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A study is made of the probability distribution of the end to end distance R of a polymer of N 
segments, length NZ = L, and of self repulsion o. A simple method, capable of adoption in more 
complicated problems, is developed, using the idea of an effective step length. 

The mean square value of R2 is developed as a series which for large L is 

The probability distribution is developed in terms of the dimensionless parameter x = 
R2 = w2j5 L6I5 Z2j5 (1.12+1.05+1.03+ . . . ). 

R2/ i2J5  w2j5 L6I5, and for small x,  

1 1 1  -+-+-+... 
2.24 2.10 2.06 

but for large x a definite asymptotic form is derived 
log&) = -(+)+ 7rq3 x+. 

1. INTRODUCTION 

The excluded volume problem has been a central part of polymer solution theory 
since Flory's original classic study of 1949.l There seems no doubt that the law 
for the mean square end to end distance is either that of Flory, or something very 
close to it. Computer simulations, theories based on an interpretation of numerical 
work by Domb et aZ.,2 Lax et aL3 or an expansion in dimensionality by de Gennes 
agree on 

where a = $ to within one to two percent. Analytic theories based on self consistent 
fields give a to be exactly 9 (Edward~,~ de Gennes4) and an extremely thorough 
development of the s.c.f. method by Kosmas and Freed which includes fluctuations 
of the s.c.f., confirms this result. A worry remains in that for 4 - - ~  dimensions, the 
s.c.f. method does not agree with the renormalization group expansion as E + 0. 
However, since the s.c.f. method does not converge in this limit, and there can also 
reside some doubt due to the asymptotic nature of the E method, it is not clear whether 
there is a real disagreement. However, the E + 0 argument concerns a region remote 
from physical reality and, given the extreme accuracy of the s.c.f. result, it suggests 
that analytic methods should be further developed to the point at which they can 
make a real contribution to the theory of semi-dilute solutions, gels, and so on. 
The difficulty with all the papers cited (with the exception of Flory's work, which does 
not go far enough for the kind of application we have in mind) is that they have 
reached such a level of mathematical complexity in giving the very simplest results, 

t Permanent address : Physics Department, G.B. Pant University, Pant Nagar 263145, India. 
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that one is daunted from considering them as the lemma to some really difficult 
theorem. 

In this paper we propose a simple method which permits a rapid and accurate 
attack on the problem, and in subsequent papers will give applications to senii-dilute 
and concentrated solutions, and to networks. 

The paper is restricted to two things, the shape of the distribution probability, 
P(R, L) ,  and its moment 

( R 2 )  = 1 R2P(R)d3R. (1.2) 

The entropy of the system is more difficult and the authors hope to study this in 
a later paper. The chain is given a definite length L for all the papers. 

2. FORMULATION 

The model used is the simplest possible in which an effective pseudopotential co 
replaces the molecular complexity of the real chain. The chain is considered a 'iocus 
in space ~(s), s the arc length, and the random walk constraint is represented by the 
Wiener measure 

and the interaction 

The interaction strength CL) GC T-8, where 8 is the Flory temperature. We only 
consider w > 0. The step length is l, and u) has the dimensions of volume. 

If the symbol (6r) denotes integration over all paths, then 

The quantity <R2)  is a single function, a function of I ,  L and a. This suggests 
that if we study <RZ) alone it ought to be possible to find an equation for that 
quantity, or some similar quantity directly related to it, without the intermediary of 
some much more complicated quantity like a mean field, which will have to be 
4(I, L, a, r). Edwards tried to simplify the latter function by letting L + 00, but 
this still leaves integro-differential equations, whose fluctuations require a mathe- 
matical tour de force to give results, although it has indeed been accomplished by 
Kosmas and Freed.6 

Instead we argue that an effective step length I ,  be introduced, so that, by definition 
(R2) = LZI. 

This would result from 

for a free chain. We therefore write 

3 i2 ds + w sf S[r(s) - r(d)] ds ds' 
21 
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= 2 s f 2  ds+B, say 
211 

= C+B. 
Then 

O(B2)+O(B3)+ . . . (2.9) 
(2.10) = L + O(B) + O(B2) + O(B3) + . . . 

At this point we choose ZI such that 
<R2) = L I1 

so that to first order in B 
(2.11) 

1 [r(L)-r(0)I2 B e-' 6r j' e-'Sr = 1 [r(L)-r(0)I2 e-' 6r 1 B e-' 6r. (2.12) 

The evaluation is straightforward and given in Appendix A. It gives the equation 

(2.13) 

The solution to this equation clearly subsumes perturbation theory, for if w is 
small, I E Zl, 

( R 2 )  = L1+2 20L*1-' (2.14) J: 
but for L3 > w one has a Flory type equation with solution 

(2.15) 

so that 

(2.16) 

The remarkable thing is that if we add in the terms U(B2), O(B3) .  . . one always 
retains the structure of this equation, only revising the numerical coefficient. 
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To elucidate this we must draw attention to a remarkable property 
bation series which hitherto does not seem to have attracted comments. 
gives a series in terms of the parameter z = u)L* 1-3 in our notation, 

‘R2)  -- - 1 +*z - 2 . 0 7 5 ~ ~  +6.459z3 + . . . . 
Ll 

of the pertur- 
Yamakawa 

(2.17) 

Now these coefficients are related to the various averages and moments of the inter- 
action, and are thus related to the Feynman diagrams 

to order u) 

to order co2, multiples of order w and 

The structure of integrals appearing in a series in co alters in dimensionality, and 
logarithms arise at second order. One could therefore expect 

(2.1 8) 
for the entropy, such terms do indeed arise. 

There is probably some deep reason why they do not arise in eqn (2.17), but we do 
not know what it is. However, we took the precaution of checking this property of 
Yamakawa’s calculation, and it is indeed correct.* This absence of logarithms leads 
to a stability of the index which could not in general terms be predicted. 

To establish the stability of the index a against higher approximations, we write 
<R2)  as follows 

l+az+bz2+~~210gz+dz3+ez310gz+fz3(logz)2+ . . . ; 

AUL+ B C O ~ L ~  C O ~ L ~  +- 
1% 

( R 2 )  = L l + - + -  
13 l 2  

(2.19) 

where A ,  B and C are numbers.’ 
such that 

Now we introduce the effective step length I 

1 1 1 1  - = -+--- 
I 11 I 11 

= ” 11 1 + 1 1 ( 3 ]  

z = 1 1  [ 1-11 (1 --- 1) +I: (1 --- 1 y . 4  
1 11 11 

(2.20) 

using eqn (2.20) in (2.19) we get to 3rd order in u) 

( R 2 )  = LIl-LZ: (; --- :,> +LZ: (; --- t,>” +- A;Lg+ 

* Prof. Domb of King’s College, London informs us that he too has noticed this fact and checked 
it in detail. He also finds an error in the z3 coefficient, but it does not materially affect our results. 
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so the first order approximation gives 

which can be written in the following form 
A ~ L +  B C O ~ L ~  

21; 13 
(a5 -a3)2 +-(a5 -a3)+ - = 0. 

For L -+ co, I t  9 I 
AWL* B C O ~ L ~  

a 5 + 7 -  = o  
1 

a fO+ - 
214 

which for B = -2.075 has the following solution 
a = 1.025 m 4 ~ ( l / 1 0 ) ~ - ( 3 / 1 0 ) m  

(2.22) 

(2.23) 

(2.24) 

(2.25) 

(2.26) 

( R 2 )  still retains the form -m3L*Za. Now to the 3rd order we have the following 

- Ll:(+-i- -$L+lf(i - i -  + 2Bm2L2 T-( ?- I 1 Cco3L3 = 0 (2.27) 

which can be written as follows 

For L -+ m9 Zl 9 I this becomes 
AWL' 2Bm2 Cm2L4 

a15 +-a10- --La5 + 9 = 0 
81* l 3  2z 

which can be solved for C = 6.459 to give 
= 1.015 c o + , 5 ( 1 / 1 0 ) ~ - ( 3 / 1 0 )  

<R2> - a2 = 1.03 CO'L'Z?. (2.28) 

I t  is clear from eqn (2.24), (2.26) and (2.28) that the index a stays near unity and is 
stable against higher order approximations. In the light of the above one may, 
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however, be tempted to remark that since ( R 2 )  is a ratio of two seemingly divergent 
quantities, their ratio might be stable, But in the absence of proof, we refrain from 
making such a statement about the stability of the index in general. If the correct 
results were 

( R 2 )  = L%+q 

= LS(1 +q log L+ . . . ) (2.29) 
it would turn out that a symptom of this would have been logarithms in the pertur- 
bation series, even though our method and answers are remote from perturbation 
theory. 

With this introduction we state the result to order B2 (derived in Appendix A) : 

The first bracket is order B, and in the second bracket are terms like the square of 
this term, but also new terms of the same order. The peculiar feature is that, just 
as the solution of the first order gives 

(2.31) 
the second order bracket is of order L* higher than the first but still gives Zl cc L*. 
Thus in a symbolic way we can typify the series by 

I1  02 L++#(l)+O(L-*)+ . . . 

( Il - a, L* + bo - c,L-*) + L*( I I  - alL* + b - clL-*) + 
L%(Zl -a2L* + b, - c,L-*) + . . * (2.32) 

where 
al = ao+a(') 
a2 = a, +a( l )  +a(2) (2.33) 

and so on, the dl), a(2) being pure numbers reflecting terms of new complexity in the 
series, a kind of dimensionless cluster expansion. We find 

a, = 1.12 
a(') = 1.05 
d2) = 1.03. (2.343 

This finally can be expressed in a series for (R2) ,  the additions coming from the order 
of expansion 

(2.35) (R2) = ~u*L~Z~(1.12 + 1.05 + 1.03 + . . . ). 
3. PROBABILITY DISTRIBUTION 

The success of the preceding section suggests that one may be more ambitious 
and derive the probability distribution function : 

1 S [ R - ~ ( L ) - ~ ( O ) ]  e-AGr 
P(R, L) = 

d3R' e-A' (6r') 
(3. I 

which in Fourier transform is 
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An alternative is to argue that if one has all the moments ( R 2 N )  that is as good as the 
probability distribution and can be derived from the derivatives of 

5 ds-A/ { e- A' (3.3) 
It turns out to be very important that one studies the real form because then many 
integrals converge. Moreover, even for the k form, the final calculation is done by a 
steepest descent evaluation about a point on the imaginary axis, i.e., k pure imaginary. 
In the subsequent analysis therefore we shall study the case of k pure imaginary, 
and derive a final answer in the form Q(h) where 

Under certain conditions 

and under others 

so that the final integrals are 

and 

P(h) = Q(iA). (3.4) 

Q(a) = e1a12+1 (3.5) 

Q(a) = elnl'g2 (3 -6) 

(3 3 

(3 - 8) 

J e(ilk1)'4,-(ik) * R  d3k 

e-kZ4~-(ik).Rd3k. 

The procedure is just as before, but now 

To first order one has (Appendix B) 
Zl will be Z1(& L, w,  2). 

If one introduces the dimensionless parameters 
x = PLZl 

then 

(3.10) 

(3.11) 

x will be of the structure of R2/L* and y an effective interaction parameter. In all 
cases of interest to this paper, Zl 9 Z so the equation reduces to 

x 212 (Ip,) - -xy 
4 

when the right hand side is expanded in x, i.e., for x small, and 

(3.12) 

(3.13) 

when x is large. The first gives 
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and is indeed simply the same calculation as the preceding section, since a second 
derivative with respect to 3, converts this problem into the preceding one, and both 
sides of the equation contain A2. For large A, however, 

i.e., 

and 

or 

and 

(3.14) 

(3.15) 

(3.16) 

i.e., 

R2  
L% as- - 0 0  (3.18) 

This function has been found by Dornb et aL2 in numerical simulations of the 
problem on a lattice and has also been discussed theoretically by Fisher.* 

At this point one again studies whether higher order terms introduce corrections. 
For small x, the series is simply x times the results of the preceding section (2), and 
therefore one gets a revision of the coefficient g in the equation 

Y ' S  
at each order. 

But for large x, the higher order terms are repetitions of the first, Thus one gets 

( x - ~ ~ ~ ) f ( ( x - y J X ) 2 + O ( l ) y 2 + O ( l o g  x ) y 2 f  (3.19) 
and so on. As x +. a, to all orders x yl/x.  Details are given in Appendix B. 
We have therefore found a method of expansion which, for one point x -+ 00, gives 
a complete answer to the problem. 

4. CONCLUSION 

We have restricted ourselves in this paper to consideration of the relationship 
between the end to end vector R of a polymer with excluded volume a, and its contour 
length L. A direct evaluation of this quantity by relation to itself gives simple 
equations yielding valuable information. Any such method is more or less bound to 
give asymptotic expansion, but it has been possible to derive an answer whose 
functional form is stable against higher approximations, only numerical coefficients 
changing. Even these seem surprisingly accurately given by the first approximation. 
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The method is sufficiently simple to provide a basis for a detailed theory of many 

There are many aspects of the single chain theory which remain unanswered. in 
chain solutions, and this is presented in a subsequent paper. 

particular the probability distribution of interior points 

<Er(s1) - r(s2)l2> 
(0 < s1 < s2 < L) 

or ([r(sl) -r(s2)I2> for points sl, s2 on an infinite chain. Thus our present theory will 
not give the X-ray or neutron diffraction of a single chain. The other property is 
the entropy, where the key character of the present calculations-that they are 
calculations of a ratio of two rather ill behaved quantities-is not available. 

It is hoped to return to these two problems in a later paper. 
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APPENDIX A 

DERIVATION OF EQN (2.10) AND (2.13) 
By deikution 

Now let us consider the following integral 

1 [ r ( ~ )  - r ( 0 ) 1 2 ~  e-‘ J e-c ar 

where B and C are given by eqn (2.6) and (2.7). Since B consists of two parts, the 
above integral can be decomposed into two integrals. The first integral can be 
evaluated as follows 
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where 
B1 = 3 1  -(---){?2ds. 1 

2 I I1 

Let us now calculate the other integral containing ci) 
3 

w [r(L) - r(O)I2 e-%' i2 ds d[r(s) - r(s')] ds ds'. 
Using Fourier transformation of the 6 function we have 

-&f P2 ds+ik[r(s)-r(s')] 
- - WI''r2e d3k ds ds'. 

(W3 
Completing the square in this exponent and changing the variable to R + r - ikZ1a/3 

we can write the above as follows 
k2Z11s-s'I -- k2Zi IS - S' 1 -- 

= /? 2n2 [{J k2 dk ds ds' e ( R : )  - 2 IlJ k4 dk ds ds' e ( A n  

The second term of the above can be written by changing the variable 

k211L = k2, s -+ Ls, s' -+ Ls' and -- - 
6 

when we obtain 

k and s integrations can be easily done to yield 
- 

Let us now evaluate the following integral 
3 - zi; f i2 ds 

Be"& = (B,+B,)e 6r 

3 ik[r(s) - r(s')]  - - 
ds ds'. 211 S f 2  ds 

s s 
= (BJ+$[JJk2dke 

Again by completing the square in the exponent and changing the variable we can have 

From eqn (A4), (A9), (A10) and (2.10) we get (R2) to first order in B 

( R 2 )  = LZ1 -Ll( 1 1  - -)+2d;T. 6 wLe 
1 11 
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Now to find (R2) to O(B2) we have to include the contributions from the following 
diagrams 

To find the contribution from a typical diagram, say .-, we use the following 

identity 

r2G(r, L) d3r 

1 G(R, L) d3R 
4" - r(0)I2) = 

(& G(k, E ) )  eiEL dE 
- k = O  - 

P 

) G(0, E )  eiELdE 

The contribution to ( R 2 )  from the diagram .-- can be obtained from 

) eiELdE 
iE+&Zk2+C(k, E )  k = O  

p ,iEL 

dE J iE+k(O, E) 
where 

Eqn (A13a) can be expressed as 

= Z l i  

where 

dE 

eiEL 
7 

E2 dE + 

a2 Z"(0, E )  - X(k, E )  Ik=O dk2 
- 3  JBr 

= -F)( r e  dr 
3 472 0 

(A13a) 

(A13b) 

(A14) 
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which can be evaluated to give 
m2 

C"(0, E )  = -- 12n212E 
and 

27 
4n213E' 

- -- - 

Using eqn (A16)-(A18) we finally get to order o2 

Introducing 

we get 

The contribution to <R2) from the diagram & can be easily obtained as it 

is a repetition of Q_ . It is 

where & is the self energy correction arising from 2 and is given by 

so the contribution to ( A 2 )  comes out to be of the form 

where 
- -aX,L~+a2X1Xz + 2 a 2 ~ 2 ~ o  

In the spirit of the above, the contribution of to ( R 2 )  can be obtained by 
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putting X0 into itself, i.e., 
1013 

which gives 

From eqn (All) ,  (A19), (A23) and (A25) we finally have 
- 2 a 2 1 ~ 2 ~ 1 ~ 2  - 2 a 1 ~ * ~ ,  . (A29 

( R ~ )  = L ~ , - L z ;  (A26) 

The fourth term is the cross term which can be seen to arise if we write symbolically 

( j  + 2 ) 2 + ( ~  1 J 6[r(s)-p(s)11+(j +')'+(I i2)(u 11 Xr(s)-r(s')I>+ 

with this 
3 1 R2 e - ~ S i z d s - w S r s [ r ( s ) - r ( s ) ]  d s d s '  6r 

<R2> = 3 zsi2 ds - w l f 6 [ r ( s )  - r ( s 8 ) ]  ds ds' 
6r 

Using eqn (A27) in (A28) gives 

(R2> = LZI-LZ; 

W 9 )  

APPENDIX B 

D E R I V A T I O N  O F  THE PROBABILITY D I S T R I B U T I O N  F U N C T I O N  P(R,  L )  

Let us consider the average of exp (A I Z ds) in general i.e., 

3 1 ' J i  ds- 3 P2 ds- w Sf 6[r(s) -r(s')] ds ds' 
6r 

3 
- 3 i2 d s - w l s  d[r(s) -r(s')]  ds ds' 6r 
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where B = - u) J 1 6[r(s) - r(s’)]ds ds’ and we have retained terms to order B only 
The above can be written as 

and we have to order B 

Consider the first term 
3 1 e-z$i2 d s f  A S f  ds 

6r 

s e- is iZds 6r 
We can complete the square in the numerator 

ALL 

changing the variables to R + r-iAZo/3 we finally get e 
Now let us consider the first integral of the second term in the bracket, 

. 

Performing the k integration yields 

The second term of the square bracket in eqn (2.4) gives 
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From eqn (B4), (B7) and (B8) we have 

which in terms of x reduces to 
xu -_  

do. 

Here two cases are of interest to us. 

CASE 1 :  

with 
x = A2LZl small yields, 

whose solution gives 

which is our previous result. 

CASE I1 : x large. This gives with a change of variable 

The integral can be evaluated and is equal to & With this we have 

which yields 

With this 

and 

and 

1015 

(BlO) 
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At this stage the evaluation of the integral is done by steepest descent which requires 

i.e., 

or 
k = (!) RQ 

5 i(g/n)+(wZ)*L+’ 
With this, the probability distribution becomes 

The probability distribution P(R, I,) can also be similarly found for the case when x 
is small. In this case 

Q(A) - 
- - en2~+(2)+(6/&~W 

and 
p(k)  e(2)3(6/n,)~(ik)2(~1)~L~ 

and 

(B19) - (2)3( 6/n3)*kz(wi)*L*-ik.R d3k. P(R, L) - J 
Doing the integration again by steepest descent yields 

Since x = k2LZ, is small in ow previous calculation, it is not difficult to see that 
higher orders add corrections to P(R, L) in the form [use eqn (2.24), (2.26) and (2.28)] 

1 1 1  -+-+-+ . . . 
2.24 2.10 2.06 

At this point it is of interest to examine if higher order terms affect the probability 
distribution for x large. For this we again have to find the contributions from the 
following diagrams 

9 and f> . _ O D  

It is found that the contribution from c) Q can be written as follows 
1 J eiELdE { 1 J d3j >.- 
271 ( iE+&lk2)3 (27~)~ (iE+&lj2) 
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which we write as C'- D' where 

C ' =  -(-)I 27 cu2 eiELiE dE 
4n3 l3 (iE+$lk2)3' 

Putting iE+ 116 k2 = i F  we get 

C ' =  -- 27(w2)e-k2g[/T2L - -dF-- x l e i F L  --dF ] 
4n3 z3 6L iF3 

--- - 27 c2) - e-k2'"[-:: -dE-- X J  , - dR .  eiE ] 
4n3 G iE3 

Similarly D' can be evaluated to give 
27 Lw2 -k&' eiE 

D' = -(G)(-F) e J3 dE. 0324) 

= '(-i.>.e 8n i l - d E .  E 3  0325) 

Therefore C'- D' becomes 
9 @2L -k2L_' eiE 

Now to find the contribution of e- we have to evaluate the following integrals 

i.e., A' -.B' where 

where 

Similarly we can write for B' 

and 

using the following identity 
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We can write 

The logarithmic term can be written for x small 

which can be expanded 

All the terms containing odd powders of h will drop upon integration, therefore we 
will finally have retaining only first power in x 

i 1 - k2- Ll eiFL 

A’-B’ = 2ae ti aZx[I-(---)dF] F2 12FL 6P2FL 

Ll 

= 2acu2x~e 

E 2aw2xE e ti xo. 
Ll - k2- 

For x large the major contribution to the integral can be written as follows 

The contribution of the diagram can be obtained from the following 

‘fc de( 1 f d3j ] 1 s(( d3:i ) - k 2 a  Ll 

e .  2n (iE)2 ( 2 7 ~ ) ~  (iE+&lj2)2 ( 2 ~ ) ~  iE+5 j”) 
We need evaluate integrals of the following type 

z -  
which can be expressed as = C-2nzcu(;) JiE 

where C is the divergent term. But the divergence has to do with the shape of co 
and can be thrown. The above integrations are straightforward and give zero. 
We omit their exact evaluation and quote the result finally to second order in o 
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The important thing is that for x small we still retain the structure of the equation 
for ZI > Z, i.e., 

so that there is only the change of the coefficient, as noticed in the previous calculation. 
ZI N l+,+L* 

For x large we have 

To evaluate x o  and xb we employ the following 

and get 

xo = 71 

xb = -271 
with these eqn (B34) and (B12) can be recast into eqn (3.19) with the cross term as 
N ak( 1 / I -  1 /ll)L. 


