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1.Sequence-sequence alignment
* How to align two given seguences.
Possible alignments for KIAS and KAIST:
K-IAS- KIA-S- KIAS
KAI-ST K-AIST KAIST

2. Structure-structure alignment
 How to align two given sequences

3. Sequence-structure alignment
* Protein structure modeling

€<y, Center for In Silico Protein Science http://lee. kias. re. kr



Physics & Protein Structure Prediction (Il)

1. The goal is to achieve better protein modeling by fusing
Informatics-based methods with a principle of
physics (global optimization)

2. The task was to map protein modeling using
templates into a series of combinatorial
optimization problems

3. The reality was to learn TBM (template-based
modeling) by making lots of mistakes in a real
situation (CASP7, 2006)

KIZS @39 Center for In Silico Protein Science http://lee. kias. re. kr



We formulate protein 3D modeling as a series
of combinatorial optimization problems:

e Multiple Sequence Alignment (MSA) - optimization of
a frustrate system [Biophysical J. 95 4813-4819 (2008)]:
— generate pair-wise alignments between all pairs
— from each pair-wise alignment, generate residue-to-residue

restraints = a library of restraints - a frustrated system

e All-atom chain building from MSA - another
combinatorial problem of the modeller energy function
[Proteins 75 1010-1023 (2009)]:

— modeller energy is a collection of competing terms including
distance restraints from MSA and stereo-chemistry terms -
inherent frustration when dealing with more than one template

— modeller energy is treated as a black box for optimization

e Side-chain modeling is a combinatorial optimization of
rotamers for a given backbone structure

KI':'S
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Seq A,;: ARGTCAGATACGLAG---PGMCTETWV----
Seq A,: ARATCGGAT---IAGTIYPGMCTHTWVIAGQ
Seq A;: ARATCE--TACG--GTI-PGMCTHTWVIA--

The system is intrisically frustrated as in the SK spin-glass system.
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3D Modeling by Global Optimization

* Energy Function

EgE +E

stereo-chemistry

uphmu
E EDFA-*-EHH(-*-E E

templates vew r,rnu,ri hbond

E....... -restraints from templates (Lorentzian shape)
E,, > dynamic fragment assembly term

E,.. . dfire statistical potential term

. orientation-dependent statistical potential term

E.... -local hydrogen bonding term

ab initio
modeling terms

* Global Optimization by Conformational Space Annealing
(CSA)

Ki''s e 2
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CASP7 Experiment

e 2006, May -- August
e About 200 prediction methods are tested
o Total of 104 targets (9 cancelled)

e Three major categories:
— High Accuracy Template Based Modeling (28 domains)
e Use fine resolution measures for backbone assessment
¢ Side-chains are also assessed
e Only model 1s are considered
— Template Based Modeling (108 domains)
— Free Modeling (16 domains)
e Physics-based methods have chances for providing
competitive protein models
o Official results are available from CASP7 conference
homepage (11/26-11/30/2006) and Proteins CASP7 issue

KI':'S
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Proteins 69, Issue S8, 27 — 37 (2007)
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- CASP7 High Accurac

n,, GDT-HA ALO

26  0.995 0.727

15249 (taylor) 0.351
15186 (Casplta-FOX) 0.289
TS004 (ROBETTA) 0.382
T1S671 (fams-multi) 0.657
TS010 (SAM-TO06) 0.562
1S234 (McCormack- 0.338
Okazaki)

1S664 (CIRCLE-FAMS) 0.630
1S209 (NanoDesign) 0.353
TS568 (CHIMERA) 0.636
TS559 (GSK-CCMM) 0.484
TS338 (UCB-SHI) 0.522
15024 (Zhang) 0.795

A total of 174 groups




Conclusion of the official CASP7 assessment for HA/TBM
targets [Proteins 69, Issue S8, 38 — 56 (2007)] reads:

“A number of groups did well in the HA/TBM
category. Group 556 (LEE) stood out as the only
group that performed near the top according to
all criteria investigated: fold quality (particularly
GDT-HA), side-chain rotamer quality, and molecular
replacement model quality”.

&Ly, Center for In Silico Protein Science http://lee. kias. re. kr



CASP 7--10

e May-Aug of 2006, 2008, 2010 and 2012.
e For each CASP, over 200 prediction methods are tested.
e We tried 2 methods: LEE and LEE-SERVER (server)

e Highlights of LEE & LEE-SERVER predictions:

— For TBM targets:
e Co+ other details: LEE & LEE-SERVER are top methods of choice.
e Models are good not only in backbone accuracy as well as side-chain accuracy.

e CASP11 was carried out during May-Aug of 2014, and the
result is available from the CASP11 webpage
— LEER/nns is one of the top 5 methods for FM targets.
— LEER is the best method for TBM targets.

— LEER/LEE/nns is the best method for distance-information-assisted
targets intended for solving large proteins using NMR spectroscopy.

KI':'S
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CASP11 report

(1) Template—free modeling of proteins

(2) Template—based modeling of proteins

(3) Protein structure modeling using sparse & ambiguous NOE
restraints

Dec. 8, 2014
Iberostar Paraiso, Riviera Maya, Mexico

* Fold Recognition: Sung Jong Lee (U. of Suwon, Korea) & Keehyoung Joo

+ Protein 3D Modeling: Keehyoung Joo, InSuk Joung, & Sun Young Lee

* Model Refinement: InSuk Joung & Qianyi Cheng

* Quality Assessment: Sun Young Lee & Balachandran Manavalan

+ Database: Jong Yun Kim

* Community Detection and X-ray crystal B-factor: Juyong Lee (NIH, US)

* Others: Jong Young Joung, Seungryong Heo, Mikyung Nam, In-Ho Lee (KRISS, Korea)

WL Center for In Silico Protein Sclence http://lee. kias. re. kr



Data-driven modeling Strategy-dependent modeling

(determination/T[sc]) (prediction/T[0px])
Sequence Sequence
bae?fl'uial Search Energy Search
N Method Function Method

properties

3D model 3D model

*Search Method: Conformational Space Annealing (CSA)

Energy/score function contains:
physics/statistical/bioinformatics terms

€ Center for In Silico Protein Sclence kttn://les. kiss. ve. kv



3D Modeling by Global Optimization

* Energy Function

EgE +E

stereo-chemistry

uphmu
E EDFA-*-EHH(-*-E E

templates vew r,rnu,ri hbond

E....... -restraints from templates (Lorentzian shape)
E,, > dynamic fragment assembly term

E,.. . dfire statistical potential term

. orientation-dependent statistical potential term

E.... -local hydrogen bonding term

ab initio
modeling terms

* Global Optimization by Conformational Space Annealing
(CSA)

Ki''s e 2
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CASP7 Assessor's presentation by Randy Read
for High-Accuracy TBM

Improvement on templates for TO315

The challenge is to extract max information from
multiple templates without the native structure
information.



LEE modeld

QUARK modelt
TM-score = 0.6740

TM-score = 0.5654

nns modeli
TM-score = 0.4392

native

LEE modell for TO816-D1 was generated using 12 templates with TM-scores ranging from
0.29 to 0.56 including two models on the left. In the LEE model, two helices at the both N- and
C-terminals look similar to the ones of nns modell while two helices in the middle look similar

to the ones of QUARK modell. T

Kl is @y, Center for In Silico Protein Science http://lee. kias. re. kr




mryprotein-me TS1
HHPredA_T51
nns_TS1
QUARK_T51 | ' |
Zhang Server_IS1

LEER 2
LEE 2

0 20 a0 80

() T0827-D2 Alhgnment

16

Kl is &y, Center for In Silico Protein Science http://lee. kias. re. kr



Three topics to cover

(1) Community detection of a network by modularity
optimization

(2) Materials design: Direct bandgap silicon crystal

(3) Protein structure prediction and NMR protein structure
determination:
— Using NOE and DHI restraints data from experiments

— Protein structure modeling using sparse & ambiguous NOE
restraints

KIZ'S &y, Center for In Silico Protein Science http://lee. kias. re. kr



NOE restraints

NOE: Qualitative Short-
Range Distance

w\ NOE 1/
r

%,

Ambiguous Distance Correction

NOE: “Nuclear Overhauser Effect”

Ambiguous (trivial & non—-trivial) NOEs are those for which more than one
assignment 1s possible.

R=( Zdi—é) 0 the effective or summed “distance” between
J more than two atoms.
ij
cf.
R=min{d--} the minimum “distance” between more tlll8an
KIHS Y two atoms.
N €Ly, Center for In Silico Protein Science http://lee. kias. re. kr




5. NMR structure "DETERMINATION”
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KI

P3. Modeling a protein structure based on NMR data

Go to BMRB http://www.bmrb.wisc.edu/ and download NOE and DIH
restraints for 2G1E, or alternatively go to
http://lee.kias.re.kr/~protein/wiki/doku.php?id=nmr:.data: and download
NOE and DIH restraints for 2G1E.

For a given correct distance pair, flat bottom restraint energy function
can be used. That is for 1.8 < r < Distance, no penalty is applied. But
for r >Distance, penalty in the harmonic form can be applied.

Try to build a model of 2G1E which is consistent with the NMR data
and all the stereochemistry of the protein (bond length, bond angle, no
atomic clashes, etc)

How similar is your model to the actual native structure of the protein?

€<y, Center for In Silico Protein Science http://lee. kias. re. kr
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P4.

Modeling a protein structure based on ambiguous NMR data

Go to the following page and search for Ts763:
http://www.predictioncenter.org/casp11/targetlist.cgi

Download the ambiguous NMR data of Ts763 (Ts763.tar.gz) from the
following page and examine the data
predictioncenter.org/download_area/CASP11/extra_experiments/

Each line of the restraint data corresponds to an NMR peak arising from
two hydrogen atoms positioned within a given distance. You should note
that many peaks are represented by more than a distance pair, therefore
the ambiguity arises. But, at least one of the provided distance pair is
correct.

For a correct distance pair, flat bottom restraint energy form can be used.
That is for 1.8 < r < Distance, no penalty is applied. But for r >Distance,
penalty in the harmonic form can be applied.

Try to build a model of Ts763 which is consistent with the NMR data and
all the stereochemistry of the protein (bond length, bond angle, no atomic
clashes, etc)

How similar is your model to the actual native structure of the protein?

€<y, Center for In Silico Protein Science http://lee. kias. re. kr



Energy Function

Etot — ENMFR + Eprotein—chemist-ry (1)
Enmr = wNoEENOE +wprn Epra (2)
Epratein—chﬁmistry — Esterea—chemist'ry + ECH’IAP + Echi-raﬁ T E-repulsive: (?’)

Eoprotein—chemistry Contains energy terms dictated by the protein chemistry such as
Estereo—chemistry t0 maintain proper bond lengths, bond angles, torsion angles and improper tor-
sion angles, Ecprap [22] to provide a cross-term correction for two adjacent torsion angles in
Estereo—chemistrys Echiral 10 keep the chirality of the amino acid residue in the L form, and E,c uisive

to avoid atomic clashes.

S B

[ ~ o

&Ly, Center for In Silico Protein Science http://lee.kias. re. kr



Protein NMR structure “re—determination"
by global optimization (under review)

23
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Table I1. Comparison of structure qualities between PDB and CSA structure models for 30 targets.

PDB Nres NOE (A) DIH (*) Favoured (%) Outlier (%) Clash
2G1E 90 0.077/0.003 0460/0.022 8955/ 96.08  2.05/0.00 3.13/1.00
2KLT 71 0.006/0.000 0.980/0.019 90.22/ 96.09  1.96/0.65 12.92/1.09
2KO3 76 0.003/0.001 0.130/0.002 95.41/99.39 0.41/0.00 12.99/0.00
2RNG 79 0.017/0.001 0.190/0.011 81.97/97.40 213/1.30 108.08/0.00
2ZROG 66 0.169/0.005 0.410/0.007 9273/ 97.34 1.88/1.33 0.94/0.00
2ROT 70 0.006,/0.001 - 04.27/ 96.40  0.22/0.07 0.26,/0.00
2VRD 61 0.020/0.001 - 87.78/ 94.41  0.90/0.04 17.44/0.00
2Y'50 5 0.011/0.001 0.060/0.000 75.37/96.57 3.06/0.37  20.78/0.00
2TV 79 0.001/0.001 0.010/0.006 92.73/96.23 0.46/0.00 0.00/ 0.00
2YUL 82 0.006/0.002 0.030/0.001 8544/ 97.25 0.88/0.00 35.94/1.66
2YUN 79 0.002/0.001 0.020/0.016 86.10/ 96.23  1.10/0.00 19.27/0.00
2YUo 78 0.001/0.001 0.010/0.008 90.26/ 97.43 0.99/0.20 13.09/0.00
2YUM 75 0.002/0.001 0.010/0.000 R1.58/96.99 1.58/0.07  26.78/0.00
2PIF 68  0.043/0.002 - 84.62/ 93.48 3.94/0.00 102.77/0.36
2ROE 66 0.015/0.001 - 07.34/ 98.44  0.00/0.00 0.89,/0.00
2772 66 0.042/0.001 - 80.69/ 95.70  1.72/0.00 16.14/0.28
1XJH 62 0.020/0.001 - 03.33/ 98.33 0.00/0.00 0.32/0.00
2YUZ 100  0.042/0.001 0.050/0.027 885.47/98.83 1.22/0.15 15.44/0.00
2YR3 99  0.002/0.001 0.080/0.003 90.21/95.93 1.24/0.05 11.72/0.00
INOC 99 0.024/0.001 - B5.77/ 9577  2.78/0.00 18.55/0.32
2Y'10 94 0.002/0.001 0.020/0.003 8419/ 97.34 0.44/0.00 23.12/0.78
2YUP 90  0.001/0.001 0.010/0.003 8540/ 98.86 1.25/0.00 16.68/0.00
2YUK 90 0.003/0.002 0.010/0.000 858.13/98.92 0.57/0.00 32.01/1.15
2KO6 89 0.018/0.001 0.550/0.007 9052/ 98.91  1.49/0.00 14.65/0.00
2KL1 87 0.062/0.002 0.740/0.008 90.71/99.77 2.71/0.00 13.63/0.00
2YUQ 85 0.001/0.001 0.000/0.000 8952/96.08 0.60/1.21 11.18/0.00
2KLS 85 0.004/0.000 0.300/0.006 9470/ 98.13  0.48/0.00 13.67/0.25
2ZROW 84  0.004/0.001 0.230/0.007 78.66/ 9597 549/1.22  27.07/2.90
2NRG B2 0.022/0.004 0.860/0.031 7750/ 97.50 6.25/1.25 50.15/0.77
2Y QI 81 0.003/0.001 0.205/0.002 91.84/ 99.94 0.70/0.00 21.58/0.00
Ave 0.021/0.001 0.233/0.008 88.13/97.19 1.62/0.26  22.04/0.35
Std 0.033/0.001 0.209/0.009 545/ 1.55  152/0.47  25.48/0.66

@y, Center for In Silico Protein Science

http://lee. kias. re. kr
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Ts targets of CASP11

« Sparse NMR distance restraints that reflect data available
In the initial stages of the state-of-the-art NMR study of a
large protein is provided.

« Many restraints are ambiguous. For each NOESY peak
one or more distance restraints are provided, of which at
least one is correct.

* The corresponding constraints are sparse and usually not
sufficient to refine the structure using standard NMR
packages.

« The challenge for us is to either solve the structure using
more sophisticated modeling techniques or to provide at
least partially correct models, facilitating interpreting more
complex NMR data sets.

K%g Center for In Silico Protein Science http://lee. kias. re. kr
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19 Ts targets in CASP11

Targets Nres Npeaks Npeaks/residue | Max Npair| Avg Npair Avg upper (A)
Ts761 237 3106 13 540 36 7.9
Ts763 130 2029 15 270 22 8.0
Ts777 345 2400 6 1296 71 5.9
Ts785 112 694 6 351 29 6.2
Ts794 462 3132 6 2232 122 6.1
Ts800 212 1459 6 1053 74 6.1
Ts802 118 530 4 135 14 6.0
Ts804 194 884 4 1395 43 59
Ts810 113 739 6 270 18 5.9
Ts814 397 2290 5 1314 69 6.0
Ts818 134 516 3 162 13 5.6
Ts824 108 522 4 207 9 5.8
Ts767 274 1564 5 396 34 5.9
Ts806 256 1791 6 1368 88 6.1
Ts812 183 980 5 684 29 6.1
Ts826 201 1666 8 2448 96 6.0
Ts827 158 1091 6 918 46 6.0
Ts832 209 1472 7 1035 68 6.0
Ts835 404 3517 8 2106 106 6.1

Average 224 1599 6 957 52 6.2

* Npeaks/residue ~ 15, Avg Npair ~ 2 (for 30 PDB)

€Ly, Center for In Silico Protein Science

http://lee. kias. re. kr



Tsc
Tsc protocol: two-level optimization problem

E=Enoeft £

stereo-chemistry

repul
+ E + E{‘f!i:‘u!'+ E( ‘MAP

vdw

k(R-d,,), R>d,,,
fi"\“."_: Z 1 AfR-{fuunj:' R{{,H:HJ

Here (). in between

Chiral torsion (CA-N-C-CB) ~ +35 | Zr,'(—z,,}"

chiral

Two-adjacent-dihedral-angles cross-term E - Z w)
(CMAP from CHARMMZ22) “CMAP™ u( gy

ifr. g

*Initial structures: 1) fold recognition models generated by the early
stage of nns. 2) other server models after clustering.

*2-level optimization: 1) NOE assignment and 2) 3D model generation
*Single re-minimization: LBFGS using E' = E + Eelectro-static + Egbsa
*Model selection: 1) by clustering 2) higher ramachandran favored
score, lower outlier, lower clash score (lower restraint violation)
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The first target--- Ts/061

MMKLARKSVPFITAVALLAACLLAVGLSPLVLPDYKGTIEEREQPQNFNLLYLNSGEELNLYPWNLYTGQEQELFEEEIVSFAANSVRI
LGGGSWTDEELYPLIKFRYSGQDLRFLKDMALTEKDGRRYLVNMALDPNGLCYFSYVNQDEREATADEMDQALGKLQEDWEKFLSDPLP
ADSEVDLYEEKPSGSYQLDDGELKTDNAFYMFFMRCQMLSDQMRKEQYSDYIGDNLYTIWELVLKSEFTSLSYDNHIYAMYSNDGGTSM
VLIYSPIEERFVGFSLKY

Nres = 237 aa

Npeaks = 3106 (= the number of NOE distance restraints)

Ambiguity of NOE peaks —_—
DB: 2G1E.(Nres=90. Npeaks=.1076)

600 : : ; ‘ ‘ 450
400+ -
500
350H] -
g o £ 250| ‘Max Npair = 36
% 300 ~Max Npair =540 | 2 - Max Npair =
o . & 200} - .
T Avg Npair = 36 = ~Avg Npair=2
‘ ' ‘ 100}
100
| | : 50+
0 “mL_Lnli.L.. . j j 0 l‘ 1 i P i i ia
0 100 200 300 400 500 600 0 5 10 15 20 25 30 35 40
The number of atom pairs for NOE peaks The number of atom pairs for NOE peaks

€Ly, Center for In Silico Protein Science http://lee. kias. re. kr



Ts761 (237 aa)

Model1 Tc761
NOE ~ 0.002 A

E&%f;g 8%2232 Favored ~ 84%

Outlier ~ 11% Outlier ~ 5%

poor secondary

structures Ox/?ili RMSD ~ 17 A

J— -/
N

Re-calculated native
NOE ~ 0.000 A

;h:lg,%r;é) ,?%919 Favored ~ 99%

Outlier ~ 1% Outlier ~ 0%

" RMSD~21A

Ts
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“TM-score & RMSDs: 1S
Results for |9 Ts targEtS (LEE) Reds: using native structure

otherwise: using Tc structures

Targets Nres TM-score RMSD(A) NOE(A) Favoured (%) OQutlier (%) Clash

Ts761 237  0.9084 2.11 0.000 93.81 0.95 0.00 recalculated
Ts763 130  0.8589 2.15 0.001 89.84 1.56 0.00

Ts777 345 0.7113 5.60 0.002 77.26 9.04 0.00 recalculated
Te785 112 0.8290 4.00 0.001 04.55 1.82 0.00

Te794 462  0.8290 4.35 0.002 86.52 3.26 0.28

Ts800 212  0.8334 1.60 0.000 93.33 0.48 0.00

Ts802 118  0.7815 2.68 0.000 89.66 3.45 0.00

Ts804 194  0.7350 4.90 0.000 89.06 417 0.00

Ts810 113  0.7478 5.18 0.000 92.79 0.00 0.00

Te814 397  0.8125 257 0.001 86.84 5.32 0.00

Te818 134  0.8676 2.05 0.001 92.42 0.76 0.00

Te824 108  0.8332 2.32 0.001 94.34 0.94 0.00

Ts767 274  0.8958 2.33 0.002 87.87 1.47 0.45

Ts806 256  0.8905 2.39 0.001 90.55 1.58 0.00

Ts812 183  0.8003 3.40 0.001 82.32 4.97 0.00

Te826 201  0.7722 4.54 0.002 87.44 1.01 0.00

Te827 158  0.4627 8.90 0.003 80.77 3.21 0.00 2 domain (orientation is different)
Te832 209  0.8410 253 0.002 87.92 2.42 0.00

Ts835 404  0.9398 1.93 0.004 90.30 2.74 0.62

Average 224 0.8184 3.45 0.001 88.82 2.59 0.07
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Structure Examples

Ts763 (130aa) ~ 2.1 A

Ts767 (274aa) ~2.3 A Ts806 (206aa) ~ 2.3 A

Ts800 (212aa) ~ 1.6 A

Ts835 (404aa) ~1.8 A

Ts



Modeling of Ts767 (274 aa)

~ 200 CPU cores of Intel Xeon X5670 at 2.9 Ghz

18 . . . ; native
Ts767rmsd v (022 ——— —_ o,
aﬂ% Fav ~ 36% Fav ~ 98%

T
&
N

RMSD (A)

", FaV -~ 57%

Fav ~ 65%

B
~ 20 hou, 7

|
'l
6 &x 0. Fav~ 73%
| ~ 24 hour &4 ‘, Fav ~ 88%
r EHET / 02 P
4l (SN
@W
(1] 50 100 150 200 250
index of minimum energy structure ~ 6 days (2,3 A)

&Ly, Center for In Silico Protein Science http://lee. kias. re. kr



Ts

LEE vs BAKER

100.00

LEE *19 Ts targets

*Official GDT-TS score

77.50

*Ts761 & Ts777:
Failure is due to dum “smart”

55.00 atom-palir screening

3250

10.00

10.00 3250 55.00 77.50 100.00



LEE(R) vs best of the others (20:4)

100.0
LEE & LEER wins 0
O
81.3 0O
o0 © 6 “o
o Tc777
O O
625 O
O
o Tc812
438
(o]
Tc767 Best
from the others
250

25.00 4375 62.50 81.25 100.00

-
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Accurate protein models

!

Better understanding of
biological mechanisms?

K% Center for In Silico Protein Science http://lee. kias. re. kr



Determined a protein complex structure of condensin, MukBEF by
combining X-ray data and protein modeling (with Prof BH Oh): “Structural
Studies of a Bacterial Condensin Complex Reveal ATP-Dependent Disruption
of Intersubunit Interactions” Cell 136 85-96 (2009)

http://lee. kias. re. kr
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Protein folding problems

Protein Structure Prediction:

For a given protein sequence, to determine its 3D
structure by computation

Protein-Folding Mechanisms:

By what process does a protein folds into its native and
biologically active conformation?

Inverse Folding:
For a given protein structure, to design its 1D sequence

€<y, Center for In Silico Protein Science http://lee. kias. re. kr



Protein-Folding Mechanisms

Random search of all conformational space requires
an immense amount of time (longer than the age of
universe). €= In vitro refolding normally takes

seconds or minutes.
—Levinthal paradox

. Consider a small protein with 100 amino acids.

2. |If we assume that each residue can take a structure out of three
secondary element of helix, sheet, and coil, the total number of possible
structures of this protein is 3'%° (or about 1048).

3. The time scale for a residue to reshape from one SS to another >10°14
sec (time resolution for a bond to rotate)

4. Time to find the native structure of the protein by random search >1034
sec (1026 year) = Longer than the age of universe!

5. Conclusion: There must be folding pathways!!!

—l

- Folding pathway problem: identifying intermediates
and constructing folding mechanism

kil's

N &Ly, Center for In Silico Protein Science http://lee. kias. re. kr




random coil

maximum
enthalpy

Transition state
««——entropy ——»

minimum

enthalpy ¢/ Native state

minimum entropy

Various models for protein
folding

KI':'S

Hydrophobic collaps:\
and rearrangement

/ Frame work of 2° structure

<;\

Nucleatior;/

€.y Center for In Silico Protein Science

J
—

“)

Unfolded

Jigsaw model \ /

(multi-paths)

http://lee. kias. re. kr



Computational Studies on Protein Folding Mechanisms

->No success yet on simulating protein-folding processes.
Existing approaches:
(1) direct folding simulations (e.g. Kollman’s 1us MD on HP-36):
no foldings yet observed in simulation: accuracy of the potential energy?

recent MD simulations using Anton (mili-second simulations): Science
v334 page 517 & Biophys J. v100 page L47.

(2) simple (lattice, minimal, ...) models: HP, BLN, etc

trying to understand principles of protein folding
not realistic
(3) consider only native interactions (Go-type models):
not realistic
U
(4) unfolding simulation:

folding is the reverse of unfolding 7?7

KIZ'S (ng, Center for In Silico Protein Science I http://lee. kias. re. kr



Adenylate Kinase (AdK)
Lee, J.,Joo, K., Brooks BR, Lee, J. (in press)

One of the most investigated
systems for conformational changes

Phospho-transferase enzyme
2ADP &> ATP + AMP

Essential in cellular energy
homeostasis

LID, NMP and CORE domains

PDB ID: 1AKE

€Ly, Center for In Silico Protein Science http://lee. kias. re. kr



Mechanism

Closed:
1AKE

conformational distribution 4AKE
“substrate-free AK o |

4 ‘P L g‘;«% -
-“/deconvolution "\ -

04 07 1 1.3 1.6
R/Ro

Hansen et al. (2007) PNAS 104 18055

@ Center for In Silico Protein Science http://lee.kias. re. kr

No

Probability Density
ol -l
% ¥




Questions

1. Which residues are crucial for the conformational change?

2. What is the transition state(s)?
* LID domain first vs. NMP domain first
« symmetric pathway vs. asymmetric pathway

3. Intermediate state?

4. Comparison with NMR amide-bond fluctuation experiment
data

€Ly, Center for In Silico Protein Science http://lee. kias. re. kr




All-atom simulations

« MD + Principal component analysis
— RI Cukier, (2006) JPCB
* Umbrella sampling
— Arora & CL Brooks, (2007) PNAS
* Dynamics importance sampling
— Beckstein et al., (2009) JMB
* 100 ns MD simulation
— Brokaw & Chu, (2010) Biophys.

* Minimum energy path

— Matsunaga et al., (2012) PLoS Comput. Bi

Only 1~2 transitions are observed!!

kil's

N &Ly, Center for In Silico Protein Science http://lee. kias. re. kr




KI

Coarse-grained models

Protein is represented by C_ trace.
Pseudo angle/dihedral angle as well as
C_- C_ distance restrains are used.

— Mixed plastic network model: P.
Maragarkis & M. Karplus, (2005) JMB

— Double-well network model: J. Chu & G
Voth, (2007) Biophys.

— Structure-based model/Go-model:P.
Whitford et al., (2007) JMB

— Mixed Go-model: MD Daily et al. (2010)
JMB

Chemical details are missing and

. 1 _
consequently agreement with H=—I _ ponarive
experimental data is either rather 9l Z ; (&f &; )
limited or none. R

S

&y, Center for In Silico Protein Science
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GOAL

* To perform straightforward all-heavy-atom MD
simulations (solving an initial value problem).

* To observe numerous spontaneous conformational
transitions of AdK between the open state and the
closed state for atomistic investigation of
conformational changes of AdK.

* Necessary conditions:

— need to stabilize two given structures (open and closed)
- structure-based modeling (Go model)

— need to establish a minimal free energy barrier between
two states - proper mixing of two given structures

€.y, Center for In Silico Protein Science http://lee. kias. re. kr



Our approach with all-heavy atom representation of protein

H=H sigreochemisiry + 1”1»:::"&’ H vl + 1“50&{&5{ H comact
=Y K,(0-b"Y+ > K, (6-6")Y + ) K,(1+cos(ng—5))
Bonds angles dihed

([ ym)™ () Physics-based terms
# > K, (0-0") +wm25u {.J _ki’;JJ

improper

I#

1 (?" . rH{IHW)

H{]‘HW

+1v{:5?ﬁ’{?{:i’ : :

COMIACs

Structure-based terms

o (rg,. ) + o'

1. Start with a PDB structure of AdK.
T=300K, equilibration MD simulation of 2 ns is performed.

3. A total of 300 straightforward separate MD simulations (T=300K) are
performed starting from a randomly perturbed structure. > A total of

6us MD simulation is performed where RMSD is measured from two
native structures of AdK [BMC Bioinformatics, 16, 94 (2015)]

KI':'S
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Lorentzian structure-based mixing (our approach) vs.

coventional Boltzmann weighted mixing scheme

-2 -1 0 1 2 -4 -3 =2 -1 0 1 2 3 4

€.y, Center for In Silico Protein Science

o PR -R,) ]

02 "2
R,DJ, ):Zl ( i7 }E’j) : H(Ry): —ﬁlﬂ[é’ B(R;~Ry) n
’ o (R —R)) +o’
Best & Hummer, Structure (2005)
Daily, Phillips & Cui, JMB (2010)
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Benchmark I:

Comparison of atomic B-factor values between
experiment and simulation shows improved results in
correlation than existing methods.

168
148
128
1008
a0
68

48

28

Correlation coef, = 8,783

HD {divided by 18} — 7

oy

Ergstél

208 4008 608 i) 1888

&y, Center for In Silico Protein Science
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Multiple Spontaneous Transitions

10.0 20.0

0.0 5.0 10.0 15.0 20.0
Time (ns)

Over 1,000 spontaneous transitions are observed
during 6us MD simulation

Kl is &y, Center for In Silico Protein Science http://lee. kias. re. kr
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RMSD,(A)

Structural clustering analysis of TS and MS

Conformations in TS and MS are separatly used
to construct two non-weighted networks using 24
RMSD cutoff:
TS network is divided into 2 giant-component
LID-twiste disconnected clusters

NMP-closett & k}j& *MS - 1 giant-component cluster

Alee LID-
| closed
NMP-open

Meta-stable State

LID-open
NMP-closed

w

Transition States

RMSD,(A)

' Silico Protein Science http://lee. kias. re. kr



LID-closed & NMP-open conformation is dominant

LID-closed

LID-twisted
NMP-closed %

&Ly, Center for In Silico Protein Science http://lee. kias. re. kr



Table 2: A comparison of top 16 highly fluctuating residues identified from the
experiment and the simulation

Type Residues
NMR experiment 60, 103, 89, 129, 42, 144, 156, 138, 50, 31, 55, 108, 189, 124, 194, 2
1-— 52 42, 151, 131, 147, 143, 156, 127, 57, 102, 139, 7, 2, 196, 108, 135, 26
VAR 42, 7, 131, 156, 80, 102, 151, 85, 144, 30, 57, 108, 2, 195, 124, 26
DEV 30. 7, 80, 154, 60, 124, 109, 42, 84, 130. 138, 196, 12, 102, 2. 89
Hinge regions' 29-30, 42-50, 59-61, 79-81, 110, 120, 158-161, 173-177

The residues are listed in the descending order of fluctuation. For the NMR data, more
dynamics residues are represented by smaller S? values are less than 0.81 are shown. The
residues adjacent to the peaks less than four residues apart are considered to be redundant,
and not shown. For the simulation results, the residues, which agree with the experiment
within the residue 1111111ber difference of 3, are shown in bold.

S2 = ([3(,&.NH(U)#\H —1]/2) witht=2ns;

VAR = /(%) — (9)2 + \/ ) = (0)2

DEV = [(&)rs1 — (®)os| + [(@)1s1 — (d)os| + [(V)rs1 — (V)os| + [(¥)rs1 — (¥)es].

T The hinge regions were identified based on the variation of pseudo angles and pseudo
dihedral angles between OS and CS.?

KIZ'S &y, Center for In Silico Protein Science http://lee. kias. re. kr
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