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Résumé. 2014 Nous analysons le comportement de solutions en bon solvant de chaines macro-
moléculaires et confinées dans des tubes (ou des lamelles) de diamètre D comparable au rayon de
la pelote. Les interactions répulsives entre monomères sont prises en compte grâce à une méthode
d’échelle qui va au-delà de la théorie usuelle de Flory-Huggins.

Pour le problème des lamelles, nous trouvons cinq régimes différents (dépendant de la concen-
tration C et du diamètre D) avec des changements de comportement réguliers à toutes les frontières.
Dans le problème des tubes un de ces régimes disparait et deux lignes de cross-over se confondent,
donnant lieu à une discontinuité plus marquée. Ceci est lié au fait que lorsque D devient de l’ordre
de la taille du monomère, les différentes pelotes ne peuvent plus s’interpénétrer.

Les propriétés thermodynamiques, les corrélations locales et la taille de la chaine sont estimées
dans chaque cas. Toutefois les arguments d’échelle prédisent seulement les lois de puissance (en C
et D) pour toutes ces quantités mais ne donnent pas les coefficients numériques.

Abstract. 2014 We analyse the theoretical behaviour of macromolecular chains dissolved in a good
solvent, and confined into tubes (or slits) of diameter D comparable to the coil radius. The repulsive
interactions between monomers are taken into account by a scaling method which goes beyond the
usual Flory Huggins approach.
For the slit problem, we find five different regimes (depending on the concentration C and on

the diameter D) with smooth cross-overs at all boundaries. For the tube problem, one of these
regimes disappears and two cross-over lines merge, giving rise to a line of stronger discontinuity.
This is related to the fact that, when D decreases down to the monomer size, different coils cannot
overlap each other at all.

For all regimes that thermodynamic properties, the local correlations and the overall chain size
are estimated. The scaling arguments, however, predict only the power laws (in C and D) for all
these quantities, and do not give precise numerical coefficients.
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1. Introduction. - The behaviour of flexible poly-
mer chains moving inside porous structures is impor-
tant for many practical problems = filtration, gel
permeation chromatography, heterogeneous catalysis,
oil recuperation, etc. A number of data, have been
taken both on partition coefficients - i.e. on the

thermodynamic state of the trapped chains - and
on diffusion properties [I]. The present paper presents
some theoretical considerations on the first problem.
We consider only the case when the solution is

contained in fine pores where the volume available

to solvent and solute is limited by well defined boun-
daries. (Thus the problems of chains trapped in a
swollen gel are not included.) We assume the simplest
shapes for the pores : i.e. an infinite slit of width D

(Fig. la) or a long capillary of circular cross-section
(Fig. lb) (1). Case (a) might be found with a cleavage
fracture in mica. Case (b) can be approximated by
pores in leached glass [1] or with open crystallographic
structures such as zeolites [2].

(1) The precise shape of the cross-section (circle, or square...)
is unimportant for the scaling discussion to be described here.

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphys:0197700380108500

http://www.edpsciences.org
http://dx.doi.org/10.1051/jphys:0197700380108500


86

FIG. 1. - Conformations of a single flexible chain trapped into
a slit (a) or a capillary (b).

We assume that polymer absorption on the solid
surfaces is negligible = this can be achieved on glass,
for instance, through replacement of the --OH groups
by trimethylsilane [3]. We also, restrict our attention
to uncharged polymers. A good example for our

purposes would be polystyrene dissolved in a good
solvent for the bulk solutions of such systems we have
detailed neutron data, which have shown qualitative
deviations from the Flory Huggins theory [4]. These
deviations have been interpreted by a scaling method.
Our aim is to extend these considerations to situa-

tions where the pore size D is comparable to, or even
smaller than the individual coil radius R (2). For a
single ideal chain trapped in a pore the entropy and
all related thermodynamic parameters have already
been discussed in detail [5]. But the scaling approach
described in ref. [4] allows us to do much more :
we can incorporate rigorously the repulsive interac-
tions between monomers, which are very important in
practice, and treat both dilute solutions (where
different chains do not overlap) and semi-dilute
solutions (where the overlap is significant).
From a theoretical standpoint, these problems

are interesting because they are associated with
various cross-overs between three dimensional beha-
viour (for R  D) and two dimensional behaviour
(for R &#x3E; D) in a slit (or between dimensionalities 3
and 1 in a capillary). 
There is a close relation between polymer statistics

and magnetic phase transitions [6, 7].
An abundant theoretical literature can be found

on magnetic transitions in systems of restricted dimen-
sionality [8, 9]. However, only a small fraction of this
work can be transposed immediately to the polymer
problem. For this reason, we shall not emphasize
very much the magnetic analogy, but we shall write

(2) On the other hand, we usually assume that D is much larger
than the monomer size.

down directly most of our scaling assumptions on the
polymer system. This style (hopefully) should make
our arguments more accessible to physical chemists.
In section 2 we discuss the single chain problem (with
excluded volume effects) for both slits and capillaries.
In section 3 we consider overlapping chains in a slit;
in section 4 we proceed to the most delicate case of
overlapping chains in a capillary.

2. The single chain problem. - 2. 1 THE CHAIN
IN OPEN SPACE. - Let us start from a single chain
in an infinite sea of solvent (Fig. 2A). The situation
is described by the following parameters :
- the ideal chain radius Ro = NI/2 a where N

is the polymerization index and a a characteristic
length (which for brevity we call the monomer size),
- the excluded volume v proportional to the

parameter 1/2 - x of Flory [10]. For the good solvents
of interest here v is positive and of order a3. It is
sometimes convenient to visualize this by imposing a
lattice model, as in the Flory-Huggins theory [10] -
e.g. a cubic lattice of mesh size a ; all chains are then

represented by self avoiding random walks of N

steps on this lattice,
- the real radius of the chain RF3 (where F stands

for Flory and 3 for 3 dimensional) is then of the
form [10]

In eq. (2.1) (and in all what follows an #e sign)
we purposely ignore all numerical coefficients.

2.2 CHAIN IN A SLIT. - Let us now bring the chain
inside a slit of diameter D. If D &#x3E; RF3 no change in

FIG. 2. - Various regimes for macromolecular solutions in a slit.
Ç3 is a characteristic length of bulk solutions, varying like the
concentration C - 3/4. Thus the ordinates y increase with concentra-
tion. The abscissas x are inversely proportional to the slit thick-

ness D.
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shape is expected and the chain remains a spherical
coil. But if D  RF3 a significant squeezing takes
place; the coil becomes a flat pancake, of thickness D
and radius RF2 (Fig. la). The Flory analysis tells us
that for this two dimensional problem, RF2 must be
proportional to N3/4. However, the coefficient here
is non-trivial, since it will depend strongly on D. A
scaling assumption on RF2 can be formulated as

follows

where the dimensionless function f(x) has the follow-
ing features

m being an exponent which is unknown at this stage.
The second limit in (2.3) implies that for D  RF :

As explained above, the power of N involved must be
equal to 3/4

Thus we must have m = 1/4 and

This result can also be derived directly by an argu-
ment of the Flory type, where the free energy of the
pancake is split into an elastic deformation energy and
a repulsive term. We avoid this presentation however,
because, although it gives the correct exponents it
does not give the free energy itself correctly. This
situation is now well recognized [11, 12].
Another approach to eq. (2.5) is the following ’:

short segments of the chain (with a number of mono-
mers n smaller than a certain limit n, ,) will show
internal correlations which are identical to those of a
3-dimensional self avoiding walk, and independent
of the existence of a confining slit. But longer segments
(n &#x3E; nr ,) will display certain two dimensional features.
The cross-over point n. is such that n’15 a --- D or
n (D/a)5/3.
For long range properties (distances &#x3E; D) we can

picture the chain as a sequence of Nlnc subunits,
each of volume D 3, with complete mutual exclusion
between subunits. The subunit centers are confined
to the midplane of the slit, and each of them is asso-
ciated with an impenetrable area D2 in this plane.
The resulting two dimensional self avoiding walk
(with unit step D) has a size

where v2 is the two dimensional exponent, for which
we use the (approximate) Flory value v2 = 3/4.
It can be checked that (2.5) and (2. 5) coincide.
An interesting question is the form of the density

across the slit. The density vanishes on both walls.
For the present (single chain) problem we expect
the density to reach its average value within a certain
healing distance from the wall, which is a constant
fraction of D : i.e. there is no flat plateau in the profile.
We shall see later that for the many chain problem,
the situation is often different, and the healing length
shorter.

Let us now quote the scaling form for the free

energy per chain :F N measured from the state with
D = oo. It must be of the form

where kB is Boltzmann’s constant, and g(x) is a

dimensionless function.

The value of p can be obtained from the requirement
that Yyv be an extensive function of N

Eq. (2.8) can also be derived, more fundamentally,
from the magnetic analogy [8]. Note the difference
with the result of ref. [5] for ideal chains : the latter
reads

In principle :F N is measured by comparison of
concentrations in the pore and in a bulk solution,
exchanging chains with the pore :

The’prefactor a also depends on x, but the dominant
factor is the exponential : thus YN can be obtained,
as described for instance in ref. [1]. The difference
in exponents between eqs. (2.8) and (2.9) may
however be too small to be seen.

2.3 CHAIN IN A CAPILLARY. - The arguments
are very similar and we shall quote only the results.
For RF3 &#x3E; D the chain is deformed into a long cigar
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of diameter D and length RFI (Fig. lb). The latter
is linear in N

The free energy change associated with the confin-
ment is still described by eq. (2.8) and only the nume-
rical coefficient (not quoted in (2.8)) will differ.

3. Overlapping chains in a siit.201331 THE CRITICAL
OVERLAP CONCENTRATION Ci. - We now have a

reasonably good picture of the behaviour of a single
chain. What happens if the concentration C incre-
ases (’), so that different chains begin to overlap ?
Clearly there will be a change of behaviour when
different chains come into contact : this defines a
critical overlap concentration

a) For x  1, C1 (x) becomes identical to a concen-
tration C* which has been discussed extensively in
ref. [4]

b) For x &#x3E; 1 C1(x) corresponds to a number N
of monomers in a volume of order R 2 D where RF2
is the single pancake radius calculated in eq. (2.5)

It is convenient to display results such as (2.2)
on a diagram where one axis measures x, while the
other axis measures the concentration or a related

quantity. This diagram appears in figure 2. Instead
of the concentration, we use the variable

where Ç3( C) is the correlation length for bulk solutions
of concentration C. The various meanings of Ç3(C)
have been discussed in ref. [4], and will not be restated
here in detail. The briefest summary is obtained

through the concept of blobs [4], [12]. Each chain (in
an overlapping, three dimensional solution) can be
conceived as a sequence of blobs, each containing
g = C3 monomers and each having a diameter Ç3.
Inside one blob excluded volume effects are important,
but different blobs are essentially uncorrelated, and the
chains are ideal at large scales. For future use it will

(3) We define C as a number of monomers per unit volume.

be convenient to rewrite the relation between Ç3
and C under the (N independent) form

Eqs. (3.1) and (3.2) for the critical overlap concen-
tration are described by the line PSM on the diagram
of figure 2. Below this line the solutions are dilute
(non overlapping coils). Above this line they are

semi-dilute.
We shall now consider the cross-over between

dilute and semi-dilute behaviour. The first and most
trivial case is obtained when D is large - i.e. when
we are dealing with normal 3 dimensional solutions.
This corresponds to the line PS of figure 2. Below PS
(region A) we are dealing with separate spherical coils
of size RF3. Above PS (region B) we have overlapping
spherical coils, with a radius R decreasing slowly
with concentration, as explained in ref. [4]. In region B
the description in terms of blobs is adequate.

In region A the osmotic pressure TC is comparable
to the perfect gas pressure

In region B the osmotic pressure shows a slight
deviation from the Flory-Huggins exponent, and is

given by

Experimental checks on these various laws are pre-
scented in ref. [4].

3.2 SEMI-DILUTE SOLUTIONS WITH TWO DIMENSIONAL
BEHAVIOUR. - We consider now region (D) in the

diagram of figure 2. Physically this means that starting
with separate pancakes we increase the concentration
slightly and force the pancakes to overlap. The cross-
over through the line SM can again be analised by
scaling methods. The main features are the following.

a) There exists a correlation length ’2 in the slit

plane, dependent on C but independent of the poly-
merization index N. Just at the cross-over, ’2 must
be equal to the radius of one isolated chain RF2
(eq. (2.5)). These two requirements impose

(The reader may check that with the forms (3.2)
for Cl, and (2.5) for RF2 the length Ç2 is indeed

independent of N. )
b) The overall length of one chain R must vary

like N112 since each chain is ideal on spatial scales
larger than ç 2. R must also reduce to RF2 when C = Cl.
This imposes
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c) The osmotic pressure n( C) reflects the local
correlations (on a scale Ç2 or D) and is thus indepen-
dent of N in the semi dilute region. Furthermore n
must be comparable to the perfect gas pressure

kB T c on the dilute side. These two requirementsN q

impose

d) It must be emphasized that n( C) is the osmotic
pressure inside the slit : it is related to the change of
free energy when the solution expands, always
remaining inside a gap of fixed D. A more important
thermodynamic parameter is the chemical potential p
(per monomer) which allows one to discuss the equili-
brium between a slit (concentration C) and a bulk
solution (concentration Cb). In the latter system we
may write

where J-lo is the potential of a single chain, 1t3 is given
by eq. (3.4b) and k’ is a numerical constant. This

simple scaling form will hold in the semi-dilute region.
In region D we may write

where the second term represents the work (per
monomer) for squeezing a coil into a pancake (eq. (2. 8)
divided by N) k" and k"’ are numerical constants. The
last term represents the work required to bring the
different coils in close overlap. 7c(C) is given by
eq. (3. 7).
As we shall see later, in region D we always have

constantly Ç2 &#x3E; D. When this inequality is inserted
into eqs. (3.7), (3.9) it can be checked that the k"’
term in (3.9) is always smaller than the k" term.

Setting Ilb = ,ud we arrive at an equilibrium condi-
tion of the form

where ki and k2 are two numerical constant. Eq. (3.10)
could in principle be checked on suitable porous
media, using the techniques described in ref. [1].

3.3 SEMI-DILUTE SOLUTIONS WITH 3-DIMENSIONAL
LOCAL BEHAVIOUR. - It is important to realize that
the behaviour associated with region (D) cannot
extend up to very high concentrations. For instance,
if we take eq. (3.6) for the chain size, and try to apply
it to a molten polymer problem (Ca’ = 1) we get
R 2 Na2(a/D)1/2 while the correct result is

Thus a second cross-over must occur, at a concen-
tration C2(x). At higher concentrations C &#x3E; C2
we enter a new region (E on Fig. 3).

In region (E) all correlation lengths are smaller
than the slit thickness D and the local correlations
are thus identical to those of a bulk solution. We may
define the border C2(x) by either one of the following
conditions

Let us choose for instance eq. (3.11) as our starting
point. Using eqs. (3.5) and (3.2) we can transform
it into

where we have used eq. (2. 5) for RF2. Inserting now
the explicit form (3.2) of Cl, we reach

Inserting this value into the formula for Ç3 (eq. (3.4))
we check immediately that (3. 12) is equivalent to
(3 .11 ). We can also see from the definitions of x
and y that (3.12) corresponds simply to x = y,
i.e. to the first bisectrix in figure 3.

Having thus specified the border of region E, let us
now describe its main properties.

a) The local correlations are isotropic and identical
to those of a usual 3 dimensional solution. The corre-
lation length is Ç3(C) (eq. (3.4)).

b) Each chain occupies a region with the shape
of a pancake of thickness D and radius R Of course
different chains overlap. The radius R may be derived
from the blob concept : one chain is made of a sequence
of N/g blobs, independent of each other, and each
of size Ç3. Thus

where g = C is the number of monomers in one
blob. Eq. (3.15) is identical in form with what is

expected in three dimensional bulk solutions [4];
the numerical coefficient may however be different.

It is possible to check that eq. (3.15) matches
smoothly with eq. (3.6) on the borderline (x = y)
between regions D and E.

c) The osmotic pressure n(C) is dominated by local
correlations and thus retains the 3 dimensional value
(eq. (3.4b)). Also, for the equilibrium between a bulk
solution and a slit, it may be checked from the scaling
form of the chemical potentials that the two concen-
trations Cb and C are nearly equal.
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d) It is also of interest to discuss the density profile
across the slit when Ç3  D. We know that in 3-
dimensional solutions the effects of local perturbations .
are screened out at distances r &#x3E; Ç3 [4]. Thus the
density must vanish on both walls, but must return
to the average value C at a healing distance of order Ç3
from each wall. In most of the slit the density profile
is flat. This differs from the classical results (,) for
ideal chains squeezed in a slit, where the healing
length is of order I. Some readers might be surprised
by this difference, since our interacting chains are
gaussian on large scales: But in fact the situation is
familiar with concentrated three dimensional solu-
tions : here the osmotic compressibility is low, and as a
result the healing length is small [4]. But the large
repulsion energies do not prevent the chains from
being ideal as first noticed by Flory.

4. Overlapping chains in a capillary. - 4. 1 SPECIFIC
FEATURES OF THE ONE DIMENSIONAL PROBLEM. - Poly-
mer solutions in three or two dimensions obey a
fundamental theorem first realised by Flory [10] :
namely, at high concentrations, the chains become
ideal. For the slit problem considered in the last
section, this implied the existence of a regime which
we called semi-dilute with two dimensional correlations.
In the diagram of figure 2 this was associated with
region (D).

In one dimension the Flory theorem breaks down :
self avoiding walks on a one dimensional lattice are
always fully extended. This, as we shall see, implies
that there is no analog to region (D) : a semi-dilute
regime with one dimensional correlations does not exist.
The situation can again be described in a diagram

with coordinates x = RFID and y = RF/Ç3 (Fig. 3).
Here the two boundary lines SM and SL collapse

FIG. 3. - Regimes for macromolecular solutions in a capillary.
Note the difference with the case of a slit (Fig. 2) : region (D) has

disappeared.

(4) See for instance DOLAN, A. K., EDWARDS, S. F., Proc. R.
Soc. A 337 (1974) 509.

into a single line. The cross-over through this double
line will turn out to be less smooth than in the preced-
ing cases.

4.2 THE OVERLAP CONCENTRATION C1(X). - On
figure 3 the onset of overlap between chains is associat-
ed with the line PSM.

a) When the capillary is large (D &#x3E; RF3 or x  1)
we return to the familiar case of bulk solutions and
we can write

b) For smaller capillaries (x &#x3E; 1) the volume

occupied by one coil is of order D 2 RF1 where RFl
is the length of one isolated cigar given in eq. (2 .11 ).
The overlap threshold is thus

We meet now the fundamental property : on the
line SM defined by eq. (4.2) the three dimensional
. correlation length Ç3 becomes equal to D

Above the line SM(C&#x3E; Ci) Ç3(C) is smaller than D :
the polymer solution must then display local corre-
lations which are three dimensional in character.
As announced, we do not find any analog to region (D)
of figure 3. We shall now discuss in more detail the
properties of these overlapping chain systems (i.e.
region (E) in the diagram).

4.3 SEMI-DILUTE cigars. - The main physical
features expected in region (E) are the following :

a) on a spatial scale Ç3(C) the correlations are not
different from what we find in bulk solutions at the
same concentration. The osmotic pressure is still

given by eq. (3. 4b) ; and

b) however the overall shape of one coil is not

spherical, but elongated, with a certain length R(C)
along the capillary axis. The value of R(C) can be
derived by the following argument :

Let us consider the density-density correlation
function p (12) for one labelled chain in the solution.
Physically we may think of 6 as the density of labelled
monomers at point 2 when one labelled monomer
is fixed at point 1.
- For r12  Ç3(C), f(r) has an excluded volume

behaviour [4]

Eq. (4.4) was first obtained long ago by Edwards [13].
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- For Ç3(C)  r  D, j(r12) may be derived from
the blob concept and decreases like 1 /r, as in an ideal
chain

- n

where g = Cj6 is the number of monomers in one blob.
- For r12 &#x3E; D the function p must become

essentially constant (5) and equal to the average
density of labelled monomers for one cigar

Writing that (4.5) and (4.6) must agree when

r 12 = D, we are led to

or

Eq. (4. 7) gives a radius R linear in N as expected for
a one dimensional confinment. However, because
of the factor D in the denominator, R is much smaller
than for a fully extended chain.
Or course, if at fixed concentration we increase D,

R decreases, and at some moment, R becomes equal
to D : we then cross-over to a conventional bulk
solution. This corresponds to the line ST in the dia-
gram of figure 3. In order to locate the line ST we may
write that D is equal to the radius R3(C) derived in
ref. [4] for three dimensional solutions. R3(C) is in
f’act given by our eq. (3.15) and thus we have on the
line ST

This may also be written

or

Eq. (4.9) may in fact be used as a starting point for
another derivation of the cigar length in region E.
Since R/RF3 depends only on the reduced variables x
and y we expect to have

- On the line SM(x = y) we must have

Thus u + v = 2/3. 

(5) This may be stated more precisely by saying that p (R)jfi (D)
is a numerical constant of order unity.

- On the line ST(y = x6) we must have R = R3(C),
giving

This gives u = 1 and v = - 1/3, or equivalently

It is easily seen from the definitions of x and y
that this agrees with (4.7).

Finally, we may mention a pictorial derivation
of (4.7) which is rather illuminating. This is based
on the notion of superblobs of size D. Each superblob
contains a number (Djç3)2 of consecutive blobs
along one chain. The factor (Djç3)2 expressing the
fact that the blob sequence is ideal for spatial scales r
such that ç 3  r  D. The number of monomers
in one superblob is thus

and the number of superblobs in one chain is N/gs
Each superblob is disposed consecutively to the next
one. Thus the overall length is 

Consider now the process where we decrease the
size of the capillary at fixed concentration (fixed y &#x3E; 1)
and enter the region E of the diagram : the chain
radius starts from the value R3( C), and then increases
linearly’ with x according to eq. (4.10). Finally,
when we cross the line SM(x = y) the radius reaches
the value RF1. It is of importance for thermodynamic
purposes, to calculate the entropy change AS asso-
ciated with this stretching process. Quite generally
for one chain of independent blobs we would expect

In the present one dimensional problem we would
have to supplement this by an interaction term

(since superblobs cannot be treated as independent,
and this is precisely the source of the stretching).
The radius R results from an optimisation of the
sum ((4.13) + interaction term). As usual however
the two terms will be comparable after optimisation,
and we can retain (4.13) as the whole work (divided
by kB T) required to bring one chain into region E
from the bulk solution at concentration C. In dimen-
sionless variables this is

Note that this crosses over smoothly to the value
- AS = X513, which was given in eq. (2. 8) for sepa-
rate cigars, when x = y.
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It can be checked that T AS is always a small
correction to the free energy per chain : thus the

equation for the osmotic pressure is not modified

significantly by stretching. Let us now write down
chemical potentials and equilibrium conditions bet-
ween phase E and a bulk solution.
The chemical potential PE, in phase E, per monomer,

is of the form :

where 111 is the squeezing term for a single chain, 112
is the lateral stretching term discussed above, and P3
is the effect of repulsions in bulk 3-dimensional solu-
tions. The ratio

is small in region (E), and /.12 can be omitted. We
write the equilibrium condition between the confined
solution and a bulk solution of concentration CB.
The bulk chemical potential is from eq. (3.8)

Writing J1E = J1B we find that C is only slightly smaller
than CB, the relation between the two being

Returning now to the problem of chain confor-
mation in region E, we shall now consider briefly
the number v of distinct chains cutting one chosen
cross section of the capillary. This is roughly equal
to the chain concentration C/N multiplied by the
chain length R and by the cross-section area D 2

At the overlap concentration (where we know
from (4.4) that Ç3 D) we have v --- 1 as expected.
On the other hand, for molten polymers (Ç3 = a) v is
of order Dla : note that this value is much smaller
than what we would have for a bundle of completely
elongated chains (v - D 2/ a2). These considerations
on v might be of use for discussions of the rheological
behaviour of solutions in fine pores.

4.4 ANOMALIES NEAR THE OVERLAP CONCENTRATION.
- As pointed out earlier, the limiting line SM is

really the result of the collapse of two lines SM and
SN : thus the cross-over properties here are somewhat

unusual. The cigar length R crosses over smoothly
between eqs. (2.11) and (4.7). However, the osmotic
pressure 7r does not. A qualitative plot of 7c(C) near
C = C, (x) is shown on figure 4. Below the threshold
we expect to have something like the Tonk’s equa-
tion [14] for hard rods in one dimension

FIG. 4. - Reduced osmotic pressure n/kB T versus concentration C
near the overlap threshold Ci, for a system of chains trapped in a
capillary. Note that the limiting forms far above and below C1

do not join in smoothly.

Above C = C1 we expect to find the three dimen-
sional law (3.4b). It must be realized that

(Equality occurs only when C1 = C*, i.e. at

point S.) This is completely different from what we
know in two or three dimensions : in one dimension,
separate cigars find it very difficult to interpenetrate,
and the pressure must rise far above C1/N before
crossing over to the semi dilute value.
We may add at this point one comment for readers

which are familiar with the magnetic phase transition
analog [7] : the n vector model, when extrapolated to
the non physical value n = 0, has a finite transition
temperature in one dimension [15]. However, the
critical exponents are unusual and in particular the
magnetisation exponent# vanishes. The unusual
features of a(C) are related to this anomaly.

5. Concluding remarks. - We have reached a

certain qualitative understanding of the static confor-
mation of flexible coils confined into small pores.
This description is powerful, because it includes the
excluded volume effects with the same level of accuracy
which is reached in the Flory theory of a single coil.
On the other hand, the results are weak because they
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lack precise numerical coefficients. But the scaling
laws involving the dimensionless parameters x and y
are interesting and will hopefully be checked by
experiments.
The present work can be extended in various

directions : 
I

a) The dynamics of confined polymer solutions
is of great interest, and can be attacked by scaling
methods (6) in analogy with recent work on bulk
solutions [12].

b) The problems of adsorption of a polymer on a
surface are complex but interesting. A scaling theory

(6) Brochard, F., Private Communication.

of reversible (weak) adsorption of chains on one flat
surface has recently been proposed [16]. The main
limitation here is apparently the difficulty of reaching
thermal equilibrium in the adsorption process.

c) A somewhat different class of questions is
connected with systems where the boundaries are not
smooth e.g. chains trapped inside a gel. Here, however
we shall face problems of gel statistics which are one
order of magnitude more difficult from the theoretical
standpoint.

Acknowledgments. - We thank G. Jannink and
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