Lecture 2 – Collective effects in dense active systems: phase separation, jamming & glassy states

M. Cristina Marchetti

Physics, Department, Syracuse University

GIST, Korea, July 2014

Glass-like dynamics of collective cell migration

Hedges, 2009 supercooled fluid mixture

Angelini et al. 2011: MDCK epithelial cells, v_{avg} 35 μ m/h

Szabó *et al,* 2010 BAEC endothelial cells →

Role of crowding and steric effects vs activity

■Suppression of diffusive motion with increasing cell density

Dynamics controlled by dynamical heterogeneities

Active Colloids

Palacci et al, Science2013

2DL = 600nm $v_0 = 15 \mu m / s$

Active Particles & Types of Order

Polar (head≠tail): bacteria, birds, fish, ...

``Ferromagnetic'' order: a moving state or flock

Apolar: melanocytes, vibrated grains, ...

Nematic order: no mean motion

Nematic order of polar particles

Spherical: colloids

No orientational order (unless imposed by aligning rules), but surprising collective behavior Self-propelled repulsive soft colloids: a simple model to explore the interplay of self-propulsion and crowding in active systems. Possible relevance to collective cell migration, wound healing and cell sorting.

♦ Self-propelled disks with no alignment → active colloids

SP disks with alignment as a model for active glassy cell layers

Silke Henkes Aberdeen, UK

Yaouen Fily, Brndeis

Xingbo Yang, Syracuse

Self-Propelled particles + repulsive interactions

- Repulsive disks of radius a
- SP speed v_0 along axis $\hat{\mathbf{n}}_{\mathbf{i}}$
- Orientational noise D_r

$$\vec{v}_{i} = \mathbf{v}_{0}\hat{\mathbf{n}}_{i} + \mu \sum_{j \neq i} \vec{f}_{ij}$$

$$\dot{\theta}_{i} = \eta_{i}(t) \qquad \left\langle \eta_{i}(t)\eta_{j}(t') \right\rangle = 2D_{R}\delta_{ij}\delta(t-t')$$

 $f_{ij} \sim k\delta$: spring-like pair repulsive forces \propto overlap δ Fily & MCM PRL 108, 235702 (2012) Fily, Henkes & MCM, Soft Matter 10, 2132 (2014)

See also: Redner et al PRL 110, 055701 (2013); Cates & Tailleur *EPL* **101** 20010 (2013); Buttinoni et al PRL 110, 238301 (2013)

Single Active Particle

Brownian particle: random walk (RW)

$$\langle \left[\mathbf{r}(t) - \mathbf{r}(0) \right]^2 \rangle = 2Dt$$
$$D = \frac{k_B T}{\zeta}$$

Active particle: persistent RW

- Ballistic `runs' at speed v₀
- Change of direction due to rotational noise D_r

Light-activated colloids (cf E. coli) Palacci et al 2013 $v_0 = 15 \mu m / s$

Athermal Phase Separation with no Attraction

Thermal disks: $\mu k \delta \sim v_0 \rightarrow \delta_0 \sim \sqrt[V_0]{\mu k}$ $k_B T_{equiv} \sim k \delta_0^2 \sim 0.1$

``Self-Trapping"

One particle in one dimension: Schnitzer, PRE 48, 2553 (1993)

If the SP speed is v(x) is position-dependent particles accumulate in region of small v(x)

steady state $\rho(x) = \rho_0 \frac{v(0)}{v(x)} \neq \text{Brownian diffusion}$ $\rho = \text{constant}$

many particles:

$$v(x) \to v(\rho(x))$$

 \rightarrow ``self-trapping"

Tailleur & Cates, PRL 2008

Kinetic argument: small D_r: active pressure overcomes steric repulsion Redner et al, 2013

 $p_a \sim v_0^2 \rho_{qas}$

Crowding suppresses motility

Persistent random walk (PRW) of single SP disk

$$\left[\left[\Delta \mathbf{r}(t) \right]^2 \right\rangle = 4 \frac{v_0^2}{2D_r} \left[t + \frac{1}{D_r} \left(e^{-D_r t} - 1 \right) \right]$$
$$\sim 4Dt \qquad D = \frac{v_0^2}{2D_r}$$

Moderately dense suspensions of SP disks: the MSD can be fitted by PRW form with

$$\mathbf{v}_0 \rightarrow \mathbf{v}_{eff}(\boldsymbol{\phi})$$

Expect effective (mean-field) model to apply if rotational correlation time $1/D_r$ > mean free time between collisions.

Effective continuum model

(Fily & MCM, PRL 2012; Farrell, MCM, Marenduzzo & Tailleur PRL 2012)

 \diamond density ρ

mean orientation (polarization) p

$$\partial_t \rho = -\nabla \cdot [v_{eff}(\rho)\mathbf{p}] + D\nabla^2
ho$$

 $\partial_t \mathbf{p} = -D_r \mathbf{p} - \frac{1}{2} \nabla \cdot [v_{eff}(\rho)\rho)] + K \nabla^2 \mathbf{p}$

convection diffusion relaxation

For t>>1/D_R can be recast as a diffusion equation with effective diffusivity \mathcal{D}_{eff} that changes sign above φ^*

$$\mathcal{D}_{eff} = D + \frac{\mathrm{v}_{eff}^2}{2D_R} \left(1 + \frac{d\ln\mathrm{v}_{eff}}{d\ln\rho} \right) < 0$$

 $\partial_t \rho = \vec{\nabla} \cdot \left[\vec{\mathcal{D}}_{eff}(\rho) \vec{\nabla} \rho \right]$ for $\varphi \ge \varphi^* (\mathbf{v}_0, \lambda, D_r)$

1

 \rightarrow spinodal

Spinodal line from MFT with

Redner, Baskaran & Hagan, PRE 3013

Confined Active Colloids

Two ways to calculate pressure

1. Force per unit length on the wall.

Non-monotonic Pressure

Agent-Based Model of Collective Cell Migration

Henkes, Fily & MCM, PRE 2011

New ingredients:

- •Alignment rule*
- •SP represents cell polarization

$$\mathbf{v}_{i} = \dot{\mathbf{r}}_{i} = \mathbf{v}_{0} \mathbf{\hat{n}}_{i} + \mu \sum_{j} \mathbf{f}_{ij}$$
$$\dot{\theta}_{i} = \underbrace{\frac{1}{\tau} (\theta_{i}^{v} - \theta_{i})}_{\tau} + \eta_{i}(t)$$

f_{ij} pair repulsive forces:

*Szabó et al, PRE 74, 06918 (2006)

□Add polydispersion as size variation is needed to yield glass in 2d repulsive soft disks → passive limit is the granular jamming transition

Add **confinement** to disable global translation

"Glass" or "jammed" state:
◆Caging and oscillations
◆Long time dynamics
dominated by low frequency
modes of jammed soft disks

Transition from an active fluid to an active glassy or jammed state with increasing packing fraction ϕ

What are these oscillations?

- The system is in a glassy state; self-propulsion excites the collective low energy modes of the system.
- Although the dynamics is overdamped, the angular alignment time scale τ provides an "effective inertia"
- Can study the low frequency modes analytically by expanding around jammed state
- Energy is not distributed by equipartition, but cascades into low energy modes

Low-energy "phonons" control the dynamics at long times

Energy is not distributed by equipartition, but cascades into low energy modes

very non-thermal \rightarrow equipartition would lead to $\sim 1/\omega^2$

Final remarks

- Active systems are nonequilibrium systems where the drive acts on each unit, not applied at the boundary or via an external field.
- They include living and synthetic systems and span many scales.
- Collectives of interacting, active entities (motor-filament complexes, bacteria, cells, synthetic swimmers, birds,...) as a new kind of `Active Matter' with novel states and properties.
- Progress in using active matter paradigm to model behavior of living matter.

MCM, Joanny, Ramaswamy, Liverpool, Prost, Rao & Simha, *Hydrodynamics of Soft Active Matter*, Rev. Mod. Phys. **85**, 1143–1189 (2013)