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Optical Measurements of Frequency-Dependent Linear Viscoelastic Moduli of Complex Fluids
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We present a novel experimental method to measure linear viscoelastic moduli of complex fluids

using dynamic light scattering. A generalized Langevin equation is used to relate the mean square
displacement of a probe particle to the storage and loss moduli of the bulk complex fluid. We confirm
the experimental validity of this technique by comparing the light scattering results with mechanical
measurements for several complex fluids. This method probes the moduli over a greatly extended
frequency range and provides significant new insight into the elastic susceptibility of complex fluids.

PACS numbers: 83.50.Fc, 82.70.—y, 83.70.Hq, 83.85.Ei

One of the most fundamental properties of any material
is its elastic susceptibility, or its response to a shear
excitation. For example, the primary difference between
a fluid and a solid is their contrasting response to an
applied shear strain; solids store mechanical energy and
are elastic, whereas Auids dissipate mechanical energy and
are viscous. Many materials are viscoelastic; they both
store and dissipate energy, with the relative proportions
depending on frequency. The elastic susceptibility is
parameterized by the complex shear modulus G*(co),
which determines the stress induced in a material upon
application of an oscillatory shear strain at a frequency ~
[1]. The elastic component of the stress is in phase with
the applied strain; the ratio of this stress to the strain is
the storage modulus G'(co), the real part of G"(to). The
viscous component of the stress is out of phase with the
strain; the ratio of this stress to the strain is the loss
modulus G"(co), the imaginary part of G*(co). The elastic
susceptibility can also be defined in terms of the Fourier
transform of the material's response to an impulsive strain

[1];because of causality, G'(co) and G"(co) are related by
the Kramers-Kronig relations [2].

Complex fluids have a rich linear viscoelastic behavior.
This is due to the larger length scale of the structures
inherent in them; examples include colloidal dispersions
and polymer or self-assembled surfactant solutions. These
supramolecular structures endow complex Auids with
their unique properties, and the interactions between, or
within, them govern their dynamics. These dynamics
typically possess several characteristic time scales which
are reflected in G'(co); moreover, both elastic and viscous
components are usually significant, although their relative
contributions depend on frequency. However, unlike
simple fluids, these frequencies are typically low enough
to be experimentally accessible. Traditionally, G'(co)
is'determined mechanically: For example, a strain is
applied and the induced stress is measured. However,
because the measurements are mechanical, their frequency
range is limited; no single technique can measure G*(to)
over an extended range.

In this Letter, we present a novel method for measuring
the linear viscoelastic properties of a complex quid over
an extended range of frequencies. We show that the
response of the quid to thermal fluctuations, as probed by
the average motion of small particles dispersed within the
Quid, provides a close representation of the response of
the bulk quid to an imposed shear strain. The essential
physics of this approach is that the bulk mechanical
susceptibility of the Quid determines the response of a
small particle excited by the thermal stochastic forces
which lead to Brownian motion. We use dynamic light
scattering to measure the mean square displacement of
a probe particle, (Ar2(t)), and relate this to G*(to) by
describing the motion of the particle with a generalized
Langevin equation, incorporating a memory function to
account for the viscoelasticity. We compare this G*(co)
to that measured by conventional mechanical means.
Remarkably good agreement is found. We demonstrate
the flexibility of this new technique by measuring the
moduli of a variety of complex fluids, and illustrate its
potential to determine new behavior.

We describe the motion of a small, neutrally buoyant
particle dispersed in a complex Quid by means of general-
ized Langevin equation [2,3],

mv(t) = fq(t) — g(t —r)v(r) dr,
where m is the particle mass and v(t) is the particle ve-
locity. This equation expresses the forces on the particle;
f~(t) represents the random forces acting on the particle
and includes the contribution from both direct forces be-
tween the particles and the stochastic Brownian forces; the
integral term represents the viscous damping of the Quid,
and incorporates a generalized time-dependent memory
function g(t) Energy sto.red in the medium leads to pro-
found changes in the temporal correlations of the stochastic
forces acting on the particle at thermal equilibrium, and the
fluctuation-dissipation theorem differs from the commonly
encountered delta-function correlation of a purely viscous
fluid, becoming [2]

(fp (0)f R(t)) = kBT g(t), (2)
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g(s) = C(~)
(3)

where s represents the frequency in the Laplace domain.
This relationship is exact in the limit of a purely viscous
fIuid; here we assume the same behavior for viscoelastic
fluids at all frequencies, recognizing that this is only an
approximation. Then,

s 6kpT

The first term in the brackets rejects the thermal fluc-
tuation dissipation in the medium. The second term is
due to inertia and is negligible except at very high fre-
quencies. If it is neglected, Eq. (4) reflects a general-
ized, frequency-dependent form of the Stokes-Einstein re-
lation. For a freely diffusing particle, (Ar (s)) = 6D/s,
and the familiar, frequency-independent viscosity is re-
covered, rlo = k~T/6~aD, where D is the diffusion
coefficient.

To compare with mechanical data, we require G'(cu)
and G "(ru); however, since they obey the Kramers-Kronig
relations, they are not two independent functions, and both
can be determined from the single, real function G(s).
We could, in principle, calculate the inverse unilateral
Laplace transform and then Fourier transform it. Instead,
we fit G(s) by a functional form in the real variable
s, and then obtain the complex function G*(cu) using
analytic continuation, substituting i~ for s in the fitted
form. We then identify G'(ru) and G"(ru) as the real
and imaginary parts; this ensures that the Kramers-Kronig
relations are satisfied over the frequency range probed.
This procedure establishes a general relationship between
the mean square displacement of the particles and the bulk
rheological properties of the complex fIuid.

To test the applicability of this scheme, we apply it
to several distinctly different complex fluids. The first
system is a suspension of silica particles in ethylene
glycol; these particles interact as hard spheres [5]. The
particle radius is relatively uniform, a = 0.21 p, m, and
the volume fraction is @ = 0.56. To probe the small
values of the mean square displacement required, we
use diffusing-wave spectroscopy (DWS), an extension of
dynamic light scattering (DLS) to the multiple scattering
limit [6,7]. The correlation function measured with
DWS in the transmission geometry exhibits the behavior
characteristic of a concentrated collodial suspension of
hard spheres near the glass transition [8). There is an
initial, rapid decay to a plateau value, followed by a final

(4)

where k~ is Boltzmann's constant and T is the temperature.
By taking the unilateral transform [4] of Eq. (I),

and using Eq. (2), the viscoelastic memory function can
be related to the velocity autocorrelation function, and,
hence, to the particle's mean square displacement. We
further assume that the microscopic memory function is
proportional to the bulk frequency-dependent viscosity of
the fIuid,
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FKJ. 1. Frequency-dependent linear viscoelastic moduli for
a suspension of hard spheres with @ = 0.56. Data obtained
mechanically are shown by diamonds, solid for the storage
modulus, and open for the loss modulus. Data obtained
optically are shown by lines, solid for the storage modulus, and
dashed for the loss modulus. The open circles represent G(s),
and are plotted on the same frequency scale. The mean square
displacement, measured with DWS, is shown in the inset.

decay at longer times. The particles are relatively small,
so that DWS is slightly sensitive to collective motion;
nevertheless, to a good approximation the correlation
function can be inverted to obtain the mean square
displacement of the particles [9]. This requires knowledge
of the transport mean free path of the light, l', which was
obtained from static transmission measurements [9]. The
measured (Ar (t)) is shown in the inset of Fig. 1. The
linear increase at the shortest times rejects the initial
diffusive motion of the particles; at longer times their
motion is constrained by the local cage structure of their
neighbors. The decay in the correlation function at the
longest times, which results from the breakup of the cages,
cannot be simply interpreted within DWS as a mean
square displacement of individual particles, setting the
upper limit of the data that can be inverted.

We numerically calculate the Laplace transform of the
mean square displacement, and use Eq. (4) to determine
G(s). The results are shown by the open circles in

Fig. 1. Because of the restricted extent of the data, the
accuracy of the Laplace transform is limited at the lowest
frequencies. To obtain the real and imaginary parts of the
complex modulus, we fit the data by a functional form
based on physical intuition about the behavior of a hard
sphere collodial glass, G(s) = gt —g2s 55 + g3s 3 +
g4s + g5s, where the g; are positive fitting parameters.
The first three terms are suggested by mode coupling
theories and re(lect the cage dynamics [10]; these terms
account for the plateau and a low-frequency relaxation.
The fourth term accounts for the predicted high-frequency
elastic modulus [11,12], while the fifth term reflects the
high-frequency viscosity of the suspension. The fit is
indistinguishable from the data and is used to determine
G*(cu). Although our fit is based on intuition, any
functional form that fits the data will provide equally good
results.
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FIG. 2. Frequency-dependent linear viscoelastic moduli for a
solution of 4 X 10 molecular weight polyethylene oxide in
water at a concentration of 15% by weight. Data obtained
mechanically are shown by diamonds, solid for the storage
modulus, and open for the loss modulus. Data obtained
optically are shown by lines, solid for the storage modulus,
and dashed for the loss modulus. The inset shows G(s) over
the full frequency range measured.

To test this scheme, we determine the moduli directly
by an oscillatory mechanical measurement. We employ
a controlled strain rheometer using a sample call with
a double-wall Couette geometry. The applied strains
are sufficiently low to ensure linearity. In Fig. 1, we
compare the measured values of 6'(cu) and 6"(co), shown

by the diamonds, with the predictions from the light
scattering, shown by the lines. Excellent agreement is
found, particularly with the storage modulus, which is the
larger of the two components.

As a second test, we study a polymer solution at a
sufficiently high concentration that an entangled network
is formed. We use polyethylene oxide with a molecular
weight of 4 X 10 dissolved in water at a concentration of
15%%uo by weight. As probe particles, we add polystyrene
latex spheres with a = 0.21 p, m at P = 2%. This @ is
sufficiently high to ensure multiple scattering from the
spheres, but sufficiently low to ensure that the spheres
do not contribute appreciably to the viscoelastic behavior.
By contrast to the hard sphere suspension, in this case
the particles act solely as probes, both for the rheological
properties and for the light scattering. We compare
the complex moduli obtained from light scattering with
those obtained mechanically in Fig. 2; again relatively
good overall agreement is obtained. The light scattering
data provide a good estimate of the magnitude of the
moduli and correctly predict the crossover in the behavior,
with 6"(~) dominating at low frequencies and 6'(tu)
dominating at high frequencies. The discrepancy between
the two methods is largest at low frequencies; this likely
results from the restricted range of the light scattering
data, which limits the accuracy of the Laplace transform.
Nevertheless, the agreement is remarkably good.

As a third test, we study an emulsion, comprised of uni-
forrnly sized oil droplets, with a = 0.53 p, m, stabilized
with a surfactant and suspended in water [13]. The vol-
ume fraction is P = 0.62, resulting in elasticity arising
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FIG. 3. Frequency-dependent linear viscoelastic moduli for
a monodisperse emulsion with @ = 0.62. Data obtained
mechanically are shown by diamonds, solid for the storage
modulus, and open for the loss modulus. Data obtained
optically are shown by lines, solid for the storage modulus,
and dashed for the loss modulus.

from the surface tension of the deformed droplets. The
strong scattering of the uniformly sized droplets allows
DWS to be used to probe their (hr~(t)). The compari-
son of the light scattering data with the rheological mea-
surements is shown in Fig. 3. Again, very good agree-
ment is obtained; the measurement of 6'(cu) agrees over
the whole range of frequencies that overlap, while that
of 6"(tu) agrees well at higher frequencies, but does not
capture the rise at the lowest frequencies. The accuracy
is again restricted by the limited frequency range of the
data used for the Laplace transform; the light scattering
data decay at longer time, indicating that there is an addi-
tional low frequency relaxation, which would result in an
increases in 6"(cu) at low frequencies, consistent with the
mechanical rheology data.

The agreement of the light scattering measurements of
the elastic moduli with the mechanical ones is excellent.
We emphasize, however, that these results are purely ex-
perimental; the underlying origin of this agreement is not
clear. Formally, the motion of a single particle in a com-
plex quid can be described with a memory-function equa-
tion similar in form to Eq. (1) using projection operator
techniques; the shear modulus can also be represented by
a memory-function equation of the same form [14]. How-
ever, the memory function for a single particle motion
represents a longitudinal density autocorrelation function;
by contrast, the memory function for the shear modulus
represents an autocorrelation function of nondiagonal, or
transverse, elements of the stress tensor. The two mem-
ory functions are not equivalent. Heretofore, DLS has
only been used to measure a longitudinal modulus [15].
Our experiments show that it can be used to measure the
transverse modolus as well. It is conceivable that a single
relaxation mode dominates both the longitudinal density
and transverse stress correlation functions so that they ex-
hibit the same behavior. For example, such equivalence
is expected from mode coupling theory near a glass tran-
sition [16], and this may account for the data for both
the hard spheres and the emulsion. Moreover, the mean
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square displacement does couple to shear modes; this is
certainly true in the limit of a simple viscous fiuid, where
the shear viscosity determines the particle s diffusive mo-
tion. Thus, by analogy, we expect the shear elasticity of a
complex quid to determine the mean square displacement
of a probe particle. However, the motion of a probe par-
ticle, as determined by light scattering, normally reflects
the behavior at wave vectors q, which are large compared
to a '. By contrast, the elastic modulus of a material
reflects the response in the limit of q 0. However, if
the probe particle is large enough, its response to thermal
fluctuations will presumably reAect the long wavelength
limit and thus the bulk moduli of the material. Moreover,
the fiow pattern of a viscoelastic fiuid around the parti-
cle is nonuniform, and may differ from that of a simple
fluid. This will modify the coefficient in Eq. (3), and may
even make it frequency dependent. Thus, the light scat-
tering may not provide a quantitatively exact measure of
the elastic moduli; nevertheless, as our results show, the
overall trends are correctly captured, and the agreement is
very good.

The underlying value and utility of this technique de-
rives from the extended range of the results obtained. For
example, combining DWS and traditional DLS allows the
measurement of mean square displacements ranging from
several angstroms to several microns; by also varying the
radius of the probe particles, elastic rnoduli ranging from
10 to 10 dyn/cm are accessible. Similarly, the light
scattering allows a much greater frequency range to be
probed in a single experiment; in particular, the moduli can
be measured to much higher frequencies than is possible
by mechanical techniques. This range should provide new
insights into the underlying physics of the elastic suscepti-
bility of complex fluids. For example, in the inset in Fig. 2,
we show the full range of G(s) obtained from the light scat-
tering data for the polymer solution. It contains informa-
tion about the low-frequency relaxations, where entangle-
ments dominate, as well as the high-frequency relaxations
where the glassy behavior dominates. Thus, it rejects the
full relaxation spectrum of the polymer solution. Relax-
ation spectra are typically measured with a rheometer, and
the limited frequency range is overcome using the tech-
nique of time-temperature superposition [17]. Our data
suggest that light scattering can measure the complex mod-
ulus over the whole frequency range in a single experi-
ment, without the need for changing temperature. This
may be of particular potential importance in the study of
polymers that crystallize, where time-temperature superpo-
sition is precluded. The light scattering data also provide
convincing evidence that, for hard spheres, G'(co) = to" s

at high frequencies, consistent with theoretical predictions
which ignore lubrication effects [11,12]. This result is ev-
ident from the behavior of G(s) when the high-frequency
term proportional to s is subtracted; the remainder clearly
exhibits an s 5 dependence.

Dynamic light scattering measurements have long been
used to measure viscosity; they also probe the elastic
moduli of gels [18]. Our results provide the framework to
generalize the use of dynamic light scattering to measure
the full frequency dependence of the linear viscoelastic
moduli of complex fIuids. They clearly illustrate the
generality of this method. The complex fluids studied
here represent three completely different materials: a
colloidal suspension, where the probe particles themselves
lead to the rheological properties of the suspension; a
polymer network, where the particle merely probe the
viscoelasticity of the solution; and an emulsion, where
the elasticity results from the surface tension and the
deformation of the probe particles. In all cases, the optical
measurements of the viscoelastic moduli are in excellent
agreement with mechanical measurements. We expect
this technique to apply very generally to other complex
fluids, although further experiments are clearly required to
explore the full range of validity, and further theoretical
work is clearly required to determine the underlying
physics of this surprising agreement.
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