Large $\tan \beta$ SUSY QCD corrections to $B \to X_s \gamma$

Youichi Yamada (Tohoku Univ.)

F. Borzumati, C. Greub, YY, hep-ph/0305063; to appear soon

- $b \rightarrow (s\gamma, sg)$ decay in the MSSM: H^{\pm} contribution
- Large $\mathcal{O}(\alpha_s \tan \beta)$ corrections by squark-gluino subloops
- Comparison of the "nondecoupling approx." by effective 2HD lagrangian and exact twoloop calculation

Inclusive radiative decay $B \rightarrow X_s \gamma$

Branching ratio BR($B \rightarrow X_s \gamma$): well described by short-distant parton decays $b \rightarrow s\gamma$ (and $b \rightarrow sg$)

Important process to probe the "beyond SM" physics

- * small uncertainty from hadronic corr.
- * loop-generated in SM:
 ⇒ new physics contributes at the same order
- * BR(exp) \simeq BR(SM, NLO) \rightarrow constraints on new physics

We analyze the decays $b \rightarrow (s\gamma, sg)$ in the MSSM (minimal supersymmetric standard model) with large tan β (ratio of VEVs of two Higgs doublets).

$$b
ightarrow (s\gamma, sg)$$
 in the MSSM

one-loop contributions:

 (\tilde{g}, \tilde{b}) loops: usually smaller than others

 H^+ contribution to $b \to s \gamma$ for large $\tan\beta$

Dominant one-loop diagram

$$y_b = \frac{g_2 m_b}{\sqrt{2}m_W} \tan \beta, \ y_t = \frac{g_2 m_t}{\sqrt{2}m_W} \cot \beta$$

 $\tan \beta \equiv \langle H_U \rangle / \langle H_D \rangle$
 $y_b \ (y_t)$ is enhanced (suppressed) for $\tan \beta \gg 1$

However, the H^+ couplings receive $\mathcal{O}(\alpha_s \tan \beta)$ corrections from squark-gluino loops, which can be comparable to the one-loop contributions.

$\mathcal{O}(\alpha_s \tan \beta)$ corrections to H^+ -quark couplings

(1) Correction from counterterm δm_b Hempfling , Hall et al., Carena et al.

At tree-level, $d_{iR} = (d, s, b)_R$ couple to only H_D , one of two Higgs doublets (constraint by SUSY)

$$\mathcal{L}(\mathsf{int}) \supset -h_b \overline{b}_R q_L H_D$$

 $m_b = h_b v_D / \sqrt{2}$: suppressed by tan $\beta = v_U / v_D \gg 1$

Squark-gluino loops induce the SUSY-breaking effective coupling $h_b \Delta_b \overline{b}_R q_L H_U$.

$$m_b(\text{running, SM}) = \frac{h_b \bar{v}}{\sqrt{2}} \cos \beta [1 + \Delta_b \tan \beta]$$

= $m_b(\text{running, MSSM}) + \delta m_b$
 \downarrow

$$y_b (H^+ \bar{t}_L b_R)^{\text{eff}} = V_{tb} h_b \sin \beta (1 - \Delta_b \cot \beta)$$

$$\rightarrow V_{tb} \frac{\sqrt{2} m_b (\text{SM})}{\bar{v}} \tan \beta \frac{1}{1 + \Delta_b \tan \beta}$$

 $|\Delta_b \tan \beta| \sim 1$ is possible despite $\Delta_b = O(\alpha_s)$: very large corr. for $\tan \beta \gg 1$. δm_b also contribute to $\tilde{\chi} q \tilde{q}$ couplings. (2) 1PI correction to $H^{-}\overline{s}_{L}t_{R}$ coupling: Carena et al., Babu-Kolda, D'Ambrosio et al., ...

 $H^{+} = \sin \beta H_{D}^{+} + \cos \beta H_{U}^{+} \sim H_{D}^{+} (\text{for } \tan \beta \gg 1)$ At tree-level, $u_{iR} = (u, c, t)_{R}$ only couple to H_{U} . $H^{-}\bar{s}_{L}t_{R}$ coupling $V_{ts}h_{t}\cos\beta = V_{ts}\frac{\sqrt{2}}{\bar{v}}m_{t}\cot\beta$ is suppressed.

Squark-gluino loops induce the effective $\overline{t}_R q_L H_D$ couplings.

$$y_t (H^+ \bar{s}_L t_R)^{\text{eff}} = V_{ts} h_t \cos \beta (1 - \Delta_t \tan \beta)$$

$$\rightarrow V_{ts} \frac{\sqrt{2}m_t}{\bar{v}} \cot \beta (1 - \Delta_t \tan \beta)$$

very large corr. for tan $\beta \gg 1$, relative to tan β -suppressed tree-level coupling

$$\Delta_{b,t} = \mathcal{O}(\alpha_s \mu m_{\tilde{g}}/M_{\tilde{q}}^2) = \mathcal{O}(\alpha_s M_{SUSY}^0) :$$

Non-decoupling in large M_{SUSY} limit

Two-loop $\mathcal{O}(\alpha_s \tan \beta)$ corrections to the H^+ mediated $b \to (s\gamma, sg)$ decays

(1) δm_b corr. to $y_b(\bar{t}_L H^+ b_R)$ (2) 1PI vertex corr. to $y_t(\bar{s}_L H^- t_R)$

"Nondecoupling" approximation:

(Degrassi et al., Carena et al., D'Ambrosio et al., Buras et al., ...)

(a) integrate out squarks and gluino to obtain effective 2HD lagrangian,

(b) calculate one-loop (t, H^+) diagrams in this effective theory

* Theoretically justified approximation when the momenta of (t, H^{\pm}) are sufficiently smaller than M_{SUSY} .

* Analytically simple results

Validity of this approximation

(1) δm_b corr. Given at momentum m_b : no problem resummation of $(\alpha_s \tan \beta)^n$ corr. is possible by using effective lagrangian

(2) 1PI vertex corr.

Loop momentum $\sim m_{H^+}$ may contribute. not theoretically justified if $m_{H^+} \ge M_{\text{SUSY}}$

Significant deviation from the approximation is expected if $m_{H^+} \geq M_{\rm SUSY}$

 \Downarrow

We perform an exact evaluation of the twoloop diagrams, to study the deviation. $\mathcal{O}(\alpha_s \tan \beta)$ corrections to the $H^+ \overline{s}t$ coupling: Full two-loop diagrams

Contributions absent in nondecoupling approx.: finite momenta $k_{t,H,s}$ for SUSY subloop γ/g emission from SUSY particles (fig. c-e) chirality flip on \tilde{t}_i , instead of on t(effective $H^-\bar{s}_L t_L$ couplings) Effective hamiltonian for $b \to s \gamma$ at $\mu \sim \mu_{weak}$

$$H_{\text{eff}} \supset -\frac{4G_F}{\sqrt{2}} V_{ts}^* V_{tb} \left(C_7(\mu) \mathcal{O}_7(\mu) + C_8(\mu) \mathcal{O}_8(\mu) \right)$$

$$\mathcal{O}_7(\mu) = \frac{e}{16\pi^2} m_b(\mu) \overline{s}_L \sigma^{\mu\nu} b_R F_{\mu\nu} (\text{photon})$$

$$\mathcal{O}_8(\mu) = \frac{g_s}{16\pi^2} m_b(\mu) \overline{s}_L \sigma^{\mu\nu} T^a b_R G^a_{\mu\nu} (\text{gluon})$$

We calculate the H^{\pm} loop contributions to $C_{7,8}(\mu_W)$ and evaluate the "goodness" of the nondecoupling approximation.

$$r_i(\mu_W) \equiv \frac{C_i^H(\mu_W)|_{\text{approx}} - C_i^H(\mu_W)|_{\text{exact}}}{C_i^H(\mu_W)|_{\text{exact}}} \quad (i = 7, 8)$$

 $(\delta m_b \text{ contributions factored out})$

Goodness of the nondecoupling approx.

(1) Heavy SUSY $[(m_{\tilde{s}_L}, m_{\tilde{t}_1}, m_{\tilde{t}_2}) = (700, 500, 450)$ GeV, $\cos \theta_t =$

0.8, $\tan\beta=$ 30, $m_{\tilde{g}}=$ 600 GeV, $\mu=$ 550 GeV]

Very small deviation from exact results: Deviations do not so increase for $m_H > M_{SUSY}$ (2) Light SUSY $(M_{SUSY} \sim m_{weak})$ $[(m_{\tilde{s}_L}, m_{\tilde{t}_1}, m_{\tilde{t}_2}) = (350, 400, 320)$ GeV, $\cos \theta_t = 0.8$, $\tan \beta = 30$, $m_{\tilde{g}} = 300$ GeV, $\mu = 450$ GeV]

Larger deviation: $\mathcal{O}(m_{\rm Weak}^2/M_{\rm SUSY}^2)$ But again no significant increase for $m_H > M_{\rm SUSY}$ Why the nondecoupling approximation works so well? (no $\mathcal{O}(m_H^2/M_{\rm SUSY}^2)$ deviation from exact result)

* γ/g emission from top:

 $Y_{tR}(k^2)$: form factor for the effective $H^-\bar{s}_L t_R$ vertex

 $\sim \begin{cases} Y_{tR}(\text{NonDec}) + \mathcal{O}(m_t^2, k^2/M_{\text{SUSY}}^2) & (k \ll M_{\text{SUSY}}) \\ \mathcal{O}(M_{\text{SUSY}}^2 \ln k^2/k^2) & (k \gg M_{\text{SUSY}}) \end{cases}$

nondecoupling approx.: replace $Y_{tR}(k^2)$ by $Y_{tR}(NonDec)$

k-integration: dominated by the $k \sim \mathcal{O}(m_t)$ region. (similar result for other diagrams)

 \Rightarrow the nondecoupling approximation works well, even if $m_H > M_{\rm SUSY}.$

Improvement by Heavy Mass Expansion

What about the improvement of the nondecoupling approximation by, instead of full two-loop integrals, including higher-dimensional interactions into the effective 2HD lagrangian, order by order?

A systematic procedure for this: Heavy Mass Expansion of the diagrams in $(m_{\rm weak}^2,m_H^2)/M_{\rm SUSY}^2$

We compare

- (1) Expansion to $1/M_{SUSY}^0 \equiv$ nondecoupling approx.
- (2) Expansion to $1/M_{SUSY}^2$
- (3) Expansion to $1/M_{SUSY}^4$
- to exact calculation

Result:

 $\label{eq:mH} \begin{array}{l} m_H < M_{\rm SUSY} \\ {\rm HME} \mbox{ improves the approximation} \\ m_H > M_{\rm SUSY} \\ {\rm HME} \mbox{ only worsens the approximation} \end{array}$

Goodness of HME to higher-order :

Light SUSY case [$M_{SUSY} = 300 - 400$ GeV, $\tan \beta = 30$]

Dotted lines: Expansion to $1/M_{\rm SUSY}^0$ (= nondecoupling approx.) Dashed lines: Expansion to $1/M_{\rm SUSY}^2$ Dot-dashed lines: Expansion to $1/M_{\rm SUSY}^4$

Conclusion

- In the MSSM with large $\tan \beta$, the H^{\pm} loop contribution to the $b \rightarrow (s\gamma, sg)$ decay receives large $\mathcal{O}(\alpha_s \tan \beta)$ two-loop corrections.
- They have been calculated in the "nondecoupling" approximation using effective 2HD lagrangian. However, large deviation from this approx. was expected when $(m_{\rm weak}, m_{H^+}) < M_{\rm SUSY}$ is not satisfied.
- We performed the exact evaluation of the relevant two-loop diagrams for $b \rightarrow (s\gamma, sg)$. The deviation from the nondecouplings approximation was shown to be small, even for $m_{H^+} > M_{\rm SUSY}$, unless $M_{\rm SUSY} \sim m_{weak}$. This follows from the structure of the relevant Feynman integrals.