Swimming at low Reynolds numbers

Experiments ...
... but with enough theory to understand as much of it as possible!
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Focus on single-particle properties ...

Detailed understanding of this in water

oo . Maybe brief introduction
— swimming in polymer solutions

E. coli Pt-PS Janus in H2O2

... because there are still many mysteries!




Escherichia coli




Section 0:Working with E. coli for physicists




Rule 1:
E. coli comes in many strains. Handling K-12 and its relatives
(‘Category I’) is less dangerous than going to the toilet (‘Category 2’)

é")\ is a far greater danger to the average physicist!




Rule 2:
Don’t believe the protocol of anyone who is not a motility expert

Growing in glucose gives few flagella
Everyday pipette tips/filtration will shear off flagella




Corollary: if in doubt (and even if not), look!




Rule 3:

Assume everything is time dependent unless proven otherwise
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O limitation = 3D
experiments in dense
systems are HARD!

Swimming E. coli in sealed capillary in ‘motility buffer’




Interlude: active matter on your T-shirt
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Back to swimmers
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Theorem: Anything that’s worth hearing is worth
hearing twice (from a different perspective).




Viscosity: friction between fluid layers in a velocity gradient dv/dz

o fviscous dv
Oshear — /2 ~ 77%

Layer below: sliding slower

Layer above: sliding faster
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Incompressibility & continuity
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flux in = ul / flux out = (u + %€> 0>
Net flux along z = @63
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Full equations for Stokes (Re = 0) flow

2
_d_P+nd_u+fx:0 ~VP+nV*v+f=0
dx dz?
+ corresponding y, z equations
subject to
Ou Ov Ow 0
% + a—y + a — V -v=20

Just looking at gives lots of insight!

— Tutorial problem 1,2,3




|. Linearity
Dimensionless variables:

r,z=Lx, Lz

U2
a = T&
u=Uu y P

P U

77U D = _—— _—

P=r 0 \d:c+ndz2+{
2 N

f= nt S¢ Scales as U

72

Everything scales as U as .. as everything else.

One well known consequence:

Fluid exerts drag F = —67nav on sphere




More generally

Drag force/torque linear in velocity/angular velocity

Drag on general body

3x3 matrix _ _

F (A
I\ B'

Sphere

I i

rotational-translational coupling

F\_ [ 6ma 0 U
N ) 0 8mna® Q /)

General axi-symmetric body in suitable frame
F\_ (A B U A~nL
N ) B D Q B ~ 77L2
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The Resistance Matrix
(Inverse = Mobility Matrix)

(A) B> D ~ nL?

(e les

A
s (

force < velocity

(

force <> angular velocity
Torque « velocity

torque <> angular velocity

Everything moving in goo (= low Re) has one!




2. Reversibility

dP d?u

At =0 VP Vv Ef=0

‘Reversed flow field’

u — —u etc.

fz — —fz etc.
dP R dP ¢
dx dr ¢

is also a solution




G. . Taylor







Does the wall exert a lift force on the sphere?

Discuss!

F

Assume force F
Reverse v and F - still a solution

Can’t both be true!
F=0

— Tutorial problem 4




Reversibility =

Scallop Theorem: reciprocal motion does not propel at low Re

E. M. Purcell, ‘Life at Low Reynolds Number’, Am. J. Phys. 45 (1977) 3-11

The Sca,//a,o Thesrem
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2. Introduction to swimming micro-organisms




Microorganisms at low Re have to invent
non-reciprocating cyclical motions to propel
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You can tell which way the movie is Being played!
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SOME MICROORGANISMS WITH FLAGELLA (CENTRAL CIRCLE) AND RELATED ORGANISMS
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The flexible oar

travelling wave along flagellum

The corkscrew
CorrScrew
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%/,Rotation of rigid chiral flagellum
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Bending waves along flagellum




Algae Chlamydomonas reinhardftii

Polin et al., Science 325 (2009) 487

‘Breast stroke’




Paramecium: layer of beating cilia
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effective stroke \/ recovery stroke




E. coli - rotating rigid helical flagalla

Linda Turner




All based long, thin filaments!




The importance of being anisotropic

non-reciprocating

SJ_ ~ 25” I
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fi, =&iuy, L=y Global requirement:
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forop = (&1 — &) (usinfcosf) %

Local requirement:
drag anisotropy




Net propulsion from u sin 6 cos 6

Finite average over cycle

(u,0) = (—u,0) Zero average over cycle

Criterion: must be able to tell if movie is run backwards ...
.. i.e.non-time-reversible (= non-reciprocating)




Left-handed helix

net drag
— d d
b f\
S )r/(%—’w

df

(u,0) = (—u, ™ —0)

negative rotational-translational coupling

— Tutorial problem 5
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Wild-type E. coli

~ 10 flagella
CCW = bundle & propel

CW of one or more = unbundle & tumble

Linda Turner




‘hairy hippy’
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Smooth-swimming mutant

=~ |s of movie




Purcell’s E. coli model Does it work?

Single ‘effective’ flagellum

2b h
D
A

2a ~ lpum
2b ~ 2um
2ry 0> Tum
'()'()@1% A~ 1.5um
/ g 2R ~ 0.2pum
2r ~ 20nm

v ~ 20pum/s
w ~ 21 x 10°Hz
Q) ~ 27 x 10Hz

Motor rotates at w,, relative to stationary body
W=w,—N or w, =w+
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T . Y
]Fb _ AO 0 v
(Nb)—_(o DO)(9>and
F;\ _ (A B v ,
(% )=-(50)(5) wo

Ao, Do,A,D >0
v =(v,0,0), w = (—w,0,0), 2 = (2,0,0)

net drag df'\ df'\
S AN N ‘\4
vi

vy




() =-(% 5,) (&)
(2)=-(5 2)(2) wa

Ao, Do,A,B,D >0
v =(v,0,0), w = (—w,0,0), 2 = (£2,0,0)

Force free : —Apv — Av — B(—w) =0 or (4Ag + A)v = Bw

Torque free : =Dy — Bv — D(—w) =0 or Dy = —Bv + Dw

(Neglects hydrodynamic interaction between body and flagella!)




Decay of flow in ‘wake’ of sphere
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(A0+A>U:Bw Do) = —Bv + Dw
€« v
E 0 k,"w

2 equations, 3 unknowns — need extra information!

Wy, = w +

Two equations alone: can eliminate one unknown ...
... all relations are linear.

Q= av
w = B9 BDo

v = Wm,

(Ao + A)(Dy + D) — B?

v = yw




BDy
v = Wi

(Ao + A)(Dg + D) — B2

B # 0 and Dy # 0 both crucial — generic feature
B # 0 and Dj # 0 both crucial!

Exercise: discuss why ...
()=-(% 5)(5)
(%)=-(52)(2)




Fthrust _Fthrust
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Motor rotates at w,, relative to stationary body
W=wWmy,—N or w, =w-+

Measured N, (wm)  (3)




Torque (pN nm)
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Richard Berry, Q. Rev. Biophys (2008)




Force free : —Agv — Av — B(—w) =0 or (4y + A)v = Bw

Torque free : =Dy — Bv — D(—w) =0 or D) = —Bv + Dw

N (Win)
wm =04+w=0+50=(1+75)Q
Nm 5~ 5(Ag, Dy, A, B, D)
N, = DS
we
\,0""6
., Q)

Completely specifies model E. coIi,|provided Ao, Do, A, B, D are known




4mnb
Ao = % 1
In (%) -3

Do = 167r;7a2b

Not really valid for E coli with b = 2an...
... but people use these anyway!

00000000 Much more interesting ...




Treat local bits of helix as slender cylinders and integrate

&u = resistance/length

£ = 41t
I~ 2m(22) -1
8 "
§1 = L

2In (22) +1

AJa>1 How come?




How do we get F = 6TTnva for a
sphere being dragged with force F?

Solve Stokes problem requiring stick
boundary condition on sphere surface




Want v(r) = ug = (u,0,0) on sphere (radius a)
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_F (P40 ay az G (1 322 3xy 3z
3 s 5

—5 303 VSD = — -5
r3 33 47 Toorh T pd

o Fe
67
(r=a)+ vsp(r=a) = ——(1,0,0)
vss(r=a)+vgp(r=a)=
SS SD 671'7’]0, 5 Uy

Satisfies boundary condition for sphere translating with v = (u, 0, 0)
Sphere exerts force F = 6mnav on fluid
Fluid exerts drag F = —6mnav on sphere

Indeed F o v (linearity)




Another property of Stokes (low Re) flow

Uniqueness

A solution that satisfies boundary conditions is the solution.

is the solution of uniformly
translating sphere in infinite fluid




Impossible to find linear combination of point force solution
with other solutions such that vg = u over any cross section

for uniform translation at u

¢ 41 ¢ 41
I = 2A I = N

2In (22) — 1 Lighthill 2In () -1
£ = Sl c<1 £l = 8mn

2ln (22) +1 2In (£) +1

Self consistent argument: ¢ ~ 0.18

(Impose variation on force along cylinder and consider resulting flow)
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B = cos? ¢ with 1) = tan~1(2rR/)) is the helix pitch angle
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Fthrust _Fthrust

------- 09000990

—_— € —>
F, = —Apv —Bw + —Av =Ty

——

<€ Force exerted by cell on fluid =—>
—IFy —Fy

This is a force dipole

The dipolar flow field should be a good approximation in the far field ...
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Is it true?
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dragged particle

Ul?

Isolated liquid drop with

Discuss!

self-propelled swimmer
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Chattopadhyay et al. PNAS 103 (2013) 13712-13717

We use measurements of swimming bacteria in an optical trap to
determine fundamental properties of bacterial propulsion. In par-
ticular, we directly measure the force required to hold the bacte-
rium in the optical trap and determine the propulsion matrix, which
relates the translational and angular velocity of the flagellum to
the torques and forces propelling the bacterium.




k from calibration
Ap, Do from ellipsoid

), w from power spec.

k(z—zp) = (A+ Ap)U + Bw
Do = —BU + Dw

Recime I. & = 324U
CBIMC L T AU dt

. %0

Regime II: U =0 = B, D

z(t) (um)
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Their conclusion: ‘it fits’

l

|
N
2r

4.\

A

literature P, calculated Ao, Do, measured A, B, D

— OK values for £, \, & /&1




But ...

a=20nm,c=24

g = 4mn
I om (2) -1
8
£ =—r

2In (£) +1

Single flagellum: a = 10 nm
Lighthill: ¢ < 1, perhaps 0.18

c is locally straight!

P
oy




Only used 2 equations ...

... need to test consistency with 3rd source of info.

Np,

N

Calculated torque/motor speed from data

/
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e




Other caveats:

* Head-tail HI neglected

* Resistive force theory neglects HI within flagellum
— slender body theory

*Movement of hairy flagellum body is complex, so
power spectrum may not give W.
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On Torque and Tumbling in Swimming Escherichia coli"t

Nicholas C. Darnton,' Linda Turner,' Svetlana Rojevsky,' and Howard C. Berg"*
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Cellular Biology, Harvard University, Cambridge, Massachusetts 02138>
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Bacteria swim by rotating long thin helical filaments, each driven at its base by a reversible rotary motor.
‘When the motors of peritrichous cells turn counterclockwise (CCW), their filaments form bundles that drive
the cells forward. We imaged fluorescently labeled cells of Escherichia coli with a high-speed charge-coupled-
device camera (500 frames/s) and measured swimming speeds, rotation rates of cell bodies, and rotation rates
of flagellar bundles. Using cells stuck to glass, we studied individual filaments, stopping their rotation by
exposing the cells to high-intensity light. From these measurements we calculated approximate values for
bundle torque and thrust and body torque and drag, and we estimated the filament stiffness. For both
immobilized and swimming cells, the motor torque, as estimated using resistive force theory, was significantly
lower than the motor torque reported previously. Also, a bundle of several flagella produced little more torque
than a single flagellum produced. Motors driving individual filaments frequently changed directions of
rotation. Usually, but not always, this led to a change in the handed of the fil t, which went through
a sequence of polymorphic transformations, from normal to semicoiled to curly 1 and then, when the motor
again spun CCW, back to normal. Motor reversals were necessary, although not always sufficient, to cause
changes in filament chirality. Polymorphic transformations among helices having the same handedness
occurred without changes in the sign of the applied torque.




Single ‘effective flagellum’ model remains ill tested ...

... may be necessarily non-self-consistent!

Other ways of testing Stokes propulsion in Newtonian fluids ...




Democracy at work

Tomorrow: one more E. coli swimming story, and then ...

You vote!




