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« Contents:
— How to obtain the ground state
— Global optimization methods

— Proteins: What we know and what we don’t know
» Structure prediction/determination
* Folding mechanism

— Levinthal’s paradox
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Examples of Phase Transitions in Nature

Water—vapor transition (boiling of water)
lce—water transition (crystal melting)
Protein folding

Spin systems:
— 2D Ising model
— Sherrington—Kirkpatrick spin glass
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Global Optimization

Many problems in science and engineering are
optimization problems.

Efficient acquisition of the ground state and/or low-
lying excitations is often sufficient to understand the
essence of the problem (especially when T<Tc).

“Prediction” followed by “experimental validation” is
one area where theories and experiments can work
together.

Generating 3D atomic models consistent with
experimental data is also an important area where
computation can contribute significantly =» X-ray and
NMR protein structure “determination”.
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Speaker’s Network of This School

A weighted network
Nodes are speakers and organizers
Edge weights are from Google

as.re. kr



Three topics to cover

(1) Community detection of a network by modularity
optimization

(2) Materials design: Direct bandgap silicon crystal

(3) Protein structure prediction and NMR protein structure
determination:
— Using NOE and DHI restraints data from experiments

— Protein structure modeling using sparse & ambiguous NOE
restraints

&Ly, Center for In Silico Protein Science http://lee.kias. re. kr
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“Community/Module Detection”

by Modularity Optimization

Divide a network into sub—graphs/mod
ules

— nodes are more densely connected int
ernally

The most commonly used objective fu
nction to evaluate the quality of partiti
nis Q proposed by Girvan and Newm:

n r |S_ &
Q‘;lf (2Lj

|, : Number of intra-community edges in s
d. : Sum of degrees of nodes in s
L : Total number of edges in a network
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Which one is better?

Zachary’s karate club network
Friendship network of members

Q=0.<cv w—J.379

We need an objective function!

&y, Center for In Silico Protein Science
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Two Issues with Modularity Q

(1) Difficulty of the problem:

— Finding the best Q partition is a hard combinatorial optimization
problem (NP—hard)

— The current best stochastic optimization method is simulated
annealing (SA)

(2) Relevance of the objective function:

— |s a higher—Q solution more useful to extract hidden information
from a network?

— "So far, most works in the literature on graph clustering focused
on the development of new algorithms, and applications were
limited to those few benchmark graphs that one typically uses
for testing" from Community Detection in Graphs (2010),
Physics Report

KI':'S
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Benchmark Test of Q—Optimization
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Benchmark Test #2: real-world networks

PRE 85, 056702 (2012)

CSA
Nodes Edges Network Ne Qumazr Qpub Qopi %fﬁ Source
62 159 Dolphins 5 0.52852 0.5285 0.5285 16.0 [25-27]
77 254 Les Miserables 6 0.56001 0.5600 0.5600 20.0 [27]
105 441 Political books 5 0.52724 0.5272 0.5272 100.0 [26-28]
115 613 College football 10 0.60457 0.6046 0.6046 100.0 (26, 27, 29]
198 2742 Jazz 4 0.44514 0.4451 - - [26, 28, 30, 31]
332 2126 USAir97 6 0.36824 0.3682 0.3682 0.0 127]
379 914 Netscience_main 19 0.84859 0.8486 0.8486 0.0 [27]
453 2025 C. elegans 9 1045325 0452] - - [32]
512 819 Electronic Circuit (s838) 16 0.81936 0.8194 0.8194 0.0 127]
1133 5451 E-mail 10 (058283 05821 - - [32]
6927 11850 Erdos02 40 [0.7I843°0.7169 - - 28]
10680 24316 PGP IDOW - - [28, 32]
27519 116181 condmat2003 80 [0.76745_0.761] - - [29]

TABLE III. Comparison between the maximum modularity values obtained by CSA, Q,4., With previously published ones,
Qpub, and the maximum values obtained by the exact method [27], Qp:, is displayed. N, denotes the number of communities
found by CSA. Source indicates the reference that the modularity value is collected. 973;;3 denotes the percentage of SA runs
that reached to the optimal modularity community structure.
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Speaker’s Network of This School

A weighted network
Nodes are speakers and organizers
Edge weights are from Google

as.re. kr



Speaker’s Network of This School

A weighted network

Nodes are speakers and organizers
Edge weights are from Google
Three communities with Q = 0.36
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Ferromagnetic Ising model on a 2D square lattice

Spin o can be up (+1) or down (-1)
If J > 0, ferromagnetic interaction

Interaction is only between nearest neighbors

T < Tc, magnetization is non-zero

T>Tc m=0

= —J Z ot

(%,7)

A
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Monte Carlo Simulation of a Canonical System

« Each microstate x contributes to the probability of
the system with the Boltzmann factor of P(x) «
exp[-BE(x)] where B is 1/KT

« Conditions to simulate a canonical system:

— system should be ergodic

— detailed balance: transition probability, T(i->j),
between microstates i and j obey Pi T(i=2))=Pj T(j—2>1)

— Metropolis algorithm:

 transition to a lower energy state is always accepted

* transition to a higher energy state is accepted with the
probability of exp(-AE/KT)

KI':'S
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Reviews on some optimization methods a

I. Simulated annealing (SA)

. Mimics the natural process of crystal forming from magma

. Generates MC moves as T is gradually lowered from high T to
low T

. The most general method b

’

Il. MC with minimization (MCM) ;

. Considers only local minima b’

. MC moves in the solution space of local minima

. Quite successful method!

. PNAS Vol. 84, 6611-6615 (1987); J. Phys. Chem. A 101, 5111-
5116 (1997) (Basin-Hopping Method).

lll. Genetic algorithm (GA)
. Pool of conformations (generation)
. Subsequent generations are obtained by mating and mutation
of parent generation by natural selection of fithess function

(evolution of species)
KI':'S
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P1. Sherrington-Kirkpatrick spin glass

Consider N Ising spins interacting with all the other spins.
Interaction coupling J is randomly assigned as either +1 or -1.

Hamiltonian is H=_3,. iigg
: <j) P00

VN

The goal is to find the ground state for a given realization of

randomness.

Try with N=511 and generate a realization of SK spin glass. Find the
lowest energy configuration using a global optimization method (SA or
MCM)

For 100 realizations of N=511 SK spin glass, obtain the average value
and the standard deviation of the ground state energy. Is the average
value close to - 0.752387

Reference: Ground-state energy and energy landscape of the
Sherrington-Kirkpatrick spin glass, Phys.Rev.B, Vol. 76, 184412 (2007).

€<y, Center for In Silico Protein Science http://lee. kias. re. kr
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Simulated Annealing for the SK spin glass

N=511;T=100;beta=1/T;iter=0;Emin=9999
Generate a random realization of Jij

between all pairs {i,j} using a random
number generator

DO i=1,N-1
DO j=i+1,N
if ran() > 0.5 then Jij=1, else Jij=-1
Jji=Jij
ENDDO
ENDDO
Generate a random configuration of
Spin(i)=+1 or -1 as above
Calculate the total energy—-> E;if E <Emin
then (Emin=E and save the current Spin())

Perturb the current configuration Spin()) by
the single random spin flip move;
iter=iter+1;if iter > 100 then (beta=beta/0.99
and iter=0)

Calculate the total energy of the new
configuration > Enew

7.

o

11.

Calculate p=exp {(E-Enew)*beta}
if ran() > p then GOTO 5
accept the move and set E=Enew

. if E <Emin then (Emin=E and save

the current Spin())
GOTO 5

€<y, Center for In Silico Protein Science http://lee. kias. re. kr
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10.
11.

MCM for SK the spin glass

N=511;T=10;beta=1/T;Emin=9999:iter=0;ite 12. Calculate p=exp {(E-Enew)*beta}

rm=1000

Generate a random realization of Jij 13. if ran() > p then GOTO 8

Generate a random configuration of 14. accept the move and set E=Enew
Spin(i)=+1 or -1, and calculate E 15. if E <Emin then (Emin=E and save
Perform quenching N times using the single the current Spin())

spin flip move 16. GOTO 8

If E is changed GOTO 4
Quenching is finished

if E <Emin then (Emin=E and save the
current Spin())

If iter>iterm then goto 17;Perturb the
current configuration Spin()) by “multiple”
random spin flip move

Perform quenching N times using the single
spin flip move

If E is changed GOTO 9

Quenching is finished; iter=iter+1

17. END

€<y, Center for In Silico Protein Science http://lee. kias. re. kr



Three topics to cover

(1) Community detection of a network by modularity
optimization

(2) Materials design: Direct bandgap silicon crystal

(3) Protein structure prediction and NMR protein structure
determination:
— Using NOE and DHI restraints data from experiments

— Protein structure modeling using sparse & ambiguous NOE
restraints

&Ly, Center for In Silico Protein Science http://lee. kias. re. kr



Issues with direct gap silicon crystal

 Silicon based materials are cheep - most solar
cell materials are all silicon based.

 EXisting silicon crystals are either metallic or of
Indirect band gap in their electronic structures.

 Indirect band gap material are inefficient as a
solar-cell material.

« Goal is to design crystalline silicon with direct
band gap.

K%g Center for In Silico Protein Science http://lee. kias. re. kr
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Global Optimization by CSA

* We optimized the internal energies of our
crystalline Si structures by using first-
principles guantum calculations, calculated
their electronic structures ab initio, and used
these structures to select direct-bandgap
solutions using CSA

* For a given number of silicon atoms in a unit
cell, we optimize the band gap property using
the unit cell shape and size and the 3D
positions of silicon atoms as variables

K%g Center for In Silico Protein Science http://lee. kias. re. kr



Direct band gap silicon crystal

LEE. LEE, OH, KIM, AND CHANG PHYSICAL REVIEW B 90. 115209 (2014)

TABLE I. For each structure, the lattice type, the number of atoms per unit cell, the volume per atom, the energy per atom relative to
diamond Si, the direct gap size (E;f ). and the indirect gap size (E;;,) are shown, based on the PBE calculations. Lattice types are abbreviated. such
as te: triclinic, bem: base-centered monoclinic, or: orthorhombic, pm: primitive monoclinic, bet: body-centered tetragonal, sc: simple cubic,
bce: body-centered cubic, rho: rhombohedral, and fecc: face-centered cubic. Q135 1s classified as a quasidirect gap semiconductor according to
the quasiparticle calculation, while it is of direct gap according to the PBE functional. All eight direct gap structures shown in the top eight
rows are confirmed as direct gap semiconductors in both calculations.

Structure Lattice Atoms (A%atom) (eV/atom) 7 (A). o, (A) 8(). 04 (%) E! (V) E] (V) Space group Ref.
D262 pm 10 21.02 0.08 2.37.0.04  109.26,8.17 0.29 P2y/m (No.11)
D12 or (C) 10 21.56 0.13 2.37.0.01 108.98. 11.19  0.50 Cmmm (No. 65)
D239 tc 10 22.72 0.16 2.37.0.03  108.69,13.50  0.77 Pl (No. 1)
D63 bcm 12 21.10 0.12 2.37.0.04  109.09.9.76 0.66 C2/m (No. 12)
D135 bcm 12 21.24 0.22 2.38.0.05 10842, 1473  0.64 Cec(No.9)
D243 tc 12 21.88 0.29 2.38.0.04  107.29.1842  0.61 Pl (No. 1)
D76 bcm 20 21.70 0.13 2.37.0.03  109.01,10.59  0.57 C2(No.5)
D979 tc 20 21.17 0.29 2.38.0.05  108.56.18.40  0.60 P1(No. 1)
Q130 bcm 12 21.86 0.08 2.37.0.02  108.97.9.78 0.64 0.63 C2/m (No. 12)
Q135 bcm 12 21.50 0.15 237.0.04 10895 11.78  0.93 C2/c(No. 15)

22
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PHYSICAL REVIEW B 90, 115209 (2014)

FIG. 3. Atomic structures of (a) D135, (b) Q135. and (¢) 1926 are
shown. No coordination defects are found.
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FIG. 6. (Color online) The thermal stability of D135 and Q135
is examined by performing first-principles molecular dynamics
simulations for 200 ps at temperatures 500 and 900 K for D135
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FIG. 7. The PBE electronic band structures of (a) D135, (b) Q135,

and (c) 1926 are shown near the Fermi level. The Bravais lattices of
D135, Q135, and 1926 are base-centered monoclinic.

and Q135, respectively. Potential energy fluctuations are obtained for
a supercell containing 96 atoms (eight unit cells).
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Materials design: direct-band-gap silicon allotropes
Phys. Rev. B 90, 115209 (2014)

to be stable up to 200 ps, which is much longer than previous
simulation times of ~10 ps [9].

The band gap variation against external pressure is shown
for D135, 1926. and diamond silicon in Fig. 4(b). We find that
the direct band gap of D135 is fairly stable upon the increase
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== p-Si (expt.)

40 F— D135
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FIG. 8. (Color online) The imaginary part of the dielectric func-
tion & () is shown as a function of photon enerrr} Data for D135
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FIG. 9. (Color online) (a) The spectroscopic limited maximum
efficiency (SLME) [38] is calculated as the function of film thickness
L for DI"ﬁ D(ﬂ QHO Ql%‘i Q?S Qll£}2 Q465, and 19”6 For
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Three topics to cover

(1) Community detection of a network by modularity
optimization

(2) Materials design: Direct bandgap silicon crystal

(3) Protein structure prediction and NMR protein structure
determination:
— Using NOE and DHI restraints data from experiments

— Protein structure modeling using sparse & ambiguous NOE
restraints

KIZ'S &y, Center for In Silico Protein Science http://lee. kias. re. kr



2 books about protein structure study for
mathematicians/physicists/computer scientists

3 Ingvar Eidhammer | Inge Jonassen | William R. Taylor

PROTEIN
BIOINFORMATICS

An Algorithmic Approach to
Sequence and Structure
Analysis

ALEXEI V FIN

@y Center for In Silico Protein Science http://lee. kias. re. kr



Proteins are important

Proteins —— Conftrol all cellular processes

scientific

sequence - structure = function
bottleneck
(genome) (post-genome)

The most challenging
problem of this century
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Structure-function relationship of
Potassium Channels

 In the field of cell biology, potassium channels are the
most widely distributed type of ion channel and are found
In virtually all living organisms. They form potassium-
selective pores that span cell membranes. Furthermore
potassium channels are found in most cell types and
control a wide variety of cell functions

« Using X-ray crystallography, profound insights have been
gained into how potassium ions pass through
these channels and why (smaller) sodium ions
do not. The 2003 Nobel Prize for Chemistry was awarded
to Rod MacKinnon for his pioneering work in this area.

€.y, Center for In Silico Protein Science http://lee. kias. re. kr



KIAS Protein Folding Laboratory
http://lee.kias.re.kr

1. Transcription

Human hemoglobin

=
<

rvA  Bg
muclectides ¥
maclear /

membrane

Protein folding problem

Protein synthesis *For a given amino acid sequence (of size

n),
find the native structure of the protein.

*Total # of protein structures: 10"
emathematically NOT well defined problem

sequence - —> structure ——>

KIZ'S @35 Center for In Silico Protein Science http://lee. kias. re. kr
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~ R “n (# of aa)

Proteins are chain molecules made of amino acids.
There are 20 kinds of aa. R=H,CH3,CH2-Ch2-5-Ch3,---
# of possible structures of a protein with n aa ~ 10"
~10° kinds of proteins in human body.

Each protein has a unique 3D structure.

TH by Anfinsen (Science, 181, 223 (1973)): 3D structure

of a native protein in its physiological environment is the

one in which the free energy of a “whole” system is lowest. (3D
structure of a protein is determined by its sequence and its
environment)

@y Center for In Silico Protein Science http://lee. kias. re. kr



Traveling Salesman Problem
*For given g, find the path of the shortest tour length
*Total # of non—degenerate paths: (n-17)//2 :

*mathematically well-defined problem "o
Lt + g
TSP with erroneous a@j; 5 protein folding L Lf&
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ADb initio protein folding
by computer simulation

Sequence

Function [
«—1 MD & MC simulation‘

3D structure C2

/\/\/
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What we know about proteins:

Primary structure. The Nobel Prize in Chemistry 1958 was

awarded to Frederick Sanger “for his work of 1955 on the structure of
proteins (the amino-acid sequence for a protein, insulin)”.

Secondary structure: The Nobel Prize in Chemistry 1954 was
awarded to Linus Pauling "for his research into the nature of the
chemical bond and its application to the elucidation of the structure of
complex substances".

Tertiary (3D) structure: The Nobel Prize in Chemistry 1962 was
awarded jointly to Max Perutz and John Kendrew "for their studies of
the structures of globular proteins®. Kendrew (1957): myoglobin; Perutz
(1959): hemoglobin.

Quaternary (4D) structure

€<y, Center for In Silico Protein Science http://lee. kias. re. kr
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Two driving forces of protein folding

1. Hydrogen bonding btw NH and CO - alpha-helices and beta
sheets.

2. Hydrophobic interaction: hydrophobic residues prefer to be inside
of a protein and hydrophilic residues on the protein surface.

€Ly, Center for In Silico Protein Science http://lee. kias. re. kr
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*Primary Structure
1D sequence of amino acids

e.g.)cys—gly—val—-ala—ala

«Secondary Structure

O, helix

*Tertiary Structure
* 3d arrangement

&Ly, Center for In Silico Protein Science

Yi; sheet

http://lee. kias. re. kr



deoxy human
hemoglobin

(oxygen transport)
4 proteins

141-146-141-
146 aa

KIAS Protein Folding Laboratory

, http://gene,kias.re.kr/home/
&y, Center rj%sﬁico Protein Science http://lee.kias. re. kr







RCSE Protein Data Bank - . ok
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What we are not sure about proteins:

« Secondary structure of a protein:
« Tertiary (3D) structure a protein
« Quaternary (4D) structure a protein

K%g Center for In Silico Protein Science http://lee. kias. re. kr



Protein folding problem

==P 1. Protein Structure Prediction:
For a given protein sequence, to determine its 3D
structure by computation

2. Protein-Folding Mechanisms:
By what process does a protein folds into its native and
biologically active conformation?

3. Inverse Folding:
For a given protein structure, to design its 1D sequence

KI':'S
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What is CASP?

Critical Assessment of Techniques for Protein
Structure Prediction
(http://predictioncenter.gc.ucdavis.edu/).

Goal is to help advance the methods of identifying
protein structure from sequence.

Community-wide experiments are held every two
years starting 1994 (most recent one CASP10 in 2012)

Blind prediction and blind assessment

Since CASP1 (1994), there are a total of 758 protein
sequences predicted.

Since CASP5 (2002), ~200 methods have been
tested for each CASP.

€<y, Center for In Silico Protein Science http://lee. kias. re. kr



« There was a graduate student who knew nothing about quantum
mechanics

e This poor student took a “quantum mechanics” course.

* He is about to take a take-home exam. He has two options to
prepare the exam:

1. Examine last 90 year’s problem sets with answers. =
Homology modeling / Threading : template-based modeling
- “Multiple sequence alignment”

2. Tryto understand the problems and write down his own
answers. - Ab Initio (de novo, Energy-based,...) : physics-
based modeling - Global optimization of an
accurate potential energy function

KI':'S
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Protein Structure Prediction

1. Physics-based approaches: Principle-based modeling
@ Accurate potential energy function
@ Powerful global optimization method = what we can
do better than others
® Ab initio, de novo, new fold targets (10-20%b)

2. Informatics-based approaches: Template-based modeling
@ Map the original problem to a problem with solution
-> mapping problem (alignment problem)
@ Use templates (problems with solutions) to obtain the
solution of the original problem (multiple alignment)
® Comparative modeling, fold recognition (80-90%)

&y, Center for In Silico Protein Science http://lee. kias. re. kr



Protein Structure Prediction

1. Physics-based approaches: Principle-based modeling
@ Accurate potential energy function
@ Powerful global optimization method
@ Ab initio, de novo, new fold targets (10-20%)

KIZ'S @35 Center for In Silico Protein Science http://lee. kias. re. kr



Potential energy function: all-atom potential

. All atom, off-lattice force field
. AMBER, CHARMM, GROMOS and others

. E terms: vibrational, torsional, non-bonded, electrostatic, and

others including solvation

Zk(b b,)2 += Zk X

bonds bonds
angles
>k, cos(ng — 5)+Z( il 1% qu)
dihedral ij ,J i Dr

angles

KIL'S €.y, Center for In Silico Protein Science
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P2. TINKER Molecular Modeling

Go to http://dasher.wustl.edu/tinker/ and download
the TINKER package appropriate to your laptop.

Perform Monte Carlo with Minimization to obtain the
lowest energy structure of Met-enkephalin, a
pentapeptide.

2 input files are provided here.

Try 10 independent runs.

What is the lowest energy?

@y Center for In Silico Protein Science http://lee. kias. re. kr
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Needs following 2 input files:

==> enkephalin.dat <==
enkephalin
Met-Enkephalin (YGGFM)
tyr

aly

aly

phe

met

n
==> enkephalin.key <==
parameters ../params/charmmz22
maxiter 2000

randomseed 123456789

S

€.y, Center for In Silico Protein Science

1. Generate an extended structure.
$ cat enkephalin.dat  # review dat file
$ cat enkephalin.key # review key file

$ ../bin/protein.x < enkephalin.dat
$ cat enkephalin.seq # sequence file
$ cat enkephalin.xyz # tinker xyz file

$ cat enkephalin.int  # internal coord

2. Energy component analysis
$ ../binfanalyze.xyz enkephalin.xyz e

3. To convert a xyz file to a pdb fiile
$ ../bin/xyzpdb.x enkephalin.xyz
$ cat enkephalin.pdb # pdb file

2. Monte Carlo with Minimization

$ rm -rf enkephalin.xyz_2
$ ../bin/monte.x enkephalin.xyz

http://lee. kias. re. kr



Past CASP Performances of KIAS protein folding lab

- CASP5 (2002): 18t out of 165 team in new-fold category
- CASPG6 (2004): selected as a member of 12 elite teams in new-fold

CASP6 example: TO199_D3 (FR/A, Nres=82, 145-226)

Native structure Model4

KI':'S

@y Center for In Silico Protein Science http://lee. kias. re. kr



Physics & Protein Structure Prediction (I)

1. Proteins are polypeptide chains containing many
(thousands of) atoms, and the interaction between
atoms is considered to be reasonably well
described by physics and chemistry.

2. However, there are only a few anecdotal examples
of successful physics-based protein modeling
(compared to the informatics-based method).

3. Currently, protein structure prediction methods
relying only on physics-based approaches do not
work as well as informatics-based methods.

KI':'S

K%g Center for In Silico Protein Science http://lee. kias. re. kr



Protein Structure Prediction

2. Informatics-based approaches: Template based modeling

@ Map the original problem to a problem with solution =
mapping problem (alignment problem)

@ Use templates (problems with solutions) to obtain the
solution of the original problem (multiple alignment)

® Comparative modeling & fold recognition (80-90%)

KIZ'S &y, Center for In Silico Protein Science http://lee. kias. re. kr
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1.Sequence-sequence alignment
* How to align two given seguences.
Possible alignments for KIAS and KAIST:
K-IAS-  KIA-S-
KAI-ST  K-AIST

2. Structure-structure alignment
 How to align two given sequences

3. Sequence-structure alignment
* Protein structure modeling

K% Center for In Silico Protein Science http://lee. kias. re. kr



Pair-wise seguence alignment

DP (dynamic programming) can provide exact results

Seq A: ARGTCAGATACGLAG---PGMCTETWV
Seq B: ARATCGGAT---IAGTIYPGMCTHTWV

Popular substitution matrices are PAM and
BLOSUM.

L
S(A.,B)=> sub(a;,b)+G
i=1
G=G,.,+G,n

open

«— T A @B 9 0 p

A C D E F G H-—

-2 -3 6 2 -3 -1 -1
-1 -4 2 5 -3 -2

4 0 -2 -1 -2 0 -2
o0 9 -3 -4 -2 -3 -3

-2 -2 -3 -3 6 -3
0 -3 -1 -2 -3

-2 -3

BLOSUM 62

KISS €Ly, Center for In Silico Protein Science

http://lee. kias. re. kr
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Multiple Sequence Alignment (MSA)

chite
wheat
trybr
mouse

chite
wheat
trybr
mouse

-—--ADKPKRPLSAYMLWLNSARESIKRENPDFK-VTEVAKKGGELWRGLKD
--DPNKPKRAPSAFFVFMGEFREEFKQKNPKNKSVAAVGKAAGERWKSLSE

KKDSNAPKRAMT SFMFFSSDFRS----KHSDLS-IVEMSKAAGAAWKELGP
----- KPKRPRSAYNIYVSESFQ----EAKDDS-AQGKLKLVNEAWKNLSP
’ . . * . *

*ok Kk

AATAKONYIRALQEYERNGG-
ANKLKGEYNKATIAAYNKGESA

AKDDRIRYDNEMKSWEEQMAE
* o i o

MSA = extension of pair—-wise alignment.

@y Center for In Silico Protein Science

http://lee. kias. re. kr
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MSA is useful for:

Clustering, classification, or
categorization of genes/proteins.

Deducing evolutionary |
relationship and phylogenetic Hydrophobic
tree residues

|dentification of conserved
regions of genes/proteins .

Detecting point mutations.

predicting secondary and tertiary
structure of proteins.

@y Center for In Silico Protein Science

>

P A H w " AA

Conserved Conserved

residues region
4---""”_“--_-_# -_-_%_H"'“""a- «—L
SCTGSSSNIGA--NHVKWYQOLPG
SCTGTSSNIGS--ITVNWYQOLPG
SCSSSGFIFSS--YAMYWVROAPG
TCTVSGTSFDD--YYSTWVROPPG
TCVVVDVSHEDPOQVKFNWYVDG- -
VCLISDFYPGAPQVTVAWKADS--
GCLVKDYFPEPPOVTVSWNSG---
TCLVKGFYPSDPQIAVEWESNG--

http://lee. kias. re. kr
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Sum of pair score

Seq A,;: ARGTCAGATACGLAG---PGMCTETWV----
Seq A,: ARATCGGAT---IAGTIYPGMCTHTWVIAGQ
Seq A;: ARATCE--TACG--GTI-PGMCTHTWVIA--

Score(A) =35 S sub(A . A, - ZG(A) G(A)=a-+bn

k=1 i=1 j=i+1

Exact method : multi—dimensional DP
—Time complexity O(L727), Space complexity O(L")

KIAS Protein Folding Laboratory

htt kias.re.kr/home/
MQ& Center PD P Silico Protein Science http://lee.kias. re. kr



MSA objective function

COFFEE (Consistency based Objective Function For alignmEnt
Evaluation) Score function: Given a set of sequences, the optimal
MSA is defined as the one that agrees the most with all the possible
optimal pair-wise alignments
N- N —Score(A4;) = Number of aligned pairs
> > W, xScore(A;) of residues that are shared between A;

COFEEE = iT\ll_li=iL1 and the library.
> > W, xLen(A;)  -W, = Seq. Id btw sequences i,
i=1 j=i+l

— do not depend on a specific substitution matrix

— the most consistent are often closer to the truth
> Construct pairwise alignment library based on profile=profile alignment
— Profile generate using PSI-BLAST (filter, —=j 20 —h 0.0005)

— Alignment score : dot product score (Global-local DP, u=-1.2, v=-0.04, z=-
0.05)

N S_ Optimize : 630 pair of homstrad database

€<y, Center for In Silico Protein Science http://lee. kias. re. kr



Physics & Protein Structure Prediction (Il)

1. The goal is to achieve better protein modeling by fusing
Informatics-based methods with a principle of
physics (global optimization)

2. The task was to map protein modeling using
templates into a series of combinatorial
optimization problems

3. The reality was to learn TBM (template-based
modeling) by making lots of mistakes in a real
situation (CASP7, 2006)

KIZS @39 Center for In Silico Protein Science http://lee. kias. re. kr
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P3. Modeling a protein structure based on NMR restraints data

Go to BMRB database http://www.bmrb.wisc.edu/ and download NOE
and DIH restraints for 2G1E, or alternatively go to

http://lee.kias.re.kr/~protein/wiki/doku.php?id=nmr:data : and download
NOE and DIH restraints for 2G1E

For a given correct distance pair, flat bottom restraint energy form can
be used. That is for 1.8 < r < distance, no penalty is applied. But for r
>distance, penalty in the harmonic form can be applied.

Try to build a model of 2G1E which is consistent with the NMR data
and all the stereochemistry of the protein (bond length, bond angle, no
atomic clashes, etc)

How similar is your model to the actual native structure of the protein?

€<y, Center for In Silico Protein Science http://lee. kias. re. kr
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P4.

Modeling a protein structure based on ambiguous NMR data

Go to the following page and search for Ts763:
http://www.predictioncenter.org/casp11/targetlist.cgi

Download the ambiguous NMR data of Ts763 (Ts763.tar.gz) from the
following page and examine the data
predictioncenter.org/download_area/CASP11/extra_experiments/

Each line of the restraint data corresponds to an NMR peak arising from
two hydrogen atoms positioned within a given distance. You should note
that many peaks are represented by more than a distance pair, therefore
the ambiguity arises. But, at least one of the provided distance pair is
correct.

For a correct distance pair, flat bottom restraint energy form can be used.
That is for 1.8 < r < distance, no penalty is applied. But for r >distance,
penalty in the harmonic form can be applied.

Try to build a model of Ts763 which is consistent with the NMR data and
all the stereochemistry of the protein (bond length, bond angle, no atomic
clashes, etc)

How similar is your model to the actual native structure of the protein?

€<y, Center for In Silico Protein Science http://lee. kias. re. kr



