages—nucleation, growth and
redistribution of polymer size. In the first and second stages where the
rate of depolymerization is negligible, the concentration of monomers
approaches closely to the equilibrium value. In the third stage, where
both polymerization and depolymerization take place nearly at the same
rate, the size distribution is slowly transformed into the exponential type.
The relaxation time for such redistribution was estimated as a function of
rate constants and the average degree of polymerization under various
conditions.

All of the theoretical results are quantitatively in good agreement with
experimental data on polymerization of globular proteins such as actin and
flagellin. Brief analyses were added on the size distribution of two-
dimensional membraneous polymers and distorted polymers.

1. Introduction

In biological systems there are many examples of polymers of globular
protein molecules. In the simplest case polymers are composed of only
one kind of protein molecules, structural units. Some of them have been
proved to be reversibly reconstituted in vitro. The polymerization is a
self-assembly process (Casper & Klug, 1962; Casper, 1963). Helical or
tubular polymers of tobacco mosaic virus protein (Casper & Klug, 1962;
Casper, 1963), bacterial flagellin (Asakura, Eguchi & lino, 1964, 1966),
133
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muscle protein actin (Straub, 1942; Hayashi & Rosenbluth, 1960; Kasai,
Nakano & Qosawa, 1965), mitotic spindle protein (Stephens, 1968), etc,,
are those examples. The fundamental structure of reconstituted polymers
is the same as found in vivo. However, there is an additional point to be
noted in the comparison between the structures i vive and in vitro; that is
the size and shape or the size distribution of polymers. Bacterial flagella in
a cell grow up to the same definite length; actin filaments in a muscle cell
also have a uniform length. How is the size of polymers distributed in the
in vitro polymerization? Is any special mechanism needed to regulate the
size in vive? The determination of this level of the structure, which in a
sense corresponds to size and habit of inorganic crystals, is often very
important for biological systems to exhibit their functions.

In this paper statistical thermodynamic analysis is presented on the size
distribution of protein polymers in the reversible polymerization under
various conditions, and on some related problems. The analysis is concerned
mainly with helical or tubular polymers which show essentially one-dimen-
sional growth and in addition, with distorted polymers and membraneous
or two-dimensional polymers. A part of the present theory is simple trans-
lation of the polymerization theory of linear high polymers developed in
the field of macromolecular chemistry (for example, Flory, 1953). Never-
theless, since experimental data have begun to be accumulated on poly-
merization of globular protein molecules, it is valuable to point out that in
some respects it has characters similar to the synthesis of linear high
polymers.

2. True Equilibrium

For the convenience of later calculations some results in previous papers
on helical polymerization of protein molecules are described here (Oosawa,
Asakura & Qoi, 1960; Qosawa & Kasai, 1962; Oosawa & Higashi, 1967).
Let us consider a solution of globular protein molecules in the polymerization
equilibrium. The number concentration of polymers composed of f monomers
(i-mers) is denoted by ¢, {the number of polymers/number of solvent mole-
cules). The number concentration of dispersed monomers is denoted by ¢,
and the total number concentration of monomers including those in polymers
by ¢,. If almost all monomers in a polymer are equivalent to each other, the
total interaction free energy of monomers in an i~mer is approximately
expressed as:

E =—ig+d (1)
where —e¢ is the interaction free energy of a monomer added to the end of
an i—1 mer to form an i-mer and assumed to be independent of 7 for suffi-
ciently large i’s. In the case of helical or tubular polymers, the correction
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term & comes from monomers at the ends of polymers which have smaller
numbers of neighbouring monomers.

According to the mass action law, the equilibrium number concentration
of i-mers is given by

¢c; = ¢\ exp(—EJkT)

= AK "} (Kc,) @
where
K =exple/kT) and A =exp((e—-d)/kT)

For polymers composed of a small number of monomers (smaller than the
polymer nucleus), the above expression is not applicable, Instead of (2) it
is better to apply

=K\, fori>ig (2
where /, means the number of monomers in the nucleus. However, the
contribution of such small polymers to the total number of polymers is
very small when the polymerization takes place as a kind of crystallization
(Oosawa & Kasai, 1962).

The total number concentration of polymers m and the total number
concentration of monomers participating in polymers c, are given by the
summation ¥ ¢; and ¥ ic;, respectively; where the summation is performed
from i, to oo, or approximately the summation may be extended from
unity to ¢o with ¢; expressed in form (2) for all i’s if the value of constant A
is very much smaller than unity. Thus, we have the approximate formulae:

m = Ac;/(1—-Kcy) 3)
Cp=Co—C = Acyf(1—Kcy)?. @
In (4), the monomer concentration ¢; can be solved as a function of 4, K

and ¢, .

As described in previous papers (Oosawa & Kasai, 1962; Oosawa &
Higashi, 1967), in the case of helical or tubular polymers where each monomer
interacts with many neighboring monomers, the value of 4 is very much
smaller than unity. Then, the polymerization can be regarded, approxi-
mately, as a kind of crystallization. When the total concentration ¢, is
increased, polymers are formed only above the critical concentration
determined by the condition ¢y K = 1. Above this concentration, polymers
coexist with monomers of a constant concentration ¢; = K. [A constant
concentration of small polymers may also coexist (Oosawa & Kasai, 1962).]
Strictly speaking, however, ¢, K is a little smaller than unity and approaches
unity with increasing total concentration ¢, (see Fig. I).

The equation (2) gives the number concentration of i-mers as 2 function
of j, the size. It has a form A° or exp (—ai), (x =—In 4); where (= Key)
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is a little smaller than unity or « is a small positive number. Therefore, the
number concentration exponentially decreases with #, as shown in Fig. 2.
This distribution is the same as discussed by Flory in the high polymer
theory where ¢, K corresponds to the probability parameter (Flory, 1953).
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Fic. 1. Helical or tubular polvmerization as a kind of condensation or crystallization.
The abscissa is the total concentration of protein molecules (cy) and the ordinate gives

the total amount of polymers (c,), the concentration of dispersed monomers {¢;) and
the average length of polymers ({£)).
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FIa. 2. The size distribution of helical and tubular polymers in the true eqguilibrium at
different fotal amounts of polymers (c,) and a constant sclvent condition. Numbers of
small polymers are little changed but numbers of large polymers are greatly increased by
the increase of ¢,. The average degree of polymerization (J) is proportional to ¢y,

The average degree of polymerization (i) is given by _
iy = ¢,fm = 1/{(1—Ke,) = (c,/c; A2 &)
In Fig. 2, the distribution is compared at different tofzl amounts of poly-
mers ¢,. The average square deviation of the degree of polymerization (5i2>
defined as {#?) —{i)? is given by
oy = Kiy? ®
if {i> » 1. The broad exponential distribution decreasing with the size is not
inconsistent with the character of polymerization as crystallization, because,
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SIZE DISTRIBUTION OF PROTEIN POLYMERS 73

on account of a very small value of 4, the average size {i) given by (5)
suddenly becomes very large above the critical concentration (Oosawa &
Kasai, 1962; Qosawa & Higashi, 1967). :

The experimental analysis to be compared with these results has been
carried out in the polymerization of muscle protein actin (Maruyama &
Kawamura, 1967). The size distribution of actin polymers (F-actin) in the
equilibrium was found by electronmicroscopy to be expressed just in the
form exp (—ai). The relation {(8i%) = (i)* was also confirmed. In spite
of such a broad distribution, the equilibrium between monomers (G-actin)
and polymers (F-actin) is well described as a kind of condensation or
crystallization (Oosawa, Asakura, Hotta, Imai & Ooi, 1959; Kasai, Asakura
& Qosawa, 1962).

3. Equilibrium at a Fixed Number of Polymers

The true equilibrium state was treated in the above section. In practice,
there are some difficulties to establish such a state. In most cases where 4
is very much smaller than unity, the nucleation process is rate limiting.
If the spontaneous nucleation is practically inhibited, the number of polymers
formed is determined by the number of nuclei or seeds added. The in virro
polymerization of bacterial flagellin into flagella gave an example of such a
case (Asakura et al., 1964). Here, the equilibrium is analysed under the
limitation that the total number of polymers is fixed.

In this case also, the mass action law can give the size distribution. How-
ever, in order to see the effect of the size distribution on the free energy, we
start from the total free energy of a solution of monomers and polymers ¥
expressed as (e.g. Landau & Lifschitz, 1951);

F=nkT(} ¢,Inclet+y c(—ie+8)/kT+ ciIncyfe) )]

(ns is the total number of solvent molecules). Minimization of this free
energy with respect to the distribution ¢; and ¢/'s under the condition that

Eci= m (8)

Z fey=co—¢y €))
gives the equilibrium. (The same remarks as in the previous case must be
made on the range of summation in these equations.) The solution of
minimization is given by

and

= adK (e, K} §1)]
where a and ¢, are determined from (8) and (9). The previous case corre-
sponds to the case a = 1. It is easily found that similarly to the previous
case, ¢; is nearly equal to ¢, below the critical concentration given by
co K = 1 and is kept nearly constant at K~ ! above this critical concentration.
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The size distribution (10) has the same form as (2); the number concentra- ( md

tion of i-mers simply decreases with #, as shown in Fig. 3; where the disti- | ung
bution is compared at different amounts of added nuclei or m. The average tha
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Fic. 3. The size distribution of helical and tubular polymers in the equilibrium at [ -
different fixed values of the total number of polymers (m) and 2 constant amount of o

polymers {c,). The number of smallest polymers ¢, is proportional to »* and the average
degree of polymerization (i) is proportional to 1/m. Therefore, numbers of small polymers wl
are decreased but numbers of very large polymers are increased by the decrease of m.

value of 4, (i), is given by a similar relation to (5). The only difference is L
that in the previous case, m, {§> and ¢; are determined by 4, X and c,,
while in the present case, m is given independently, and (i) and ¢, are l pr

determined by 4, K, ¢, and m. Let us distinguish the value of m, {i>, ¢, th

and ¢, in the true equilibrium by writing as m°, (i, ¢? and ). Even when = m

the value of m is fixed at a value different from m®, the polymerization takes : s
place as a kind of crystallization, and the critical concentration ¢, is nearly k

equal to ¢J. It is easily proved that at the same value of ¢, above the critical tl
concentration, there is a small difference between ¢; and ¢? given approxi- |
mately by (

(cx—cD)fe] = 1/<i> —1/()° g

= m®fc)—m/c,. (11) 1;

The monomer concentration co-existing with polymers increases slightly with | W

decreasing number of polymers. However, the relative difference is negligible
since both {i}° and (i) are very much larger than unity in ordinary cases.
Recently, the polymerization equilibrium of actin was investigated under \
sonic vibration (Nakaoka & Kasai, 1969). The vibration breaks long actin
polymers into short ones. Nevertheless, the presence of the critical actin
concentration was confirmed; its value is nearly equal to that without sonic L
vibration. In the case of bacterial flagellin also, the polymerization equili- r
brium was found within a limited range of temperature, where both poly- ‘
merization and depolymerization take place, and the critical concentration was {

- e e, ke A = D T
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SIZE DISTRIBUTION OF PROTEIN POLYMERS 75

independent of the number of added nuclei (Gerber, Asakura & Oosawa,
unpublished). This independence was considered to be one of the evidences
that the polymerization can be regarded as crystallization.

The size distribution of actin polymers under sopic vibration was not
very different from the exponential one (Kawamura & Maruyama, 1969).
On the other hand, flagellin polymers in the equilibrium have a size distribution
somewhat different from (10). This problem is discussed later again.

4, Free Energy of the Size Distribution

The free energy in the equilibrium at a fixed number of polymers F must
be larger than that in the true equilibrium F° This difference of the free
energy must be small because, as shown in the above section, the equilibrium
between monomers and polymers is little changed by the change in the
number of polymers. Actually, the excess free energy due to the fixation of
the number of polymers can be calculated by putting the result (10) into (7),
where a = 1 in the true equilibrium. Then we have:

F—F% = 2nkT(m In (m{m®)—=(m—m). (12)
When m is not equal to m®, F is always larger than F° That is, F has a
minimum at m = m®, Thus, the excess free energy was expressed as a
function of m only. The change in the number concentration of polymers
produces the change of the free energy of the order of nymkT, Since usually
the number concentration of polymers m is very much smaller than the
number concentration of monomers, the excess free energy is very much
smaller than F or F° itself.

From (12), the average square deviation of the number of polymers in
the true equilibrium is found to be given by:

(m*H[Kmy? = (m™y— {myH){m)?
= 1/nym. (13)
Therefore, the relative deviation of the number of polymers is very much
larger than the relative deviation of the number of dispersed monomers,
which is of the order of 1/ny¢,, under ordinary conditions.

At a fixed number of polymers, the size distribution at the final state must
be of type (10). In actual processes, however, it often takes too long time to
establish such a distribution. As shown later, the equilibrium between
monomers and polymers is attained much faster and the Poisson distribution
of the polymer size is formed tentatively but rather stably. The free energy
in this distribution must be a little higher than that in the final distribution
(10). This excess free energy due to the size distribution difference at the
same values of m and ¢, or (i) is estimated to be approximately of the
order of nomkT In (i).
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Thus, “the free energy of the size distribution of polymers” is very small.
This is one of the main causes of the slowing down phenomenon in the
distribution regulation.

5. Kinetics of the Size Distribution

The helical or tubular polymerization consists of two processes, nucleation
and growth. In such a case, from the other standpoint, the polymerization
equilibrium is established in two steps; the number concentration of dispersed
monomers approaches equilibrium, and then the number and size distribution
of polymers attain equilibrium. This situation is analysed below. This kind
of problem has been treated extensively in the field of macromolecular
chemistry (e.g. Miyake & Stochmayer, 1965). Here, the kinctics of size
distribution is treated by a simplest method of calculation.

The number concentrations of dispersed monomers and polymers are
all functions of time ¢. The change of concentration of j-mers with time due
to the growth of polymers is assumed to be given by the equation (Oosawa &
Kasai, 1962; Oosawa & Higashi, 1967):

defdt =kyciemg—koci—kycie+kociyqs i> 10 (14)
where k. and k_ are kinetic constants for binding of a monomer to the end
of a polymer and for removing a monomer from the end of a polymer,
respectively; they are assumed to be independent of 7 It is also assumed
that neither fragmentation nor association of polymers takes place. On the
other hand, for the change of the number concentration of nuclei composed
of i, monomers, we put

C]C,-D/dt =—kic, Cr‘o+k— Ciat1 +k*c{°, (15)
where the last term of the right-hand side gives the rate of production of
nuclei, which was assumed to be proportional to the jpth power of the
monomer concentration,

As an extreme case, suppose that spontaneous nucleation is practically
inhibited, i.e. k* is negligible, and a definite number of nuclei is added to a
solution of monomers to induce polymerization. Polymerization takes
place only through addition of monomers to these pre-existing nuclei which
may be made of other substances. Then, the total number of polymers is
kept constant. Denoting the number concentration of polymers composed
of i monomers added to nuclei by ¢f we have equations similar to (14) for
all i’s ( = 1) and an equation similar to (15) (without the last term) giving
the change of the number concentration of nuclei having no added
monomers cy. Summing up these equations for de*/dr (i = 0), we can find

d Y icf/dt = —dcyfdt = de,/dt

=(k,e,—kIm+k._c§ (16)

{
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and

d T2 dt =2k ¢,k )y +(kscy ¥k Im=k_cd (1D
where kinetic constants for association and dissociation between monomers
and nuclei were assumed to be equal to those between monomers and long
polymers.

The first term of the right-hand side of (16) is very much larger than the
second term, except at the beginning of polymerization where cf is nearly
equal to # and at the final state of polymerization. Therefore, the final
equilibrium of the monomer concentration is given approximately by the
condition that k, ¢, —k_ = O or ¢, = k_/k, (= K1), although rigorously,
¢, must be a little smaller than k_/k,, as expected from (16). This agrees
with the result in the previous equilibrium theory.

In order to see qualitatively the size distribution during polymerization,
calculate the change of the mean square deviation of the polymerization
degree with time. From (16) and (17} it is readily derived that

dfdi(<i*y = {id?) = d{idfd+2k (1= (cg/m){1 +<D)- (18)

This is rewritten as:
ity —Cid? = iy +2k- [ (L= (e} m)(14<D)) dt. (19)
0

Usually, except at the final stage of polymerization, the rate of polymeriza-
tion k, ¢, is very much faster than that of the reverse reaction k_. Then
the second term of (19) can be neglected and the relation:

By =N =@ =D (20)
which is satisfied by the Poisson distribution, holds during polymerization,
as shown in Fig. 4. The distribution has a sharp maximum and the relative

In ¢j

iz

Fic. 4. A Poisson-type size distribution and a simple exponential type size distribution
are compared at the same values of the average size (i and the total number of
polymers m. The ordinate gives the logarithm of ghc numl.)er. of i-mers. At ¥ = (i), ¢ is
of the order of mi¢i'" for the Poisson distribution and it is of the order of m{<i> for

the exponential one.
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deviation becomes smaller and smaller with polymerization, in propottion
te 1/¢iy 2. Thus, the condition k, ¢, > k_ lead to the Poisson distribution.
The integration of the equation (16), if the second term k_ cj can be neglected,
shows that the time of approach of the concentration of dispersed monomers
to the final value, t,, is of the order of 1/k . nz or:

fa (ﬁ) . 1)

k_\e,

Now, in the present case where the polymerization takes place as the
addition of monomers to pre-existing seeds only, the final equilibrium
distribution must satisfy the relation

(Bi%y =2+ LD
independently of the number of seeds m. Therefore, the second term of the
right-hand side of (19) must become:

2k [ (1~ (e3/m)(L+<) dt = ™ (22)

It is easily confirmed that the integrand becomes zero at the equilibrium
given by the distribution (10). Soon after the polymerization begins, the
ratio ¢3fm becomes very much smaller than unity (smaller than 1/<7>) and
during polymerization the integrand is nearly unity except at the final stage.
As the size distribution finally changes from the Poisson type to the simple
exponential type, the integrand tends to zero. Therefore, the time of approach
of the distribution to the final equilibrium one, t,, is of the same order as
the time of approach of the integrand from unity to zero. From the above
equation (22), this time 7, is given approximately by
T, (D% 23)
As mentioned above, before the redistribution of the polymer size, the
concentration of dispersed monomers is already nearly equal to the final
equilibrium one. Then, the rate of polymerization reaction k¢4 is nearly
equal to the rate of the reverse reaction k.. Consequently, the change of
the length of each polymer takes place just like a diffusion process. Equation
(23) is interpreted as giving the time of diffusion necessary for the distance (i
with the diffusion constant k_ or k, ¢,. A result equivalent to (23) has been
derived already in the theory of reversible polymerization of “living” high
polymers (Miyake & Stockmayer, 1965).
If the number of polymers m is just equal to the number 71, in the true
equilibrium, the average degree of polymerization (i) is given by (5). Conse-
quently, the time 1, is rewritten

Ty =Lk =k, cy). (237
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This is interpreted as giving the time necessary for a reaction to proceed
by the distance (i) with the rate constant k_ —k, ¢,

Comparing the two relaxation times 7, and z,, it is found that

Ttz = (e1/e ) (1) (24)
Since i) is very much larger than unity, t, is very much larger than 7.
In Fig. 4, two types of distribution are compared.

For example, in the case of actin at a certain condition of temperature,
pH and salt concentration, the time of depolymerization ({i)/k_) was found
to be of the order of five minutes for polymers of the average length of 1,
which corresponds to (i) = 400 (Kasai, 1969). Then, the time of redistri-
bution of the polymer size to the equilibrium is expected to be of the order
of five minutes x 400 ~ 30 hours. This is reasonable in comparison with
experimental data (Kawamura & Maruyama, 1969). In the case of bacterial
flagellin polymerizing on seeds added, the rate of depolymerization k_ is
very small, except at the intermediate temperature near 40°C or at higher
temperature where the polymerization can not happen. The average degree
of polymerization is very large, more than thousands. Thus, the time for
redistribution is of the order of several weeks or months. The Poisson
distribution once formed during polymerization cannot be corrected practi-
cally (Asakura ef al., 1964). In such a case, polymers of the uniform length
are stably formed, whose length is determined by the total numbers of
nuclei and monomers.

6. Spontaneous Nucleation and Growth

Let us return to the case where nuclei are formed spontaneously by inter-
action among i, monomers and the rate of the nucleus formation is propor-
tional to the i,th power of the monomer concentration as shown in (15).
Equations (14) and (15), if simplified under the condition that the depoly-
merization rate k_ is negligible, can be readily integrated (Oosawa & Kasai,
1962; Wakabayashi, Hotani & Asakura, 1969). Here only the size distribu-
tion of polymers is discussed at the final stage of polymerization which
proceeded without depolymerization reaction.

According to equations (14) and (15), the rate of increase of the number
of polymers is given by

d Y ¢fdt =dm/dt = k*cb. (25)
Since the rate of growth of polymers is expressed, from (14), by
‘_dclldt = dZiC‘]’dt = k+ c,m, - (26)

a nucleus produced at time ¢ has the average degree of polymerization
given by
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i () = j k.t dt 2n

after full polymerization. Therefore, the number of i-mers at the final stage
of polymerization is given by

ey = (Am{dDj(di (1) /dr) = (K*k,)ep™! (28)
where ¢, in the right-hand side is the monomer concentration at time ¢
which is connected with the size i by equation (27). Equation (28) means that
the final concentration of i-mers ¢; decreases with i because ¢; decreases
with time z. That is, the size distribution of polymers has a long tail in the
side of short lengths.

By integrating (25) and (26) and using the result (28), . ¢;, 2, 7c; and
Y i%¢; can be calculated as functions of kinetic constants and the monomer
conceniration . Finally it is found that the average length (i) is propor-
tional to ¢f %/ and the relative mean square deviation of the length after
full polymerization is approximately given by: :

(OiTH){iD? = 4G(ig)fio—1 29
where

G= J'(cosh x)""(1—(cosh x)"™) dx, m = 2fi;.
0

The right-hand side of (29) is about 0-026 for i, = 4 and about 0-017 for
io = 8. It is remarkable that the relative deviation is independent of kinetic
constants and monomer concentration, and determined by the number 7.

The time course of spontaneous polymerization of actin and flagellin
is well understood by the present scheme (Kasai, 1969). However, the
analysis of the final size distribution showed that even in the case of flagellin
the number concentration ¢; decreases with increasing i (Wakabayashi,
Hotani & Asakura, 1969). This probably suggests that the depolymerization
rate k_ is not negligible when spontaneous polymerization takes place.
If so, the distribution must become of type (2).

7. Fragmentation and Association of Polymers

In the previous section it was assumed that approach of the size distribu-
tion to the equilibrium takes place only through polymerization and
depolymerization of monomers at the ends of polymers. The size distribution,
however, may be changed also through fragmentation and association of
polymers. Here, a rough estimation of the time necessary for such process
is made. For the change of the number of polymers it may be assumed that

AT efde = k(Lic)~ki (T2 (30)
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where k% and k_ are rate constants for association and fragmentation of
polymers. If the concentration of monomers co-existing with polymers were
in equilibrium in advance, it is found by integration of (30) that the relaxation
time for approach of the total number of polymers to equilibrium is of the
order of 1/2k% k(Y ic)''?, which is rewritten as 1/2k”{i). The same
order of time is also estimated for the process of fragmentation if a long
polymer is broken at random with rate constant k' into fragments of the
average length {i). Random fragmentation produces the size distribution
of type (2). Therefore, the time 1/2k” (i) is considered to give the relaxation
time t, for approach of the size distribution and the total number of polymers
to equilibrium through fragmentation and association of polymers.

This relaxation time 73 must be compared with the time 7, and t,. The
ratios are given by

Tfts = (k2 k_)(eyfe)<iD? = (K fky) (31a)
Tofts = (KL 2)<KD3 = (K'y [k ) el e ) <> (31b)

where the relations (k_/k_) = A(K’, [k,) and {i} = (c,fc; A)'/* were used.

In the case of actin, the rate of association of short polymers k', was
estimated by following the viscosity increase after stopping somic vibration
which produced short polymers (Nakaoka & Kasai, 1969). The ratio (k',/k.)
is considered to be of the order of 1/10 to 1/100. In the case of flagellin,
end-to-end association of short polymers to complete long polymers was
never observed (Asakura, Eguchi & Tino, 1968). Equation (31b) shows that
comparison between the ratio (k’, /k,) and the average length {i} determines
which process is more important, fragmentation and association of polymers
or depolymerization and polymerization of monomers at the ends of poly-
mers, for establishing the final equilibrium size distribution. In actin, frag-
mentation and association of polymers probably makes important contri-
bution, while in flagellin it can hardly take place.

8. Two-dimensional Polymers

In the case of two-dimensional or membraneous polymers, a different
situation appears concerning the size distribution of polymers. For compari-
son with tubular polymers, brief analyses are added here, although the
results are similar to those pointed out in three-dimensional condensation
(for example, Frenkel, 1946; Qosawa, 1956). For sufficiently large two-
dimensional polymers, the total interaction free energy of monomers in a
polymer composed of { monomers is given approximately by:

E = —ic+\i- 544 (32)
Then, the number concentration of i-mers in the true equilibrium is given by:
= bBY(K¢,) (33)

T.B. 6
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where b = exp(—6'/kT), B = exp(—38/kT) and K = exp(¢/kT). In general
BBYi is very much smaller than unity. Similarly to the previous case, the
polymer concentration is negligible before the total concentration approaches
K~ very closely. In the present case, however, ¢, can become just equal
to K ~1. Even when Ke¢; = 1, ¢; decreases with 7 and the total concentration
of monomers in polymers ¢, remains finite, as shown by integration:

¢, = Yic,=bY iBi=b j x exp{— 8+ x/kT) dx

= ¢; b(kT/6Y*(12+12z + 622 +223) exp(--2) (34a)

where z = (8/kT)i,. This equation with the condition
eo =Cy+e, (34b)
determines the concentrations of dispersed monomers ¢; and polymers ¢,
just below the critical point. If iy = 10, §/kT =3 and b = 1, equation {34a)
gives ¢,/e; = 1073, If the total concentration ¢, exceeds the value given by
(34b) with (34a), the condition (34b) cannot be satisfied with any values of
¢, in the range K¢, < 1. The value of Ke, must exceed unity. However, if
it exceeds unity, the expression of ¢; of (33) deverges with increasing /. This
means that macroscopic polymers begin to appear at ¢, determined by
(34b) with (34a). With further increase of c,, macroscopic polymers increase
and grow, while the concentration of dispersed monomers is kept constant
at K~ Polymers of the intermediate size do not exist stably, except 2 small
amount given by (34a) (Fig. 5). Thus, the two-dimensional polymerization

&

1 Macro

F1G. 5. The size distribution of membraneous or two-dimensicnal polymers above the
critical condition. The total amount of small polymers coexisting with macroscopic
peolymers is independent of the amount of macroscopic polymers. In ordinary conditions,
it is very much smaller than the amount of dispersed monomers, according to (34a).

is a true crystallization phenomenon, as a natural consequence. In such a
case, it is difficult to make reasonable estimation on the free energy of the
size and shape distribution of polymers.
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9. Distorted Polymers

When globular macromolecules are polymerized into a regular crystal
structure, each pair of neighbouring monomers cannot always be arranged
in a way most favourable to the interaction between them, It is accidental
that neighbouring three monomers in a large regular polymer occupy the
same relative positions as three monomers in a trimer separated from the
polymer. If the relative positions are different, the inter-monomer structure in
a polymer depends on its size. Some stress due to distortion is buried in the
polymer structure. Such distortion, which is generally expected in polymers
of globular protein molecules having no symmetry in themselves (Takahashi,
1966), has influences on the equilibrium size distribution of polymers. A
simple example is described below.

Let us consider a polymer of a curved band-like or ribbon-like structure,
as shown in Fig. 6. It is formed by piling strands composed of / monomers.

/ 7 'HJDV, %
'/\7@5 QDD% 8

FiaG. 6. A part of a curved band-like polymer.

X0

The most stable position of two neighbouring monomers in a single strand
makes a definite angle 8,. If many strands are piled on with angle 0 all fixed
at 0,, the distance x between neighbouring monomers in these strands
can not be maintained at the most stable distance x, in an independent
strand. The structure of the polymer is determined by the balance between
the interaction free energy between neighbouring strands and the distortion
free energy of strands. Suppose an i-mer composed of k strands (i = /) and
assume that the angle 0 is common to ali pairs of neighbouring monomers
in all strands and consequently, the distance x; in the jth strand is a linear
function of j; that is, x; = x®+jéx (j = —k/2,..., +k/2). The deviation
8x is proportional to the angle 0; that is, §x = 0y, where y is the thickness of
the strand.

The excess free energy of the i-mer due to deviation of & and x; from 6,
and x, contains a term proportional to /,

I ZJ: (x;—x0)* = IZ ((x®—x0)+j 8x)%.
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For large values of k, this term increases in proportion to ik*6%. At the
free energy minimum of the i-mer, the angle 0 must tend to zero with
increasing k. It is easily proved that for sufficiently large values of k, the angle
6 is inversely proportional to k2. Generally speaking, the deviation from
equivalence is inversely proportional to the square of the thickness
(Takahashi, 1966).

In the stable structure the excess free energy of the i-mer depends on
both i and k. The critical concentration for the growth of polymers of
thickness k is a function of k. In some cases, the critical concentration has
a minimum at a certain value of k; then, polymers of this thickness are
formed, and those of other thickness cannot be formed even at high total
concentrations of monomers, ‘

As another example, we can consider membraneous polymers in which
monomers are arranged in a square Jattice having some curvatures in two
directions. The curvatures are determined by the balance between the inter-
action free energy and the distortion free energy, depending on the size of
polymers. Infinite growth in any direction is made possible only by elimina-
tion of one of the curvatures. Under some conditions polymers of inter-
mediate size can be most stable and the size distribution can have a maximum.

10. Concluding Remarks

Globular protein molecules form regular polymers in which all (or almost
all) monomers are in equivalent positions, making bonds with many neigh-
bouring monomers. Formation of these polymers takes place as a kind of
crystallization. Statistical thermodynamics of crystallization has been
mainly concentrated in the equilibrium between the crystal and the dispersed
monomers. The condition determining the size, shape, and number of
crystals is not easy to analyse, theoretically. The free energy of the system
is insensitive to their size, shape and number. There are many states of
different size distributions, among which the difference in the free energy
is negligible. In the case of true crystallization, three-dimensional or two-
dimensional, where macroscopic crystals must be formed, one cannot
expect to find a simple general theory which gives significant results on the
determination of their size, shape and number.

In the case of helical and tubular polymers which are very often found in
biological systems, however, the theoretical treatment of this kind of problem
is possible to a certain extent. In this paper, the size distribution was deter-
mined in equilibrium under various conditions and the free energy of the
distribution pattern was calculated, which is very small as compared with
the total crystallization free energy, as expected. The relaxation time of the
size distribution change was also estimated.
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The present theory was based on several assumptions to simplify calcu-
lation. The free energy of pairwise interaction between » monomers was
assumed to be constant and the total free energy of a polymer was put to be
proportional to the number of monomers except a constant correction term.
The kinetic constants were assumed to be independent of the size of polymers
and nuclei were treated as if they have a definite number of monomers and a
definite structure. Actually, however, the interaction energy was found
to depend on the size of polymers, for example, in the case of TMYV protein
(Casper, 1963). One of the causes of such dependence was discussed in the
previous section. Long range interaction between charges on monomers
may have a similar effect (OQosawa, 1957). Configurational entropy also
must be taken into consideration if polymers were flexible. These factors,
however, would not significantly alter gualitative conclusions derived in
the simple theory.

In the kinetics of polymerization of flagellin into flagella, Asakura (1968)
found the transconformation process of flagellin molecules attached to the
end of flagella. Such a process was not assumed in the present theory on the
kinetics of polymer size distribution, However, it is likely that inclusion of
transconformation of monomers has no great effect on the behaviour of the
size distribution during polymerization. Some analyses of this problem
were made in a previous paper (Oosawa & Higashi, 1967).

Biological systems may have special mechanisms to select the distribution
pattern of protein polymers in accordance with their purposes. Several
mechanisms have been proposed to make polymers of the definite length
(Casper, 1966; Huxley & Brown, 1967; Maruyama & Kawamura, 1968);
hidden distortion in polymers, interaction with other protein systems or
production of definite numbers of monomers and seeds. In order to see
whether any special mechanism is needed or not, the simple and basic
analysis presented here must be useful.

REFERENCES

AsakURA, S. (1968). J. molec. Biol. 35, 237.

ASAKURA, S., Eguchr, G. & Iino, T. (1964). J. molec, Biol. 10, 42.

ASAKURA, S., Ecucnt, G, & livo, T. (1966). J. molec. Biol. 16, 302.

ASAKURA, S., Ecucir, G. & Iino, T. (1968). J. molec. Biol. 35, 227.

Casper, D. & KLUG, A. (1962). Cold Spring Harb. Symp. quant. Biol. 27, 1.

Casper, D. (1963). Adv. Protein Chem. 18, 37.

CaspEr, D. {1966). “Molecular Architecture in Cell Physiology”, p- 191 (T. Hayashi &
A. G. Szent-Gyorgyi, eds). Englewood Cliffs, N.J.: Prentice Hall.

Frory, P. J. (1953). “Principles of Polymer Chemistry™. Ithaca, N.Y.: Cornell University
Press.

FreNxkEL, J. (1946). “Kinetic Theory of Liquid.” Oxford: Clarendon Press.

HavasHl, T. & RosENBLUTH, R. (1960). Biol. Bull. mar. biol. Lab., Woods Hole, 119, 790,

HuxLey, H. & BrowN, W. (1967). J. molec, Biol. 30, 383.



86 F. OOSAWA

Kasa1, M. ASAKURA, S. & Qosawa, F. (1962). Biochim. biophys. Acta, 57, 13, 22.
Kasal, M., Nakano, E. & Oosawa, F. (1965). Biochim. biophys. Acta, 94, 493.
Kasar, M. (1969). Biochim. biophys. Acta, in press.

KawaMura, M, & Maruvama, K., (1970). J. Biochem., Tokyo, in press.
Lanpay, L. & Lirscritz, E. (1951). “Statistical Physics.” Oxford: Clarendon Press.
MaruvaMa, K. & KawaMUra, M. (1967). Zool. Mag., Tokyo, 76, 420.
MaruYama, K. & KawaMURA, M. (1968). J. Biochem., Tokyo, 64, 263.

MIYAKE, A. & STOCKMAYER, W, H. (1965), Makromolek. v. Chem. 88, 90.
Naxaoxa, Y. & Kasal, M. (1969). J. molec, Biol. 44, 319.

Qasawa, F. (1955). J. phys. Chem. 95, 577.

Oosawa, F. (1957). J. Polym. Sci. 26, 29.

Oosawa, F., AsAKURA, S., Horra, K., Imal, N. & Qoi, T. (1959). J. Polym. Sci. 37, 323.

Oosawa, F., AsaKURA, S. & Ooy, T. (1960). Prog. theor. Phys., Kyota, Sup. 17, 14.
Oosawa, F. & Kasar, M. (1962). J. molec. Biol. 4, 10.

Qosawa, F. & Higasat, S. (1967). Prog. theor. Biol 1, 79.

STRAUB, F. (1942). Srud, Inst. med. Chem. Univ. Szeged, 2, 3.

StepHENS, R. E. (1968). J. molec. Biol. 33, 517.

Taramasul, H. (1966). Shizen, 21, (2) {in Japanese).

TakaHasHIL K. & Yact, K. (1968), J. Biochem., Tokyo, 64, 271,

WakaBAYASHI, K., HoTani, K. & AsAKURA, S, {1969). Biochim. biophys. Acta, 175, 195.

—_————————

O ——

— e —— ——

ey ey o s ol me Lt d AY by s TN Gy fy e ek pud el



	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19

