Biopolymer Network Mechanics, Part Il

Boundary Effects, Limitations to Microrheology

Cytoskeletal Mechanics
Nonlinear Effects
Importance of Crosslinking
Extensions to Active Materials and Cells

7/02/2015 2015 KIAS Soft Matter Summer School: Polymers in Biology



Report back....
Anyone measure anything interesting?
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Quick review...

o = ,|G'sin(at) + G" cos(at) |

Plateau
modulus

)
Liquid Solid

Crossovers point to interesting time scales
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Conventional Rheometry: Summary

Advantages:

e Direct measurement

e Strain- and frequency-dependent measurements
e Probes average behavior

e Fairly easy, fast

Disadvantages:

e Large sample volumes (>500 pL)

e Fragile materials can be damaged during loading
e Limited frequency range

e Difficult to study heterogeneous materials
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Microrheology is a good alternative,

especially for biomaterials

Active Methods: Material is locally deformed, and
microscopic viscoelastic response recorded.

laser light
objective
lens

specimen plane diffraction-limited
beam waist

~l pm —p Oi—

condenser
v lens

Huang H et al. Am J Physiol Cell Physiol (2004)
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Microrheology is a good alternative,

especially for biomaterials

Passive Methods: Tracer particles are embedded in a complex
material, and their thermal displacements measured.

T K gt 900 kDa PEO =
S E‘ 10° '
S : 10’ !

N e,
Foss, e | m 10° H OH

. homogeneous fluid g s & "
>~ 10" ESE'D Symbols — Bulk rheology

k T O , ] Lines — Microrheology

10
G(s)= 53—
37zaS<AX2(S)> 10" 10° 10" 10® 10° 10* 10°

o (rad/s)

Dasgupta et al. PRE 65, 051505 (2002)
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Interpreting the MSD of tracers probing

T

F ] -
T

Ly o
gl

s gk

'.5‘)“1:) " ,L
b A R

But what about
the boundary
conditions???
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Interpretlng the MSD of tracers probing

Particles are sensitive to both local
viscoelasticity, and microstructure.

L FaBat T jlﬂ_u LR "5!1_;;: e R !

;! -h.: .€ T? 1;";"["“:-3\'!.;! -u.: ‘F EF\F ﬁ.#g‘hf} ;: Illu.

'I.'F 1h'| ¥ .h_,';‘_ iy 1|'l'| ‘ hl!‘."_':_;:z“ et ] -
e - v i

if a< ¢ then particles move
in small “pores”

A

P
N
Measure “pore size” &
P 'S \é/ 5- a

\/<AX2(T)> ta= 5 e Y Mocal

.
Use particles of different sizes to characterize constraint.

<

v
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Interpretmg the MSD of tracers probing

Particles are sensitive to both local
viscoelasticity, and microstructure.

if a< ¢ then particles move
in small “pores”

Dirty Secret: Addition of the particles can actually

introduce heterogeneity!
Depletion layers...
Polymer/particle adhesion effects...etc.
This can be a nightmare......
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Particle-network interactions can also

modify tracer motion

a>>¢
Inert tracer
Measures G*(w)

a<é

Very sticky tracer
modifies local
polymer
concentration

7/02/2015

(A B a< &
Inert tracer
Measures 77, ¢

e D a<é
I Adherent tracer
= Measures network

fluctuations

Valentine, Perlman, et al. BJ (2004).
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Protein-binding capacity of colloids depends

on surface chemistry

Untreated
carboxylate-
modified latext =

(CML) |

Protein
(BSA)-
coated

Polymer
(PEG)-
coated

Normalized Intensity

(arb. units)

Particles are
incubated with
fluorescent-BSA

—
S
T T

o
o'}
T

0.6+
0.4+

0.2+

0.0

COO0O BSA PEG

Valentine, Perlman, et al. BJ (2004).
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Example: Fibrin, a blood clotting protein

7/02/2015

2015 Summer School in Biological Polymers

Colorized scanning
electron micrograph of
a coronary artery
thrombus taken from a
patient who had a heart
attack.

Fibrin fibers are brown,
Platelets are gray,

Red blood cells in red,
Leukocytes are green.

Credit: John Weisel,
UPenn




Particle mobility depends on

tracer-polymer interactions

0.44 mg/mL fibrin network
&=5-10 um

7/02/2015

? o |

| o é v

o o -

I CML} o . BSAR' . . PEG
a=1 nm Valentine, Perlman, et al. BJ (2004).
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Multiple particle tracking measures variations

in heterogeneous samples

e Simultaneously measure the
thermal motions of dozens of
particles.

e Possible to detect subtle
differences in the mechanical
microenvironments

|In principle, can be combined with fluorescence readout to
correlate structure-mechanics

Need a method that quantitatively compares neighboring particles

Valentine, Kaplan, et al. PRE (2001).
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2-particle Microrheology: Measures long length-

scale rheology for inhomogeneous materials

Basic Idea: Measure correlated motion of separated beads

o T TS J A S T
22 e Aad g te d
i W o "
S N Ak
b ¥ 2
3 -

:?ff-?;f?“’

Ar (t,r)=r (t+7)—r (1)
1 a, 5= coordinate axes

? l, | = different particles

Calculate Tensor Product of Displacements:

D,, (r,z) = (Ar)(t,r)Ar)(t,z)5 (r - RU(1)))

Coarse-grained limit, D, ~1/r:

D (rs) = k.T <Ar(7)>p,=2r D, (r,7)
rr\"’ B a

Crocker, Valentine, et al. PRL (2000).

1= J,t

27 rsG(s)
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Guar: Food thickener, very heterogeneous

- "' Polysaccharide

Thickener
“Mouth Feel”

7/02/2015 2015 Summer School in Biological Polymers



Example: Heterogeneous Guar Solution

I IIIIIIII I IIIIIIII I rrrrriri _||||I 1 1 1 |||||I 1 1 ||||||I_

1.00(a) AAQAAAE&& — - .

T ] 1.00 =

ER ] % E

£ o010k {1 = ]

g - 1 = =

n - . & 0.10 E

. ] @ z

7 001 = .
=y Ol ol L1 =

C 3 10 30 2 0.01 —

_ r(pm) - A =

L 1 aanul L L 11111l 1 L L Liil IIII| 1 1 1 |||||| 1 1 |||||||_

0.01 0.10 1.00 10.0 1 10 100

1 (sec) o (rad/s)

(A) one-particle MSD

(-O-) two-particle MSD _
Crocker, Valentine, et al. PRL (2000).
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Example: Filamentous Actin

sarcomere | opposum kidney epithelial cells

Muscle fiber or cell

Ll Yoy
RN

Myofibril

= :

Band H Band

Actin

Yum! Myosin

Olympus. com

7/02/2015 2015 Summer School in Biological Polymers



Example: Filamentous Actin

ID-I T ] IIIIIT]' ] ] ITIIII'|' ] ] L
£ a(um) 1P 2P
i 0.23 L —B— ..--.‘
S 102 032 4 —a- P
iV 0.42 .
©
ﬁ 10”
.
s
rqg ln-d ‘

| 1 Illllll | IIIIII|_ 1 1 | |
10> 10" 10° 10'

7(sec)

M. L. Gardel, M. T. Valentine, J. C. Crocker, A. R. Bausch, and D. A. Weitz; Phys. Rev. Lett. 91, 158302 (2003)
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Example: Filamentous Actin

s
&
S
C
g
C

1III| I I IIIIII| I I IlIIIII T IIIIIIII 1 I TT

(2) 1.0 mg/mL P

10°

I IIIIIIII LI Illlll*__!l!

G'(®), G"(w) (Pa)

f—
<
[ =]
1 IIlll&

10_3 lllll 1 1 IIIIII| 1 | IIIIIII 1 I IIIIIII 1 1 ll-

10° 10" 10° 10’
w (rad/sec)

M. L. Gardel, M. T. Valentine, J. C. Crocker, A. R. Bausch, and D. A. Weitz; Phys. Rev. Lett. 91, 158302 (2003)
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Bottom Line....

* Measuring rheology of soft materials is difficult, biopolymers
particularly so

* Microscale techniques are an excellent option, allowing measurement
of heterogeneous materials and direct correlation between structure
and mechanics A~

e But be careful in interpretation

> Particles can disturb local network structure

» Surface chemistry matters

» Slip can also be a problem in rheometers
» Structural confinement and elastic deformation give similar MSDs

» Statistical noise can be high
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In motile, force-generating systems,

interpretation is more difficult

3 Systems are not only
endothellal cell heterogeneous, but
' out-of-equilibrium.

New energy sources!

Energy = kgT
KT T
37Za<AX2(T)>

n(z)#

7/02/2015 2015 KIAS Soft Matter Summer School: Polymers in Biology




In motile, force-generating systems,

interpretation is more difficult

Systems are not only
heterogeneous, but
out-of-equilibrium.

New energy sources!

Energy = kgT
KT T
37Za<AX2(T)>

n(z)#
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Cytoskeleton: Internal biopolymer

network that regulates shape, stiffness

Primary Functions:
e Organizes cells

e Provides structural support
& strength

e Serves as scaffold for
assembly of other proteins

e Senses changes in chemical
and mechanical environment

e Responds by growing or
shrinking

Dense polymer
networks

. .
Reductionist Approach Generates/transmits force
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Cytoskeletal Structures

Electron micrograph
Svitkina et al. Cell (2003)

Not simple entangled networks! Fluorescence microscopy
Image acquired by Torsten Wittmann; http://dir.nhlbi.nih.gov/labs/lctm/
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Filaments were originally identified by

electron microscopy

Microtubules

el
5

PN = [l - =

R ey

ek ey G

=

r It
Pl i BT e
et T Q0o s e B, T My oF =
e [ - s i
s EE T T

[

oY

-
rat
T o

~ [ Actin [ IF: Keratin
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Eukaryotic cells contain 3 major classes of

cvtoskeletal filaments

e Actin filaments (d ~ 6 nm) T

— Also known an microfilaments
— Cable-like

e Intermediate Filaments (d ~ 10 nm)

— Rope-lke =

e Microtubules (d,~ 25 nm; d;~ 18 nm)
— Pipe-like

-l|.-l|--l|-l|-l|-l|-l|-| -
Iil'l'ﬁ‘l".".' 'l"l:'l:'l'l'
l-ll-l-l-ll-'--l'

Al
llilll-ll-lli
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Cytoskeleton: Function

Actin

Motility, mechanical strength, _,?i
Localized to edge, cytokinesis

Intermediate Filaments , tubulin
Cell-to-cell contacts

Microtubules

Transport, Organization, Division

Changes in polymerization state dramatically
affect mechanical response, but have little
biochemical signature

IF: Keratin
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Implications to rheology

e Filaments are multistranded
e Grow/shrink mainly from ends
* Long
o Stiff

 Many binding partners that
crosslink, sever, nucleate

e Also motor proteins that slide,
generate force

e Dynamic changes in architecture

http://dir.nhlbi.nih.gov/labs/lctm/
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Highlights of cytoskeletal mechanics

1. Cytoskeletal polymers are
very stiff

2. Network mechanics is often
dominated by crosslinker
properties

3. Enzymatic activity can be
really important

http://dir.nhlbi.nih.gov/labs/lctm/
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Microtubules are extraordinarily stiff, making
them excellent model systems for rigid rods

Taxol-stabilized to suppress dynamics

Phil. Trans. R. Soc. A 15 December 2006 vol. 364 no. 9 3335-3355

]G

L~20um; L, ~1mm

Valdman, Atzberger, Yu, Kuei, Valentine. Biophys. J., 2012
Valdman, Lopez, Valentine , Atzberger. Soft Matter 2013
Hawkins, Ross et al. J. Biomechanics 2010

Hawkins, Ross et al. Biophys J. 2013

Gittes et al, JCB 1993
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Microscale creep measurements with

netic tweezers

Force

Fy
o Elastic F = kX
5
© T dx
2 \iscous F = 672'773-&
2
Time

Microtubule Network Rheology Qevelopment of rnagnetic_ twggzers for microrheology
Yang, Lin, Kaytanli, Saleh and MTV, Soft Matter (2012) L!n and MTV, Revn_ew of SC|.ent|f|c Instruments (2012)
Yang, Bai, Levine, Klug and MTV, Soft Matter (2013) Lin an.d MTV, Applied Physms Lf—:‘tte.rs. (2012)

Yang and MTV, Methods in Cell Biology (2013) Zacchia and MTV, Review of Scientific Instruments (2015)
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Strongly crosslinked networks,
with biotin-streptavidin bonding

Biotin-tubulin
Streptavidin

25 pM tubulin
Streptavidin:biotin 1:2; 1:4 tubulin dimers is biotinylated (R = 25%)
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Typical response of bead to step force

7/02/2015

—

Displacement (um) Force

o

Time (8)

2015 Summer School in Biological Polymers
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Frequent interactions with microstructure

42 pN
. Extreme
o Example! 1

33 pN

T 14.2 pN

Displacement (um)

_ | | \ \ \ | | |
O'E?OO 700 800 900 1000 1100 1200 1300 1400 1500

Time (s)

Vaca, Shlomovitz, Yang, Valentine, Levine, Soft Matter (2015)
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Elastic response is nonlinear with force

m125% e25% a50%
1 241 °
12004 —~ 20+
1 %_ 1
10004 — 167 °
T v
800+ 1 ® , .
T ; ' 50
600 5 R %
400+ 'y
2004 O %
o] (R
80 120 160
Force (pN)
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e Stiffening at small forces

*Peak force and peak
stiffness increase with
crosslinking ratio R

*Softening at large forces

M

—
i
L)

Displacement (um) Force

o
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(nm/s) )

exp

In(v

Bead velocity increases exponentially

with force for F > F,

4
| |
2 - - 5
[ ] xz
Xk
0 —
, °
x 24
D - s
S 14 °
Y
4 7 Ty
12.5 25 50
~ R (%)
-6 m125% ®25% & 50%
I | - I | |
0 40 80 120 160
F_(pN)
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exp

Consistent with a bond
breakage mechanism

kott = Koexp(Fxs/ ksT)

F < 65pN, Xz ™ 0.25 nm
F > 85 pN, Xz ™ 0.05 nm
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Force tilts the energy landscape of

mechanical transitions

Bell Model

| Transition rate:

-k ocexp(Fxs/ksT)

Gl Bell Science 1978
Dudko et al. PRL 2006

Howard: Mechanics of Motor
Proteins and the Cytoskeleton
Sinauer Press (2001)

Free
Energy

Energy landscape at F = 0.

Energy landscape
under applied load.

Reaction Coordfnate
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R-independence and Xg values suggest

very few bonds are loaded

4 Consistent with a bond
- | | breakage mechanism

~ 2 - =
g : 1 kot =koexp(Fxs/ksT)
5_2 ) :2] ¢ F <65 pN, x5~ 0.25 nm
< < 1l o F>85pN, x;~0.05 nm

-4 7 T : .

125 25 50
. - R (%)
W125% ®25% & 50%

0 40 80 120 160
F.. (PN)

exp
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Recovery after applied stress

(4]
(a) 800 2
1l |— 2
6001 | .. e g
E | = 1225.?)/0% ' “’,./ g |
2 400 A 50% ’ :,.- 2 1
1 o |
2001 g 1
—— U N
i a
O E': T } T T % --
® T AT oo —p—+ —F
s L 0 40 80
a1 e Time (s)
> 1.0 4— f —F - - -
S 10T § i Bead tends to return to
05T f original position, even when
0.0 } ' } ' } ' } t } 1 1
t - p A plastic f{ow is ob.?e.rv.ed due
Force (pN) to filament rigidity.
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Recovery after applied stress

(@) so00_L
—_— Ax
sool |7 At Very useful features:
[ - 7 * Fati ist
5 400l 4 °0% d atigue-resistance
200 e Self-healing
ol gumdE e Toughening

Bead tends to return to
original position, even when
S plastic f{ow is ob.?e.rv.ed due

Force (pN) to filament rigidity.

Axf/Axc
g o O,
L+ 1 . 1
I'I'I
.l—l-.ld-.
|
|
|
H®EpH
H-ep
|
|
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Toughness: dissipated energy during pull

5 "1
8 [I..._Siopem Youngs modulus, E
D g 9 IJ /Onset of necking
UV~ [ ’
t S Q Trg
A O
B = Final
L fracture
“-———l-—l
| -
01% r
proof
stress .
Yield
A strength
S = o
01% | .
strain | Strain
'--—-———(Plastic) strain ———"J AL/L
after fracture, ¢
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Ability of a material
to absorb energy
before fracture.

= Area under curve.

Units = Pa
(Energy/Volume)

42




F/d, (pN/um)

Elastic response is nonlinear with force

m125% e25% a50%
1 24T °
12001 0l
I Z
10004 N | °
- 12 4=
800__ 8" , 1 [
T 126 25 50
600—“— R (%)
4001+ }
200 - &
T = =
0 ————
80 120 160
Force (pN)
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e Stiffening at small forces

*Peak force and peak
stiffness increase with
crosslinking ratio R

*Softening at large forces

Displacement (um) Force
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Nonlinear elasticity is common in biopolymers

1,000 = -
100 E
g I :
© 104 =
@ - = Polyacrylamide .
- =+ Actin .
~ = Collagen i

-+ Fibrin oscillatory

1= Fibrin steady -
- == \limentin .

- o Neurofilaments ] L> L,
1 111§ i] | | | | T | 1 1 | T | | 1 1 I I

0.01 0.1 1 10

Microtubules lack excess length
Storm, et al. Nature (2005)
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Microtubule networks are not entropic

m125% e25% a50%

1200-
1000
800-
600-
400-
200-

F/d, (pN/um)

e Stiffening due to
filament alignment???

eSoftening at large
forces due to
crosslinker unbinding

7/02/2015
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What we’ve learned so far....

 Microtubule networks act as solids subject to plastic deformation
 Bond breakage kinetics dominate time-dependent response
 Hydrodynamics and filament contour fluctuations play minor roles

 Modulation of crosslinker properties should lead to interesting new
rheology, and novel materials = also really useful for cells.

Magnetic Bead

Microtubule Network




What if more compliant crosslinkers

were used?

Load sharing

Strength

Linear Regime
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Highlights of cytoskeletal mechanics

1. Cytoskeletal polymers are
very stiff

2. Network mechanics is often
dominated by crosslinker
properties

3. Enzymatic activity can be
really important

http://dir.nhlbi.nih.gov/labs/lctm/
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Early studies of cell mechanics ignored this...

Sample
chamber

sl rm; ey e v \'11
iy f!'f;?;,r "&l’ it l‘.:.‘m\\‘.\:‘ SR

b Cytoskeleton

E 1.5 W ;

2 1r .. ¢

= 107 o 11 : ; 1 :

= ! 1 1 i H ]

- i i 9 q 9 3

5057 I Y

E i

§ 0.0 a2

o S

] _[——’\_ —\“_ 2000 3

(] L @

T
T ] T T T T T T 0 =
0 2 4 B 8 10 12 14
Time (s)

Bausch et al. Biophysical Journal (1998)
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Use mechano-equivalent circuit to model

1/ Ko+ Fy)
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Enzymatic activity increases fluctuations

A
— 0C/2kgT

10* - - - == w/0 myosin
g . a"
= o w/0 myosin
=
~ 10" Fo93q)
Q
3
B 10°F

No motor activity
] ] ] | | |

107 10° 10" 10* 10° 10

Frequency (Hz)

o'’ = active microrheology with
oscillating optical tweezers

Mizuno, et al. Science (2007)

a", ®C/2k;T (m/N)

With motor activity

10" 10° 10" 10° 10
Frequency (Hz)

. Actin

Myosin =2 Motors
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Remember, applying tension changes stiffness...

1,000¢ :
[ e Application of
100 1 “prestress” changes
I 1 network
g [ i
E.L'[ 10 _ = -
G F = Polyacrylamide - * Motors can apply this
I -~ Collage 7 o ”
< Fibrin osciliatory prestress” to tune
T 5 network properties
- © Neurofilaments :
1 1ol Lo v el r 0ol N B AN
0.01 0.1 1 10 Gardel, et al. PNAS (2006)
Y Koenderink, et al. PNAS (2009)
“Excess Length”
Storm, et al. Nature (2005) L L,
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Effects of Cell Activity on Rheology

B Thermal Transport C  Motor Transport D Active Diffusion

Guo et al., Cell (2014)
Stam and Gardel, Developmental Cell 30(4) p. 365-366 (2014)
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Motor Proteins

SArcomere

Muscle fiber or cell

Z line
line
sarcomere

I Band

C Prprettat e s Thick Filament
© Thin filament Convert chemical energy

into mechanical work

www.ucl.ac.uk

‘.-hb,t'.' -
el S
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Effects of Cell Activity on Rheology

B Thermal Transport C  Motor Transport D Active Diffusion

Guo et al., Cell (2014)
Stam and Gardel, Developmental Cell 30(4) p. 365-366 (2014)
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Bottom Line...

 Microrheology methods are excellent means of characterizing
soft biomaterials

e Entangled polymer theories have limited usefulness in
understanding cell mechanics, but concepts from polymer
physics and statistical mechanics are essential

e We still understand very little about cell mechanics, but now

have a decent set of theoretical and experimental tools

e Connecting physical models (often phenomenological) to
detailed molecular mechanisms remains a challenge.
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