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Examples of Phase Transitions in Nature 

• Water-vapor transition (boiling of water) 

• Ice-water transition (crystal melting) 

• Protein folding 

 

• Spin systems: 

– 2D Ising model 

– Sherrington-Kirkpatrick spin glass 



Global Optimization 

• Many problems in science and engineering are 

optimization problems. 

• Efficient acquisition of  the ground state and/or low-

lying excitations is often sufficient to understand the 

essence of the problem (especially when T<Tc). 

• “Prediction” followed by “experimental validation” is 

one area where theories and experiments can work 

together. 

• Generating 3D atomic models consistent with 

experimental data is also an important area where 

computation can contribute significantly  X-ray and 

NMR protein structure “determination”. 



Speaker’s Network of This School 

A weighted network 

Nodes are speakers and organizers 

Edge weights are from Google 



Three topics to cover 

(1) Community detection of a network by modularity 

optimization 

 

(2) Materials design: Direct bandgap silicon crystal 

 

(3) Protein structure prediction and NMR protein structure 

determination: 

– Using NOE and DHI restraints data from experiments 

– Protein structure modeling using sparse & ambiguous NOE 

restraints 



“Community/Module Detection”  
by Modularity Optimization 

• Divide a network into sub-graphs/mod
ules 

– nodes are more densely connected int
ernally 

• The most commonly used objective fu
nction to evaluate the quality of partitio
n is Q proposed by Girvan and Newma
n 2
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Which one is better? 

We need an objective function! 

Zachary’s karate club network 
Friendship network of members 

Q=0.420 Q=0.379 
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Two Issues with Modularity Q 

(1) Difficulty of the problem: 
– Finding the best Q partition is a hard combinatorial optimization 

problem (NP-hard) 
– The current best stochastic optimization method is simulated 

annealing (SA) 
 

(2) Relevance of the objective function: 
– Is a higher-Q solution more useful to extract hidden information 

from a network? 
– "So far, most works in the literature on graph clustering focused 

on the development of new algorithms, and applications were 
limited to those few benchmark graphs that one typically uses 
for testing" from Community Detection in Graphs (2010), 
Physics Report 



Benchmark Test of Q-Optimization 



 

Benchmark Test #2: real-world networks 
PRE 85, 056702 (2012) 



Speaker’s Network of This School 

A weighted network 

Nodes are speakers and organizers 

Edge weights are from Google 



Speaker’s Network of This School 

A weighted network 

Nodes are speakers and organizers 

Edge weights are from Google 

Three communities with Q = 0.36 



Ferromagnetic Ising model on a 2D square lattice 

• Spin σ can be up (+1) or down (-1) 

• If J > 0, ferromagnetic interaction 

• Interaction is only between nearest neighbors 

• T < Tc, magnetization is non-zero 

• T > Tc  m=0 

 

http://www.google.co.kr/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&docid=0JLnCF0t6UmC_M&tbnid=-7j7V-BOAELh4M:&ved=0CAUQjRw&url=http://astro.physics.ncsu.edu/urca/course_files/Lesson22/index.html&ei=ELzXU96iL8j78QX10ICgAg&bvm=bv.71778758,d.dGc&psig=AFQjCNFqCFrjfAi4cLUTA9cB0iTE2S44EA&ust=1406733700339579


Monte Carlo Simulation of a Canonical System 

• Each microstate x contributes to the probability of 

the system with the Boltzmann factor of P(x) ∝ 

exp[-βE(x)] where β is 1/kT 

• Conditions to simulate a canonical system: 

– system should be ergodic 

– detailed balance:  transition probability, T(ij), 

between microstates i and j obey Pi T(ij)=Pj T(ji) 

– Metropolis algorithm: 

• transition to a lower energy state is always accepted 

• transition to a higher energy state is accepted with the 

probability of exp(-E/kT) 



Reviews on some optimization methods 

I. Simulated annealing (SA) 

• Mimics the natural process of crystal forming from magma 

• Generates MC moves as T is gradually lowered from high T to 

low T 

• The most general method 

 

II. MC with minimization (MCM) 

• Considers only local minima 

• MC moves in the solution space of local minima 

• Quite successful method! 

• PNAS Vol. 84, 6611-6615 (1987); J. Phys. Chem. A 101, 5111-

5116 (1997) (Basin-Hopping Method). 

 

III. Genetic algorithm (GA) 
• Pool of conformations (generation) 

• Subsequent generations are obtained by mating and mutation 

of parent generation by natural selection of fitness function 

(evolution of species) 
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P1. Sherrington-Kirkpatrick spin glass 

• Consider N Ising spins interacting with all the other spins. 

• Interaction coupling J is randomly assigned as either +1 or -1. 

• Hamiltonian is 

 

• The goal is to find the ground state for a given realization of 

randomness. 

• Try with N=511 and generate a realization of SK spin glass. Find the 

lowest energy configuration using a global optimization method (SA or 

MCM) 

• For 100 realizations of N=511 SK spin glass, obtain the average value 

and the standard deviation of the ground state energy. Is the average 

value close to  - 0.75238? 

• Reference: Ground-state energy and energy landscape of the 

Sherrington-Kirkpatrick spin glass, Phys.Rev.B, Vol. 76, 184412 (2007).  

 



Simulated Annealing for the SK spin glass 

1. N=511;T=100;beta=1/T;iter=0;Emin=9999 

2. Generate a random realization of Jij 

between all pairs {i,j} using a random 

number generator 

 DO i=1,N-1 

 DO j=i+1,N 

   if ran() > 0.5 then Jij=1, else Jij=-1 

   Jji=Jij 

 ENDDO 

      ENDDO 

3. Generate a random configuration of 

Spin(i)=+1 or -1 as above 

4. Calculate the total energy E;if E Emin 

then (Emin=E and save the current  Spin()) 

 

5. Perturb the current configuration Spin()) by 

the single random spin flip move; 

iter=iter+1;if iter > 100 then (beta=beta/0.99 

and iter=0) 

6. Calculate the total energy of the new 

configuration  Enew 

 

7. Calculate p=exp {(E-Enew)*beta} 

8. if ran() > p then GOTO 5 

9. accept the move and set E=Enew 

10. if E Emin then (Emin=E and save 

the current  Spin()) 

11. GOTO 5 

 

 



MCM for SK the spin glass 

1. N=511;T=10;beta=1/T;Emin=9999;iter=0;ite

rm=1000 

2. Generate a random realization of Jij  

3. Generate a random configuration of 

Spin(i)=+1 or -1, and calculate E 

4. Perform quenching N times using the single 

spin flip move 

5. If E is changed GOTO 4 

6. Quenching is finished 

7. if E Emin then (Emin=E and save the 

current  Spin()) 

8. If iter>iterm then goto 17;Perturb the 

current configuration Spin()) by “multiple” 

random spin flip move 

9. Perform quenching N times using the single 

spin flip move 

10. If E is changed GOTO 9 

11. Quenching is finished; iter=iter+1 

 

 

 

 

 

 

12. Calculate p=exp {(E-Enew)*beta} 

13. if ran() > p then GOTO 8 

14. accept the move and set E=Enew 

15. if E Emin then (Emin=E and save 

the current  Spin()) 

16. GOTO 8 

17. END 

 

 



Three topics to cover 

(1) Community detection of a network by modularity 

optimization 

 

(2) Materials design: Direct bandgap silicon crystal 

 

(3) Protein structure prediction and NMR protein structure 

determination: 

– Using NOE and DHI restraints data from experiments 

– Protein structure modeling using sparse & ambiguous NOE 

restraints 



Issues with direct gap silicon crystal 

• Silicon based materials are cheep  most solar 

cell materials are all silicon based. 

• Existing silicon crystals are either metallic or of 

indirect band gap in their electronic structures. 

• Indirect band gap material are inefficient as a 

solar-cell material. 

• Goal is to design crystalline silicon with direct 

band gap. 
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Global Optimization by CSA 

• We optimized the internal energies of our 
crystalline Si structures by using first-
principles quantum calculations, calculated 
their electronic structures ab initio, and used 
these structures to select direct-bandgap 
solutions using CSA 

• For a given number of silicon atoms in a unit 
cell, we optimize the band gap property using 
the unit cell shape and size and the 3D 
positions of silicon atoms as variables 

21 



Direct band gap silicon crystal 

 

22 



23 



Materials design: direct-band-gap silicon allotropes 

Phys. Rev. B 90, 115209 (2014) 
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Three topics to cover 

(1) Community detection of a network by modularity 

optimization 

 

(2) Materials design: Direct bandgap silicon crystal 

 

(3) Protein structure prediction and NMR protein structure 

determination: 

– Using NOE and DHI restraints data from experiments 

– Protein structure modeling using sparse & ambiguous NOE 

restraints 



2 books about protein structure study for 
mathematicians/physicists/computer scientists  



Proteins are important  

Proteins 

sequence 

(genome) 
function  structure  

(post-genome) 

scientific 

bottleneck 

The most challenging  
problem of this century 

Control all cellular processes  Enzymes 

Anti-bodies 

hormones 

(Protein Folding Problem) 



Structure-function relationship of 

Potassium Channels 

• In the field of cell biology, potassium channels are the 

most widely distributed type of ion channel and are found 

in virtually all living organisms. They form potassium-

selective pores that span cell membranes. Furthermore 

potassium channels are found in most cell types and 

control a wide variety of cell functions 

• Using X-ray crystallography, profound insights have been 
gained into how potassium ions pass through 

these channels and why (smaller) sodium ions 

do not. The 2003 Nobel Prize for Chemistry was awarded 

to Rod MacKinnon for his pioneering work in this area. 



Human hemoglobin 

Protein folding problem 

•For a given amino acid sequence (of size 
n), 
 find the native structure of the protein. 

•Total # of protein structures:  10n  
•mathematically NOT well defined problem 
 
 

sequence  structure  function  

KIAS Protein Folding Laboratory  

http://lee.kias.re.kr 
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• Proteins are chain molecules made of amino acids. 
• There are 20 kinds of aa. R=H,CH3,CH2-Ch2-S-Ch3,… 
• # of possible structures of a protein with n aa ~ 10n  
• ~105 kinds of proteins in human body. 

 
• Each protein has a unique 3D structure. 
• TH by Anfinsen (Science, 181, 223 (1973)): 3D structure 
   of a native protein in its physiological environment is the 
 one in which the free energy of a “whole” system is lowest. (3D 

structure of a protein is determined by its sequence and its 
environment) 



att532 

 
Traveling Salesman Problem  

•For given dij, find the path of the shortest tour length 
•Total # of non-degenerate paths: (n-1)!/2  
•mathematically well-defined problem 

•TSP with erroneous dij    protein folding 



E(x)=… 

E(x)=… 

E(x)=… 

E(x)=… 

Potential 

Function 

Global optimization 

MD & MC simulation 

Sequence 

3D structure 

Ab initio protein folding  
by computer simulation 
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What we know about proteins: 

• Primary structure: The Nobel Prize in Chemistry 1958 was 

awarded to Frederick Sanger “for his work of 1955 on the structure of 

proteins (the amino-acid sequence for a protein, insulin)”.  

• Secondary structure: The Nobel Prize in Chemistry 1954 was 

awarded to Linus Pauling "for his research into the nature of the 

chemical bond and its application to the elucidation of the structure of 

complex substances". 

• Tertiary (3D) structure: The Nobel Prize in Chemistry 1962 was 

awarded jointly to Max Perutz and John Kendrew "for their studies of 

the structures of globular proteins“. Kendrew (1957): myoglobin; Perutz 

(1959): hemoglobin. 

• Quaternary (4D) structure 



Two driving forces of protein folding 

 

1. Hydrogen bonding btw NH and CO  alpha-helices and beta 

sheets. 

 

2. Hydrophobic interaction: hydrophobic residues prefer to be inside 

of a protein and hydrophilic residues on the protein surface. 

 

 



•Primary Structure 

   1D sequence of amino acids 
   e.g.)cys-gly-val-ala-ala 

•Secondary Structure 

 helix  sheet 

 
•Tertiary Structure 

• 3d arrangement 



KIAS Protein Folding Laboratory  

http://gene.kias.re.kr/home/ 

deoxy human 
hemoglobin 

(oxygen transport) 

4 proteins 

141-146-141-
146 aa 



KIAS Protein Folding Laboratory  

http://gene.kias.re.kr/home/ 

top view side view 

GroEL

(HSP) 





What we are not sure about proteins: 

• Secondary structure of a protein: 

• Tertiary (3D) structure a protein 

• Quaternary (4D) structure a protein 



Protein folding problem 

1. Protein Structure Prediction: 

      For a given protein sequence, to determine its 3D 

structure by computation 

 

2.  Protein-Folding Mechanisms: 

 By what process does a protein folds into its native and 

biologically active conformation?  

 

3. Inverse Folding: 

 For a given protein structure, to design its 1D sequence 

  



What is CASP? 

• Critical Assessment of Techniques for Protein 
Structure Prediction 
(http://predictioncenter.gc.ucdavis.edu/). 

• Goal is to help advance the methods of identifying 
protein structure from sequence. 

• Community-wide experiments are held every two 
years starting 1994 (most recent one CASP10 in 2012) 

• Blind prediction and blind assessment 
• Since CASP1 (1994), there are a total of 758 protein 

sequences predicted. 
• Since CASP5 (2002), ~200 methods have been 

tested for each CASP. 



• There was a graduate student who knew nothing about quantum 

mechanics 

• This poor student took a “quantum mechanics” course. 

• He is about to take a take-home exam. He has two options to 

prepare the exam: 

1. Examine last 90 year’s problem sets with answers.  

Homology modeling / Threading : template-based modeling 

 “Multiple sequence alignment” 

2. Try to understand the problems and write down his own 

answers.  Ab initio (de novo, Energy-based,…) : physics-

based modeling  Global optimization of an 

accurate potential energy function 



Protein Structure Prediction 

 

1. Physics-based approaches: Principle-based modeling  

① Accurate potential energy function 

② Powerful global optimization method  what we can 

do better than others 

③ Ab initio, de novo, new fold targets (10-20%) 

 

2. Informatics-based approaches: Template-based modeling 

① Map the original problem to a problem with solution 

 mapping problem (alignment problem) 

② Use templates (problems with solutions) to obtain the 

solution of the original problem (multiple alignment) 

③ Comparative modeling, fold recognition (80-90%) 

 



Protein Structure Prediction 

 

1. Physics-based approaches: Principle-based modeling  

① Accurate potential energy function 

② Powerful global optimization method 

③ Ab initio, de novo, new fold targets (10-20%) 

 

2. Informatics-based approaches: Template-based modeling 

① Map the original problem to a problem with solution 

 mapping problem (alignment problem) 

② Use templates (problems with solutions) to obtain the 

solution of the original problem (multiple alignment) 

③ Comparative modeling & fold recognition (80-90%) 



Potential energy function: all-atom potential 

 
• All atom, off-lattice force field 

• AMBER, CHARMM, GROMOS and others 

• E terms: vibrational, torsional, non-bonded, electrostatic, and 

others including solvation 
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P2. TINKER Molecular Modeling 

• Go to http://dasher.wustl.edu/tinker/ and download 

the TINKER package appropriate to your laptop. 

• Perform Monte Carlo with Minimization to obtain the 

lowest energy structure of Met-enkephalin, a 

pentapeptide. 

• 2 input files are provided here. 

• Try 10 independent runs. 

• What is the lowest energy? 



Needs following 2 input files: 

 

==> enkephalin.dat <== 

enkephalin 

Met-Enkephalin (YGGFM) 

tyr 

gly 

gly 

phe 

met 

 

n 

 

==> enkephalin.key <== 

parameters ../params/charmm22 

maxiter     2000 

 

randomseed  123456789 

1. Generate an extended structure. 

$ cat enkephalin.dat     # review dat file 

$ cat enkephalin.key     # review key file 

 

$ ../bin/protein.x < enkephalin.dat 

 

$ cat enkephalin.seq    # sequence file 

$ cat enkephalin.xyz    # tinker xyz file 

$ cat enkephalin.int     # internal coord 

 

2. Energy component analysis 

$ ../bin/analyze.xyz enkephalin.xyz e 

 

3. To convert a xyz file to a pdb fiile 

$ ../bin/xyzpdb.x enkephalin.xyz 

$ cat enkephalin.pdb           # pdb file 

 

 

2. Monte Carlo with Minimization 

 

$ rm -rf enkephalin.xyz_2 

$ ../bin/monte.x enkephalin.xyz 



CASP6 example: T0199_D3 (FR/A, Nres=82, 145-226) 

Native structure Model4 

Past CASP Performances of KIAS protein folding lab 

 - CASP5 (2002): 18th out of 165 team in new-fold category 

 - CASP6 (2004): selected as a member of 12 elite teams in new-fold 



Physics & Protein Structure Prediction (I) 

1. Proteins are polypeptide chains containing many 

(thousands of) atoms, and the interaction between 

atoms is considered to be reasonably well 

described by physics and chemistry. 

 

2. However, there are only a few anecdotal examples 

of successful physics-based protein modeling 

(compared to the informatics-based method). 

 

3. Currently, protein structure prediction methods 

relying only on physics-based approaches do not 

work as well as informatics-based methods. 



Protein Structure Prediction 

 

1. Physics-based approaches: Principal based modeling  

① Accurate potential energy function 

② Powerful global optimization method 

③ Ab initio, de novo, new fold targets (10-20%) 

 

2. Informatics-based approaches: Template based modeling 

① Map the original problem to a problem with solution  

mapping problem (alignment problem) 

② Use templates (problems with solutions) to obtain the 

solution of the original problem (multiple alignment) 

③ Comparative modeling & fold recognition (80-90%) 

 



1.Sequence-sequence alignment 

• How to align two given sequences. 

Possible alignments for KIAS and KAIST: 
K-IAS- KIA-S- 

KAI-ST K-AIST 

 

2. Structure-structure alignment 

• How to align two given sequences 

 

3. Sequence-structure alignment 

• Protein structure modeling 
 

 

 

 



Pair-wise sequence alignment 

Seq A: ARGTCAGATACGLAG---PGMCTETWV 

Seq B: ARATCGGAT---IAGTIYPGMCTHTWV 

 

Popular substitution matrices are PAM and 
BLOSUM. 
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Multiple Sequence Alignment (MSA) 

MSA  extension of pair-wise alignment. 

 



MSA is useful for: 

• Clustering, classification, or 
categorization of genes/proteins. 

• Deducing evolutionary 
relationship and phylogenetic 
tree. 

• Identification of conserved 
regions of genes/proteins . 

• Detecting point mutations. 

• predicting secondary and tertiary 
structure of proteins. 



KIAS Protein Folding Laboratory  

http://gene.kias.re.kr/home/ 
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Seq A1: ARGTCAGATACGLAG---PGMCTETWV---- 

Seq A2: ARATCGGAT---IAGTIYPGMCTHTWVIAGQ 

Seq A3: ARATCE--TACG--GTI-PGMCTHTWVIA-- 
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Sum of pair score 

Exact method : multi-dimensional DP 

  -Time complexity O(Ln2n), Space complexity O(Ln) 



MSA objective function 

COFFEE (Consistency based Objective Function For alignmEnt 
Evaluation) Score function: Given a set of sequences, the optimal 
MSA is defined as the one that agrees the most with all the possible 
optimal pair-wise alignments 
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COFFEE

-Score(Aij) = Number of aligned pairs 
of residues that are shared between Aij 
and the library. 

-Wij = Seq. Id btw sequences i,j 

- do not depend on a specific substitution matrix  

- the most consistent are often closer to the truth 

> Construct pairwise alignment library based on profile-profile alignment 

 - Profile generate using PSI-BLAST (filter, -j 20 –h 0.0005) 

 - Alignment score : dot product score (Global-local DP, u=-1.2, v=-0.04, z=-
0.05) 

 - Optimize : 630 pair of homstrad database  



Physics & Protein Structure Prediction (II) 

1. The goal is to achieve better protein modeling by fusing 

informatics-based methods with a principle of 

physics (global optimization) 

 
2. The task was to map protein modeling using 

templates into a series of combinatorial 

optimization problems 

 

3. The reality was to learn TBM (template-based 
modeling) by making lots of mistakes in a real 
situation (CASP7, 2006) 
 



P3. Modeling a protein structure based on NMR restraints data 

• Go to BMRB database http://www.bmrb.wisc.edu/  and download NOE 

and DIH restraints for 2G1E, or alternatively go to 

http://lee.kias.re.kr/~protein/wiki/doku.php?id=nmr:data : and download 

NOE and DIH restraints for 2G1E  

• For a given correct distance pair, flat bottom restraint energy form can 

be used. That is for 1.8 < r < distance, no penalty is applied. But for r 

>distance, penalty in the harmonic form can be applied. 

• Try to build a model of 2G1E which is consistent with the NMR data 

and all the stereochemistry of the protein (bond length, bond angle, no 

atomic clashes, etc) 

• How similar is your model to the actual native structure of the protein? 



P4. Modeling a protein structure based on ambiguous NMR data 

• Go to the following page and search for Ts763: 
http://www.predictioncenter.org/casp11/targetlist.cgi 

• Download the ambiguous NMR data of Ts763 (Ts763.tar.gz) from the 
following page and examine the data 
predictioncenter.org/download_area/CASP11/extra_experiments/ 

• Each line of the restraint data corresponds to an NMR peak arising from 
two hydrogen atoms positioned within a given distance. You should note 
that many peaks are represented by more than a distance pair, therefore 
the ambiguity arises. But, at least one of the provided distance pair is 
correct. 

• For a correct distance pair, flat bottom restraint energy form can be used. 
That is for 1.8 < r < distance, no penalty is applied. But for r >distance, 
penalty in the harmonic form can be applied. 

• Try to build a model of Ts763 which is consistent with the NMR data and 
all the stereochemistry of the protein (bond length, bond angle, no atomic 
clashes, etc) 

• How similar is your model to the actual native structure of the protein? 


