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?ROC.  PHYS. SOC., 1 9 6 5 ,  V O L .  8.5 

The statistical mechanics of polymers with 
excluded volume 

S. F. EDWARDS 
Department of Theoretical Physics, The University of Manchester 

MS. received 18th November 1964 

Abstract. The probability distribution of the configurations of a polymer 
consisting of freely hinged links of length I and excluded volume v is studied. 
It is shown that the interaction of the polymer with itself can be represented by 
considering the polymer under the influence of a self-consistent field which 
reduces the problem to an equation like the Hartree equation for an atom. This 
can be solved asymptotically, giving the probability of the nth link of thepolymer 
passing through the point r to be 

where L = nl is the length along the polymer and M(L)  the normalization. 
Thus the mean square of r,  <r2>, is 

215 q5(3j L"5. 

The theory is extended to polymers of finite length, to the excluded random 
walk problem and to n dmensions. 

1. Introduction 

The effect of finite thickness on the configurational statistical mechanics of polymers 
is an important problem in polymer science and biophysics, since it has long been believed 
that the probability of finding the nth link at Y in such a polymer (assumed for the present 
to consist of freely hinged links of length I )  will not be the random walk distribution 

but a broader distribution. This will have the effect of making the mean of y2 greater 
than the Einstein value nZ2, and important physical results stem from the failure of the 
Einstein law. This problem has been extensively studied in the model in which the links 
of the chain are restricted to joining neighbouring points of a perfect lattice. Though it 
was for some time believed that the asymptotic form of (r2 ) would depend upon the type 
of lattice studied, recent work by Domb (1963) rules this out. Domb has done calcula- 
tions on finite chains and finds that all lattices give similar behaviour. His results tend 
towards the relation ( y 2 )  - a615 and numerical experiments by Wall and Erpenbeck 
(l959) agree with this, giving (~2) N ny where 0.22 > y > 0-18. Phenomenological 

This paper will give a general derivation of this law and the probability distribution 
from which it stems. The basic fact which the analysis relies on is as follows. Consider 

implying this law are also given by Flory (1953). 
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614 S. F. Edwarh 

the probability of finding the polymer at the point r knowing only that it starts at the 
origin. Use the Gaussian distribution for a start and consider the polymer of infinite 
length. Since the probability that the nth link lands at r is 

where L = nl is the length along the chain, the probability required is 

3 
hi 

=- 

Compare this with a rigid polymer pointing in an arbitrary direction. Since the surface 
of a sphere is 4-m2 one has 

One can expect that a real polymer with excluded volume will have a law lying between 
these extremes, and it is found that the realistic answer tends to 

j ( y )  = ‘(2.y3L 
4 7% Y413 

where v is the excluded volume, defined by 

where Li is the potential between two segments separated by a distance Y. For a discussion 
of the excluded volume see Flory (1953) and Volkenstein (1963). 

All these functions decrease quite fast, but it will turn out that p” will play the role of a 
potential in subsequent calculations, and it will be recalled that there is a great difference 
between potentials of l /r  and 1/y2, the former being rather pathological in spite of its 
familiarity, whilst the latter is rather harmless. The realistic function Y - ~ / ~  needs to be 
treated with care but is not as bad as Y-I. Since this probability is decreasing fast the 
following physical picture is proposed. The polymer starts at the origin and the point L 
moves slowly outwards as L increases, so that an ‘average view’ from far outside gives a 
‘polymer density’ of$(.). Think of this as established, and now again move out along the 
polymer from the origin. The current point at L will be deflected from the random Walk 
path by encounters with parts of the polymer having an L’ quite different from the 
current point, and one can think of this current point being deflected by the ‘po1Per 
density’. So one may argue that the motion will be like a random walk in the presence of 
a potential, and this potential will have to be calculated from the complete solution itself. 
Here is a strong similarity to Hartree’s treatment of the atomic problem. Hartree replaced 
the many-electron problem by the problem of solving the motion of one electron in a 
certain self-consistent field. From this solution Hartree then went back and calculated 
the self-consistent field itself. That problem is impossible analytically, but it turns Out 

that in the polymer problem the asymptotic forms can be obtained, though the complete 
solution is a problem comparable with the atomic problem. 
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This self-consistent field approximation will be derived in the next section by a 
argument; that it is rigorously correct is shown in the appendix. The 

equation will be solved in 5 3 and some generalizations offered in 5 4. 

2. The self-consistent approximation 

Consider briefly the Einstein case. One may argue that the entire problem is 
described by the probability that the point, a distance L from the origin along the polymer, 
is at the point r in space, PE(r, L). Starting at r, L,  consider the probability of finding 
the  polymer at r, L + 1. This will stem from adding the contributions from all the points 
I+ 6r, L, where clearly Sr is li, i being a unit vector. Thus 

pE(r, L + 1) = - pE(r+ Zi, L)di (2.1) 47r ' s  
pE(r, L) + 2 - aL = pE(r, L)  + lz,2pE( J +iz ai) 

and expanding 

(2.2) 

or 

This is, of course, a completely standard problem, and has the solution (1.1). This has 
the property of a Markov process, that one can always break up the interval (0, r), (0, L) 
in as many places as one likes: 

(0, Ri)(O, Li), (RiRz)(LiL2), (Rnr)(LnL) (0 < Li < L2 * a *  < Ln < L )  
and write 

PE(r, 0 ;  L,  0) = JpE(r, R,; L,  L ~ ) P E ( R ~ ,  Rn-1; Ln, ~ n - i ) - .  

...PE( rl,  0;  L,, 0 )  d3R, d3R2 ... d3Rn. (2.4) 
If one takes the ends of all the links of the chain as the R,, one can write down the pro- 
bability of the entire configuration 

PE@, Rn, Rn-1 > 0) = ~ P E ( & ,  (2.5) 
= P@I) say * (2.6) 

(The L, labels now need not appear since L, - Li+l = 1.) Now consider the effect of an 
nteraction potential V between points of the chain (V is U t 2  of 1.6) labelled as R(L). 
It will have the effect of multiplying PE, which expresses just the length of the links, by a 
Boltzmann factor which for an infinite chain will be 

1 V{R(L') -R(L")} dL' dL" 
exp[-&T/, s, 

i.e. 

1 1 "  p'"'([R]) = CPEm([R]) exp[ - - f f V{R(L')-R(L")}dL'dL" . (2.7) 

The Constant C allows for the change in normalization caused by the Boltzmann factor. 
2KT 0 0 
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This factor will include the case of hard rods of radius U,  but in the following analysis v 
will be considered soft and the appropriate generalization made in due course. Clearly 
P([R]) cannot be broken up as was PE in (2.5). But let US now make the self-consistent 
field approximation and argue that one may replace the configuration R(L") by the pro- 
bability distribution p(r, L"), i.e. let us write 

1: 1," V{R(L') -R(L")} dL' dL" 

N ss dL'V{R(L') - s} Jm p(s ,  L") dL" d3s (2.8) 
0 0 

where p is to be determined. It is now possible to break UP P into a Markov chain, for 
writing 

one can split 

J," W{R(L')) dL' = W{R(L')} dL'+ W{R(L')} dL'. (2.10) s: s," 
Hence it follows that if P, is the probability of finding a configuration in the presence of 
the potential Winstead of V, the approximation (2.8) gives 

~ ( [ R I )  = j ~ 1 ( [ ~ 1 ;  L )P~([R];  r ,  L;  ra,  La) d 3 ~ c ( ~ )  (2.11) 

where P,([R], r, L)  is the probability of finding a chain [RI starting at o length 0, ending 
at r length L, and P,([R]; r, L ;  rm,  La)  is the probability of finding a chain [RI starting 
at r length L and ending at rm,  L a ,  and C(L) is inserted because again normalization d 
be required. Having made the approximation one can split up P, into a set of p,,  just 
as in (2.4): 

P,([Rl, y ,  L) = pd.9 R,; L ,  Ln)P,(R,R,-1, LnL-1) (2.12) 

(2.13) 

and now thep, satisfy a differential equation. For consider again the derivation (2.1, 2.3). 
When one allows a change in the weight factor between L and L + I of 

exp{ - ZW(r)} 1: 1 - W ( r )  

and a change of normalization, one finds 

(2.14) ap1 I a q L )  
aL C(L) aL 

pl(r, L+Z) =pl(r, L)+Z- +ZW(r)p,(r)+ --PI. 

As before, this must equal p ,  - +12v 2p,, so that 

(2.15) 



The statistical mechanics of polymers with excluded volume 617 

Returning to the definition of W, since Vis short range one may write 

(2.16) 

one may recognize in (1/2~T)JV(s)d~s the virial coefficient in the soft potential approxi- 
mation. It is well known that for hard potentials one should replace this by the excluded 
volume 

(2.17) 

(where U = Z2V so that 2 U(rn-rm) + f dLdL‘V{R(L)-R(L‘)}) .  

This replacement will be assumed here, further details being given by Volkenstein 
(1963). Thus one may write z@(r)l-2 for W, and also one may define v$(L)P2 = C‘/C, 
so that finally 

n. m 

(2.18) 

This is the basic self-consistent field equation which will be solved in the next section. 
It will be assumed from now on that v is positive; the solution for v negative is quite 
different and it is hoped to discuss this in another paper. 

3. The solution 

The term $(L) can be removed from the differential equation by extracting a term 
exp(J:v$k2dL’), and this should be done, leaving the question of normalization right to 
the end. Strictly speaking, (2.18) should have a source on the right, since as L tends to 
mop, andp should tend to S(r). One can expect a solution of the typep, = Q(r, L)/r, 
where 

Let us introduce the Fourier transform 

and write 

This gives 

This will be solved in the WBKJ approximation (Jeffreys and Jeffreys 1961) which 
about the solution 

It C a n  be verified from the solution which will be produced that the a2+/ar2 term is 
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negligible in the asymptotic region. Moreover, since Pl is in fact a Green function it can 
always be written in terms of the eigenfunctions of the differential equation, which will 
exist in pairs 

$n(~) exp(EnL17 $n + ( Y )  exp(EnL) 

As L tends to infinity this sum will be dominated by En - 0, which suggests that a valid 
further approximation will be to expand 4 in E: 

At this point one should recall thatp differs fromp, by the functionp,(r, r,; L, La). 
Clearly the only survivor in the sum (3.5) will be En = 0, and within multiplicative 
functions of L to the order of (3.6) this is just 

(3.7) 

Thus 

where f(L) is the normalization. 

effectively constant in the asymptotic region relative to the distribution below, 
This now yields, putting in normalization, and ignoring factors like r d l  which are 

where 

and 

(3.10) 

(3.11) 

Now it will be argued that this distribution is completely dominated by the region 
L = A(r) (3.12) 

r = A-l(L) (3.13) 

so that effectively, for the purpose of calculating $, 
1 

p = - S(r - A-,(L)) 
k 2  

(3.14) 



and 

rutting 

then 

Hence 

or 

so that 

and 
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p = J ~ { Y - A - ~ ( L ) } .  

A-’(L) = S, 

L = A(s), d L  = &A’ 

It is convenient to rewrite this as a distribution around Y, i.e. to put 

y = (;)315(;)115L315+Y’ 

when in terms of Y‘, to the same accuracy as has been used SO far, 

exp( - 27r ‘2/20ZL) 
P ( y ,  L, = J d 3 s  exp(-27s’2/201~)’ 

619 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

(3.22) 

(3.23) 

(3.24) 

This gives 
615 215 

(r2> = (3 (&) L6’5 + ..115Z3‘10L11’10 +pLz+ . .. (3.25) 

Where CI, j3 are coefficients which are not accurate since corrections of the same order 
Come from the approximations in (3.4), (3.6), (3.19); and the transition from (3.9) to 
(3.24) also gives corrections of the same order. The serious expansion of the whole 
method is in fact the parameter L-111Ov-115Z7110 and the condition for the present 

to be valid is that 
L-111Ov-11517110 < 1 

or 
L % 1 7 p .  
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To put in another way, for chains whose total length is less than O(Z7/v2), the Einstein law 
( 9 )  = LZ should be valid, but for chains longer than O(Z7/V2) the law (3.25) should hold. 
The present numerical data on lattices are insufficient to comment upon this criterion, 

4. Some generalizations 

The discussion above concerns the probability that a polymer of infinite length 
starting at the origin will pass through the point r, at length L. One obvious generha- 
tion is to consider a polymer of finite length L,. This leads to a straightforward change, 
replacing j ( r )  by j ( r ,  L,) where 

Ll 

j ( l ) ( r ,  L,) = f p(r ,  L’) dL‘ (4.1) 
0 

and 

Clearly 

and 

j y y ,  CO) = j ( r )  

p ( L ,  CO) = $(L). (4.3) 
As functions of r and L respectively, jC1) and$(l) are more complicated thanj  and$ 

and a solution has not been attempted, though it would be a comparatively easy matter to 
give an expansion of $(I), $(l) in terms of L,-I, and, since it has been argued that p is 
effectively a 6 function anyway, this should converge rapidly. 

Another obvious generalization is to the random walk with excluded volume. This 
problem is equivalent to the polymer at r, L only seeing that part of the polymer of length 
less than L. This is equivalent to replacing j, $ by jY2), $c2)  where 

p ( Y ,  L )  = p(r ,  L’) dL’ (4.4) 

$‘2’(Lj = j y y ,  L)p(r, L) d3r. (4.5) 

s: 
1: 

The integro-differential equation now becomes much more difficult, the only obvious 
comment being that as L tends to infinityjc2), $(2) will tend to$ and$. 

5. Conclusion 

The self-consistent field approach has been shown to give the law ( r 2 )  N L”’* 
The number of dimensions in which the problem resides is essential to this answer. Th” 
value Of 
general, r2-n in n dimensions (n 2 3). In two dimensions PE does not exist. Now one 
can treat Y - ~ ,  Y - ~  etc. by perturbation theory. I t  follows that there is only a coefficient 
change in the Einstein law (r2 ) cc L in four dimensions, and not even that in five and 
higher. In  two dimensions, although j, does not exist, one may still calculate the self- 
consistent field and$ becomes r-2’3, the final law being ( r 2 )  - L3’2. In one dimension, 

comes out to be Y-’ in three dimensions, in four dimensions, and, 
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obviously ( r 2 )  - L2 when there is volume exclusion, so for 
n < 3 ,  (y2) L6i(n+2) 

for 

It is a property of the self-consistent field for atoms that, although the first approxima- 
tion is straightforward though involving heavy computing, the higher approximations are 
&ally impossible. The author suspects the same situation here. It should be possible 
to evaluate the full self-consistent field of (2.19) numerically, but to improve (2.19) is 
probably very hard. 

Another interesting and indeed much more drastic change from the Einstein law 
appears when v is negative, for the possibility then arises that the polymer can collapse 
under suitable circumstances. I t  is hoped to discuss this in detail in a subsequent 
publication. 

Acknowledgments 

This problem was suggested to the author by Professor G. Gee and the author has 
had the benefit of many helpful discussions with him. He would also like to thank 
Professor C. Domb for very useful discussions and suggestions concerning the writing of 
this paper. 

Appendix 

A formal assessment of the problem 
In this section the chain will be taken as continuous. The problem is to evaluate 

- 1 1: V{R(L,)-R(L2)} dL, dL2] d(path) (Al) 

taken over all paths which go through R(0) = 0 and R(L) = P .  (These path integraIs are 
discussed, for example, by Gel'fand and Yaglom (1960) as are the x integrals below.) 
The functional integral can be parameterized by writing 

exp [ - - 2;T / ;  lm W(L,)-R(L2NdL1 dL2] 

 KT ,, 

0 

= ~1 exp [ i  1 X{R(L)} dL - 1 J X(r)V-l(r - s)x(s) d3r a's] ax 
0 

where V-1 is the inverse operator to V (assumed positive definite for simplicity) and the 
integral is taken over all functions X. The identity is proved by completing the square 
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Since V is always short range one may replace K T V - ’ ( ~  - s) by v-’a(r - s), and this will 
also work when the excluded volume stems from a hard potential rather than a soft, in 
the usual way. Thus 

p(r ,  L) = J M 1 R(L)=r 2R L 

exp[ - :Jo (E) d ~ ’ - i J  XIR(L‘)}~L‘] d(path) 
R(0)  = 0 0 

x exp - - x2(s) ds ax. ( :,I i 
(The symbol M will always be used for the various normalizations.) 

I t  follows now that 
Now one has rigorously obtained the Markov type process under the x integral sign. 

p ( r , L )  = Jlr s G(r,L, h 1 ) G ( r , r m ; L - L ,  hl)exp( -zJx2d3s)Sx (AS) 
1 

where 

(Ab) i 2 1  
- - -T’++x(Y) G(r, Y’;L-L’) = ~ ( Y - Y ’ ) ~ ( L - L ‘ )  

L L  3 

or 

(-47) 
1 { - p 2  + i(X(r) + E))G(~, 7‘; E) = s ( Y  - 7 ‘ ) .  

This Green function must have sets of solutions &(y) exp(E,L) and $n +(r) exp( - E J )  
($, $ + are the (at most) two solutions for given E; in Hermitian systems they are complex 
conjugates, but cannot be so identified since x is a variable of integration) : 

G(r, r,;  L-L, )  = 2 #,+(7)$,(rm) exp{-En(Lm -L)). ( A 4  
Clearly as L, tends to infinity only E, = 0 will survive, i.e. 

(449) 

G = e@/r (A10) 

G(y, r,;  L-Lm) +$o+(y)$o(r,). 

Now G will be obtained by the method of steepest descent, writing 

The next terms in the series for 4, due to 02+, have been investigated by Jeffreys and 
Jeffreys (1961) who give a systematic expansion, but attention here will be restricted t o  
the leading terms only. Thus 

1 1/2 

G = - exp( 1: ({) i 3 / 2 ( E + ~ ) 1 ’ 2  ds] 
Y 
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Now one has the x integration to perform, and this also is done by steepest descent. The 
function of steepest descent xs is dominated by the first two terms of the exponent, since 
the third vanishes at the maximum of the function. Thus one fmds since 

which is real and is indeed ~ $ 1 - 2  of (3.17). As before, one can now writep in the forms 
(3.9) and (3.24). 

The other cases are obtained by considering 

1: J: V(~(L1) - W 2 ) )  dL1 dL2 (-421) 

for the finite chain, giving just G, but the random walk problem 

appears to have no simple parameterization. 
The functional integral (A5) cannot be evaluated more generally. Further terms can 

be taken in the solution of G, and the steepest descent equation can be studied in the 
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exact form 

(0 = 0, s > r )  

but it appears these are beyond analytic treatment. 
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