Solving Flash Ratchet Problem

Omar A. Saleh

June 26, 2014

Optimal switching time for a flash ratchet: At $t=0$, system switches from surface 1 to surface 2 , and starts diffusing outwards. Surface 1 is an assymetric sawtooth potential with distances a and b from the minima to the maxima, with $a>b$. State 2 is flast, so the probability density in state 2 diffuses outwards as

$$
\begin{equation*}
\rho(x, t)=\frac{1}{\sqrt{4 \pi d t}} e^{-x^{2} / 4 d t} \tag{1}
\end{equation*}
$$

where d is the diffusion constant in the state 2 .
Upon switching back (and ignoring double steps) the motor might move right by one step with probability p_{r}, left with one step with probability p_{l}, or stay in the same place with probability p_{0}. The expectation value for step size is thus

$$
\begin{equation*}
\langle x\rangle=\ell p_{r}-\ell p_{l}+(0) p_{0}=\ell\left(p_{r}-p_{l}\right) \tag{2}
\end{equation*}
$$

where $\ell=a+b$ is the pitch of the sawtooth.
The probability of a rightward step at time τ is

$$
\begin{equation*}
p_{r}(\tau)=\int_{b}^{\infty} \rho(x, \tau) d x \tag{3}
\end{equation*}
$$

and the probability of a leftward step is

$$
\begin{equation*}
p_{l}(\tau)=\int_{-a}^{-\infty} \rho(x, \tau) d x=\int_{a}^{\infty} \rho(x, \tau) d x \tag{4}
\end{equation*}
$$

To maximize the velocity, we want to optimize $p_{r}-p_{l}$ with respect to the switching time τ :

$$
\begin{align*}
\frac{d}{d \tau}\left(p_{r}-p_{l}\right) & =0 \tag{5}\\
\frac{d}{d \tau}\left[\int_{b}^{a} \rho(x, \tau) d x\right] & =0 \tag{6}
\end{align*}
$$

At this point there is a trick: We rewrite the integral to make it dimensionless with the substitution $z=x / \sqrt{4 d t}$. Care must be taken with the integral limits, which still have a time-dependence:

$$
\begin{equation*}
\int_{b}^{a} \rho(x, \tau) d x=\int_{b / \sqrt{4 D t}}^{a / \sqrt{4 D t}} \frac{1}{\sqrt{\pi}} e^{-z^{2}} d z \tag{8}
\end{equation*}
$$

Note the leading $1 / \sqrt{4 d t}$ dissappears with the variable change.
Then you use the following identity of calculus (or ask Mathematica to do the integral!):

$$
\begin{equation*}
\frac{d}{d t} \int_{f(t)}^{g(t)} z[x] d x=z[g(t)] g^{\prime}(t)-z[f(t)] f^{\prime}(t) \tag{9}
\end{equation*}
$$

Applying this gives

$$
\begin{equation*}
\frac{d}{d \tau} \int_{b / \sqrt{4 D t}}^{a / \sqrt{4 D t}} \frac{1}{\sqrt{\pi}} e^{-z^{2}} d z=\frac{1}{4 \tau^{3 / 2} \sqrt{\pi d}}\left(b e^{-b^{2} / 4 d t}-a e^{-a^{2} / 4 d t}\right)=0 \tag{10}
\end{equation*}
$$

This can be solved for τ :

$$
\begin{equation*}
\tau=\frac{a^{2}-b^{2}}{4 d \ln a / b} \tag{11}
\end{equation*}
$$

This is the optimal switching time that maximizes forward velocity of the system.

