Nanoscale Self-Assemblies in Biological Molecules:
Structures and Interactions of Microtubules and Microtubule-Associated-Molecules
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Seeing is believing

Light Microscope: Confocal Microscope
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INVENTOR.
MARVIN  MINSKY

IJE E§ é E),z; BYM
) ATTenNE:f:E;

Marvin Lee Minsky is a cognitive scientist in the
field of artificial intelligence (Al), co-founder of
MIT's Al laboratory, and author of several texts
on Al and philosophy. Minsky was an adviser on  1fyouhawe more

than one track in

the movie 2001:A Space Odyssey (1968) feaios otk o
y want to
sdhaiia check only one at P
Anapad of a time to adjust Oreeiecial

adventure and exploration

Track1
Lasers that are
. v 4 ¥
active and 405 458 438 514 561 633
Ypower used 405 nm
488 nm

A 561 nm

Pinhole size,

the 780 has Sets pinhole to
one pinhole for 1 airy unit
all channels

http://microscopy.duke.edu/780upmaiiuar.iiuin




X-ray Scattering: Convolution of Form Factor and Structure Factor
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SAXS reveals Assembly Structures of MTs
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SAXS reveals Assembly Structures of MTs

» Young’s double slit experiment
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SAXS reveals Assembly Structures of MTs
» Diffraction by many slits
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SAXS reveals Assembly Structures of MTs
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: the Mount Palomer telescope has a mirror 5 m in
diameter. At 550 nm it has an angular limit of
resolution of 2.7 x 102s of arc. In contrast, the human
eye of 2 mm pupil, with A = 550 nm, has | min of arc.




Small angle X-ray scattering (SAXS)

SAXS instrument provides cutting edge capabilities for probing large length

scale structures such as polymers, biological macromolecules, meso- and
nano-porous materials,and molecular self-assemblies.
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SAXS Study

(i) Tau is a molecular switch regulating the radial curvature of tubulin
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SAXS Study

(i) Tau is a molecular switch regulating the radial curvature of tubulin -3¢, 28
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Rg of Denatured Proteins

» The dimensions of denatured proteins scale with polypeptide length by means of

the power law relationship expected for random-coil behavior

g

Crealine Kinase

Full length
3RS

Projection domain
of 4RS

T T T 1 T T T 11 — :I||
10 =0 100 500

Length [residues]
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Rg of Denatured Proteins

» The dimensions of most chemically denatured proteins scale with polypeptide
length by means of the power law relationship expected for random-coil behavior
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SAXS Study

(i) Tau is a molecular switch regulating the radial curvature of tubulin

The electron density contrast between the layer of

tau and water is negligible. Main parameter allowed

to give the fit of x-ray data to this model is the inner
radius of MTs <R _MT>,

Intensity (a.u.)

Shift in the mean number of PFs from 13 to 14. Non-

integer values measured in X-ray imply a variation in
the distribution of N¢in MTs.

<N_> = 13.5 implies there are equal numbers of MTs
with either |3 or 14 protofilaments.
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SAXS Study

(i) Tau is a molecular switch regulating the radial curvature of tubulin

The change in ¢, of MTs by tau binding.

Main change in the radius occurs at low

coverage of tau, for example, ~75 % change
has occurred at 0.1, 10 % coverage of tau
on the MT surface.
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SAXS Study

(ii) sp4+ is a molecular switch triggering the axial curvature of tubulin
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We quantitatively determined the
nature of the Byto-Brt

transformation pathway, which
results from a spermine-triggered
conformation switch from straight
to curved .

The inverted tubulin columns
consist of helical PFs with a tight
pitch, not stacks of rings of c-PFs.

M. Ojeda-Lopez, et al., Nature Materials 13 195 =20I4‘




