1. Biopolymers under tension

Omar A. Saleh Materials Department and BMSE Program University of California, Santa Barbara

Tell me to talk slower!

Ask questions (no break until I get enough questions)!

Biopolymer mechanics determines...

- 1. ...polymeric material mechanics
- 2. ...polymer film (brush) structure
- 3. ...polymer relaxation

...and can be used to quantify...

- 1. ...polymer structure
- 2. ...polymer/ligand (e.g. DNA/proteir interactions
- 1. ...forces generated by cells

Gardel *et al.*, 2004

Biopolymer mechanics determines...

- 1. ...polymeric material mechanics
- 2. ...polymer film (brush) structure
- 3. ...polymer relaxation

...and can be used to quantify...

- 1. ...polymer structure
- 2. ...polymer/ligand (e.g. DN. interactions
- 1. ...forces generated by cells

A polysaccharide brush surrounding cilia controls mucus clearance Button *et al.*, 2012

Biopolymer mechanics determines...

- 1. ...polymeric material mechanics
- 2. ...polymer film (brush) structure
- 3. ...polymer relaxation

...and can be used to quantify...

- 1. ...polymer structure
- 2. ...polymer/ligand (e.g. DI interactions
- 1. ...forces generated by cell

Ţ

Why do we care about biopolymers under tension?

Biopolymer mechanics determines...

- 1. ...polymeric material mechanics
- 2. ...polymer film (brush) structure
- 3. ...polymer relaxation

...and can be used to quantify...

- 1. ...polymer structure
- 2. ...polymer/ligand (e.g. DNA/protein)

interactions

3. ...forces generated by cells

Biopolymer mechanics determines...

- 1. ...polymeric material mechanics
- 2. ...polymer film (brush) structure
- 3. ...polymer relaxation

...and can be used to quantify...

- 1. ...polymer structure
- 2. ...polymer/ligand (e.g. DNA/protein) interactions
- 1. ...forces generated by cells

b EGFF Cell membrane COLUMN TWO IS NOT EGF-Alexa Fluor 647 Ligand Mechanical bindina tension Quencher FREI SiO Streptavidin Low fluorescence Low fluorescence High fluorescence

Button *et al.*, 2012 Perkins *et al.*, 1994

Stabley *et al.*, 2012

Gough (1805), Joule (1859): Rubber heats when stretched Kelvin (1857): This has to do with entropy changes upon stretching Staudinger (1920s): Rubber is made of long chains Meyer, Susich & Valko (1932): Long chains lose entropy when stretched

Exact calculations of force/extension models for ideal chains (to the board!)

Linear response
 FJC
 WLC

Review of polymer elasticity models: Saleh, JCP (2015)

Indirect experimental support for the FJC

FIG. 3. Comparison of theory and experiment for natural rubber A.

James and Guth, 1943

Guth and Mark (1934); Kuhn (1936): The Entropic spring:

$$f = \frac{3k_BT}{\langle R^2 \rangle}L$$

Kuhn (1942), James and Guth (1943): **The Freely-Jointed Chain** $L = L_0 \left(\coth \frac{fl}{k_B T} - \frac{k_B T}{fl} \right)$ $\approx L_0 \left(1 - \frac{k_B T}{fl} \right)$

Breakthrough in the 90s: Micromanipulation permits *direct* testing of force/extension relations

Force, f

Length, L

JSC1

Single-molecule manipulation (force spectroscopy) techniques permit direct control of force, and measurement of extension, on the scale relevant to single molecules.

Relevant energy scale: $k_B T \approx 4 \times 10^{-21} J \approx 4 \text{ pN nm}$ Relevant length scale: $\approx 1 \text{ nm}$ Relevant force scale: $k_B T / 1 \text{ nm} \approx 4 \text{ pN}$

Experimental evidence refutes the FJC, supports the MS-WLC

Stretching doublestranded DNA (dsDNA), $l_p \approx 50 \text{ nm}$

Some notes: -DNA as a model system

-Nothing is a FJC

-Enthalpic (linear stretch) elasticity apparent, and quantifiable

Bustamante, Marko, Siggia, and Smith, *Science* (1994)

Application of Marko-Siggia: The modulus of gels of filamentous biopolymers

Figure 1 Neurofilament and fibrin protofibril networks. These TEM images show the finite excess of filament contour length between crosslinks and overlap points. **a**, Metal-shadowed neurofilaments, and **b**, uranyl acetate-stained fibrin protofibrils, prepared as described in refs 25 and 26, respectively.

Storm et al., 2005

Actin networks Gardel *et al.*, 2004

Observation: At high stress, The differential modulus of certain filamentous gels grows as strain to the 3/2 power **Problem: Why?**

Key references:

- 1. Marko and Siggia (1995)
- 2. Gardel et al., Science (2004)
- 3. Storm *et al.*, Nature (2005)
- 4. D. Vader *et al.*, PloS ONE (2009)

Force

An alternate approach to elasticity: Scaling

A tension f creates a tensile screening length, ξ : $\xi \equiv k_B T/f$

Elasticity of real polymers: Calculations, and the blob picture (to the board)

Blob models useful for multiple types of confinement

Confinement from other polymers e.g. polymer brush:

Reisner *et al.* (PRL, 2005) : Confining DNA within nanochannels

Problem: Consider a polymer confined to a tube of diameter *D*. How does the polymer extension depend on *D*? What if it is a 2-D slit?

Assume $R_g >> D >> l_p$

Extension: *X* Contour length: *L*

How to reconcile the various force/extension regimes?

A scaling view: An elastic transition will occur whenever $\xi \sim$ (characteristic length scale of the polymer)

An analogy: Scattering measures various scales of structure by varying q

- Key length scales (R_{g} , l) identified from transitions in S(q)
- Type of structure (swollen random walk, rigid rod) identified from *S* vs *q* relationship

Polystyrene in carbon disulfide Pedersen and Schurtenberger, 1996 Rawiso et al., 1987

Elasticity vs. scattering: Both control a length scale, but elasticity offers a superior single-polymer signal

The power of elasticity at studying single-chain structure will be a main subject of my next lecture.

Length scales of a neutral polymer

Kuhn length, / (random-walk step size) Thermal blob size, / (crossover extent) RMS extent, *R*

Thermal blob: the crossover scale below which a polymer acts ideally and above which it is swollen

Pincus, *Macromolecules* (1976); Netz, *Macromolecules* (2001) McIntosh, Ribeck and Saleh *PRE* (2009)

Measurements of polymer elasticity

To camera

The Magnetic Tweezer

Polymer extension, *L*, from 3D bead tracking *Gosse and Croquette (2002) Ribeck and Saleh (2008)*Force, *f*, from measured bead fluctuations *Lansdorp and Saleh, RSI (2012)*Low force: Stability of permanent magnets + ability to move them far away
Long chains are needed!

Imaging-based particle tracking

The measured diffraction ring radius, *r*, depends on bead height *z*

(x,y) : Found from autocorrelation algorithmz : Found from diff. rings

Gosse and Croquette, 2002

Force estimation in a magnetic tweezer

Simple version: Equipartition!

$$k = \frac{k_B T}{\langle y^2 \rangle} = f / \langle x \rangle$$

More precise, but complex: Power spectra, Allan deviation... see <u>Lansdorp and Saleh, 2012,</u> and references therein

The force-extension behavior of **PEG** shows all three accessible elastic regines

from Bruce and Vincent (1993)

Dittmore, McIntosh, Halliday, and Saleh PRL (2011)

Solvent quality modulation removes swollen regime, then ideal regime

Dittmore, McIntosh, Halliday, and Saleh PRL (2011)

Excluded

volume

 $v = 0.2 \text{ nm}^3$

From

 $v \sim l^{4}/b$

Dittmore, McIntosh, Halliday, and Saleh PRL (2011)

Single-stranded DNA elasticity, at high salt

log(Force)

No thermal blob regime in ssDNA

Why the difference?

Presence/lack of regime III consistent with aspect ratio of monomers

Thermal blob size: $b \sim l^4/v$ If the statistical monomers are spherical: $v \sim l^3 D \quad b_{spherical} \sim l$

So $\xi \sim b$ coincides with $\xi \sim l$, and the thermal blob regime (III) disappears

Thermal blob size: $b \sim l^4/v$

ssDNA: Electrostatic-dominated spherical monomers:

 $v \sim l^3$, so $\overline{b}_{sphere} \sim l$

PEG: Chain-mediated rod-like monomers: $v \sim l^2 d < l^3$, so $b_{rod} > l$

A word about data interpretation: Beware of power laws!

Black line: linear to plateau w/ increasing *x* **Colored lines**: power-laws (exponent noted) that fall within 10% of black line, over at least a decade in *x*

Problem: It is difficult to quantify exponents from power-laws of limited duration

Must guess, by hand, where the regime starts and finishes, which biases exponent estimate

> (Also, systematic error (e.g. in *L*) can disturb things)

Motivates the need for an alternate approach that measures the exponent *without* needing to guess the regime

A solution: linear-response based fluctuation analysis! (to the board)

Model system: stiff, stacked ssDNA

Doye et al. (2013)

poly(dA): Base-stacking leads to rod-like monomers,

High-salt emergence of the thermal blob regime

McIntosh et al., Biophys. J. (2014)

poly(dA): Base-stacking leads to rod-like monomers, emergence of the thermal blob regime at high salt:

Confirmation using fluctuations

McIntosh *et al., Biophys. J.* (2014)

Take home messages

- There are three well-established exactly solvable tensile elasticity models (linear response at low force, FJC at all forces, MS-WLC at high forces).
 FJC is not experimentally supported, WLC is supported, linear response must be true
- 2) Exponential persistence is expected for a WLC, based on considerations of bending an elastic rod
- 3) At low forces, swelling interactions affect elasticity, leading to a variety of potential elastic regimes, depending on a chain's precise microscopic structure (*l*, *v*)
- 4) Elastic information can be obtained simply by analyzing fluctuations