Neutrino Oscillation Studies with the Fermilab NuMI beam

- > Physics Motivation
- > NuMI neutrino beam
- > MINOS experiment:
 - Detectors
 - Physics goals
 - Expected performance
- > Off-axis Beam(s)
 - Backgrounds and Detector Issues
 - Sensitivity of NuMI Off-axis Experiments

Episode I: Before the "New Era"

Theory:

> Neutrino mass differences 1-100 eV²

WRONG!!

Neutrino mixing matrix similar to quarks (small or very small mixing angles)

Experiment:

- > No evidence for neutrino oscillations in accelerator (BEBC, CDHS, CHARM, CCFR) or reactor (Bugey, Gosgen) experiments
- Confusing 'solar neutrino problem'

New Era started by "SuperK revolution":

- >Neutrinos have mass, mass differences are very small
- >Neutrino mixing angles are very large

Neutrino Physics after the Superk Revolution

- Muon neutrinos disappear (SuperK, K2K, Soudan II, Macro)
- Electron neutrinos disappear (Homestake, SAGE, GNO, SuperK, SNO)
- Electron antineutrinos disappear (KamLand)
- Electron neutrinos convert into 'other' types of neutrinos (SNO + SuperK)
- ➤ Neutrinos have non-zero mass (*****)
- > Weak neutrino eigenstates are coherent mixtures of mass eigenstates

$$\begin{bmatrix} v_{e} & v_{\mu} & v_{\tau} \end{bmatrix} = \begin{bmatrix} U_{e1}^{*} & U_{e2}^{*} & U_{e3}^{*} \\ U_{\mu 1}^{*} & U_{\mu 2}^{*} & U_{\mu 3}^{*} \\ U_{\tau 1}^{*} & U_{\tau 2}^{*} & U_{\tau 3}^{*} \end{bmatrix} \begin{bmatrix} v_{1} \\ v_{2} \\ v_{3} \end{bmatrix}$$

- > Magnitude of mixing matrix elements defines composition of electron/muon/tau neutrinos
- > Mass differences determine the oscillation length

What do we know/want to know better (I)

- > There are two mass scales:
 - $\Delta m_{12}^2 \sim 7 \times 10^{-5} \text{ eV}^2$
 - $\Delta m^2_{23} \sim 1.5 3 \times 10^{-3} \text{ eV}^2$
- > Two mixing angles are large:
 - θ₁₂ ~ 35°
 - $\theta_{23} \sim 90^{\circ} (\sin^2 2\theta_{23} > 0.9)$
- Third mixing angle is not very large $\sin^2 2\theta_{13}$ <0.1
- Physics of neutrino mixing is similar to quark mixing, yet the pattern is completely different

- ➤ Is the disappearance of muon neutrinos indeed due to neutrino oscillations (see the characteristic oscillation pattern)
- Do other possible mechanisms contribute (decays, extra dimensions,..)?
- $ightharpoonup What is the precise value of <math>\Delta m^2_{23}$?
- \triangleright Is θ₂₃ = 90°? Full mixing →New symmetry?
- \triangleright What is the value of θ_{132}
- Do neutrinos and antineutrinos oscillate the same way? (CPT!)

A Tool: NuMI Beam

- > 120 GeV Protons from Fermilab Main Injector
- \gt 10 μ s pulse, every 1.9s
- > Proton Intensity:
 - 4x10¹³ protons/pulse design
 - 2.5x10¹³ p/p expected at startup
- > Hadrons focused with 2 horns
 - Select beam energy spectrum by adjusting horn and target positions

NuMI Beam Status

- Excavation of underground complex complete
- Decay Pipe installed
- Tunnel/Hall Outfitting in progress
- > Target has been fabricated
- Horns have been assembled
- Project will be complete/ commissioning starts Dec. 2004

NuMI Beam Status

MINOS

Main Injector Neutrino Oscillation Search

- > Precision Δm_{23}^2 and $\sin^2(2\theta_{23})$ measurement in ν_{μ} disappearance
- 2 detectors, functionally identical, separated by 735km baseline
 - Near Detector: 1kt detector at Fermilab
 - Far Detector: 5.4kt detector at Soudan

Far Detector

> 5.4kt total

- 484 planes in two ~14.5m long "super modules"
- Each plane 8m octagon
- 2.54cm Fe, 1cm Scintillator
- ~1.5T Magnetic field

> Readout

- 2 ended readout
- 8x optical multiplexing into M16 multi-anode PMTs
- ~92k strips, 23k channels

> Overburden

■ 710 m (2090 mwe)

Far Detector Status

- Far Detector construction completed!
 - 1st supermodule operational since 7/02
- > Veto Shield
 - Build from same scintillator used in detector
 - Help ID Atmospheric neutrino interactions

Far Detector Data

- Up Going Muons: v interactions below detector
 - Use timing to select up going muons
- Magnetic Field
 - Distinguish μ^- , μ^+

Near Detector

Same sampling/structure as far detector

> 980 t

> High rate (10µs spill)

■ HE beam: 20 interactions/m/spill

LE beam: 3.2 interactions/m/spill

- High speed electronics
- 4x multiplexing in spectrometer only
- All Planes have been assembled in a surface building

MINOS v Event Topologies

$\succ \nu_{\mu}$ identified by μ in Charged Current interactions

Oscillation measurements

Comparison of the observed spectrum of ν_μ charged current events with the expected one provides a direct measure of the survival probability as a function of neutrino energy

$$P = 1 - \sin^2 2\theta_{23} \sin^2 \frac{1.27 \Delta m^2 L}{E_v}$$

Does the disappearance follow this functional form?

Neutrinos and antineutrinos?

- > Dip depth ←→ oscillation amplitude ($sin^22\theta_{23}$)
- \blacktriangleright Dip position ←→ Δm^2_{23} (π/2 = 1.27× Δm^2_{23} ×L/E_{dip})

Electron Neutrino Appearance

Observed number of v_e CC candidates with and without oscillations. 25×10^{20} protons on target.

 3σ discovery potential versus systematic uncertainty on the background.

What do we want to know (II)

 Δm^2

$$\begin{bmatrix} v_e & v_{\mu} & v_{\tau} \end{bmatrix} = \begin{pmatrix} B & B & s \\ B & B & B \\ B & B & B \end{pmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}$$

3. Complex phase of $s(?) \leftarrow \rightarrow$ CP violation in a neutrino sector \leftrightarrow (?) baryon number of the universe

The key: $\nu_{\mu} \Rightarrow \nu_{e}$ oscillation experiment

$$\boldsymbol{P}(\boldsymbol{\nu}_{\mu} \rightarrow \boldsymbol{\nu}_{e}) = \boldsymbol{P}_{1} + \boldsymbol{P}_{2} + \boldsymbol{P}_{3} + \boldsymbol{P}_{4}$$

$$\boldsymbol{P}_{1} = \sin^{2}\boldsymbol{\theta}_{23} \frac{1}{\sin^{2}\boldsymbol{\theta}_{13}} \left(\frac{\Delta_{13}}{\boldsymbol{B}_{+}}\right)^{2} \sin^{2}\boldsymbol{\frac{B_{\pm}L}{2}}$$

$$P_2 = \cos^2 \theta_{23} \sin^2 \theta_{12} \left(\frac{\Delta_{12}}{A}\right)^2 \sin^2 \frac{AL}{2}$$
 Solar' frequency

Oscillation at the 'atmospheric' frequency

Oscillation at the

$$\Delta_{ij} = \frac{\Delta m_{ij}^2}{2E_v};$$

$$A = \sqrt{2}G_F n_e;$$

$$B_{\pm} = |A \pm \Delta_{13}|;$$

$$J = \cos \theta_{13} \sin 2\theta_{12} \sin 2\theta_{13} \sin 2\theta_{23}$$

$$P_{3} = J \cos \delta \left(\frac{\Delta_{12}}{A}\right) \left(\frac{\Delta_{13}}{B_{+}}\right) \cos \frac{\Delta_{13} L}{2} \sin \frac{AL}{2} \sin \frac{B_{\pm} L}{2}$$

$$P_4 = J \sin \delta \left(\frac{\Delta_{12}}{A}\right) \left(\frac{\Delta_{13}}{B_+}\right) \sin \frac{\Delta_{13} L}{2} \sin \frac{AL}{2} \sin \frac{B_{\pm} L}{2}$$

Interference of these two amplitudes \rightarrow CP violation

$$P = f(\sin^2 2\theta_{13}, \delta, \text{sgn}(\Delta m_{13}^2), \Delta m_{12}^2, \Delta m_{13}^2, \sin^2 2\theta_{12}, \sin^2 2\theta_{23}, L, E)$$

3 unknowns, 2 parameters under control L, E, neutrino/antineutrino Need several independent measurements to learn about underlying physics parameters

Matter Effects in Neutrino Propagation

- Neutrinos move in an effective potential → shift of energy levels(masses), common to all neutrinos
- •Electron neutrinos/antineutrinos have additional (CC) interactions $\leftarrow \rightarrow$ addition mass shifts

- Matter effects reduce mass of v_e and increase mass of \overline{v}_e
- Matter effects increase Δm^2_{23} for normal hierarchy and reduce Δm^2_{23} for inverted hierarchy for neutrinos, opposite for antineutrinos

Anatomy of Bi-probability ellipses

Minakata and Nunokawa, hep-ph/0108085

Observables are:

P (neutrino appearance)

P (antineutrino appearance)

Matter effects and CP violation effects are of the same order as the main oscillation (for a NuMI baseline)

Varying the mixing angle..

- Parameter correlation: even very precise determination of P_{v} leads to a large allowed range of $\sin^2 2\theta_{23} \rightarrow \frac{\text{antineutrino beam}}{\text{antineutrino beam}}$ is more important than improved statistics
- CP violation effects (size of the ellipse) ~ $\sin 2\theta_{13}$, overall probability ~ $\sin^2 2\theta_{13}$ \rightarrow relative effect very large

Recipe for an ve Appearance Experiment

- > Large neutrino flux in a signal region
- \triangleright Reduce background (neutral currents, intrinsic v_e)
- > Efficient detector with good rejection against NC background
- > Large detector

Lucky coincidences:

- distance to Soudan = 735 km, Δm^2 =0.02-0.03 eV²
- $\frac{1.27\Delta m^2L}{E} = \frac{\pi}{2}$ \Rightarrow $E = \frac{2.54\Delta m^2L}{\pi} \approx 1.5 2.2 \ GeV$ => 'large' cross section
- Below the τ threshold! (BR(τ ->e)=17%)

Off-axis NuMI Beams: Unavoidable By-product of the MINOS Experiment

- ·Beam energy defined by the detector position (off-axis, Beavis et al)
- Narrow energy range (minimize NC-induced background)
- ·Simultaneous operation (with MINOS and/or other detectors)
- •~ 2 GeV energy:
 - Below τ threshold
 - · Relatively high rates per proton, especially for antineutrinos
- ·Matter effects to amplify to differentiate mass hierarchies
- ·Baselines 700 1000 km

NuMI Challenge: "have" beam, need a new detector

- Surface (or light overburden)
 - High rate of cosmic μ's
 - Cosmic-induced neutrons
- > But:
 - ❖ Duty cycle 0.5x10⁻⁵
 - Known direction
 - ❖ Observed energy > 1 GeV

Principal focus: electron neutrinos identification

Good sampling (in terms of radiation/Moliere length)

Large mass:

- maximize mass/radiation length
- ·cheap

Off-axis collaboration: Letter of Intent 2002,

Proposal in preparation (October 2003)

NuMI Off-axis Experiment

Low Z imaging calorimeter: particle board ~30% of radiation length thick

- Liquid scintillator or
- Glass RPC

Electron ID efficiency ~ 40% while keeping NC background below intrinsic ν_e level Well known and understood detector technologies

Primarily the engineering challenge of (cheaply) constructing a very massive detector

How massive??

50 kton detector, 5 years run =>

- \triangleright 10% measurement if $\sin^2 2\theta_{13}$ at the CHOOZ limit, or
- > 3σ evidence if $\sin^2 2\theta_{13}$ factor 10 below the CHOOZ limit (normal hierarchy, δ =0), or
- > Factor 20 improvement of the limit

Backgrounds Summary

- \bullet v_e component of the beam
 - Constrained by v_{μ} interactions observed in the near MINOS detector (π)
 - Constrained by pion production data (MIPP)
- \bullet NC events passing the final analysis cuts (π^0 ?)
 - Constrained by neutrino data from K2K/NuMI near detector
 - Constrained by the measurement of EM 'objects' as a function of E_{had} in the dedicated near detector
- Cosmics
 - Cosmic muon induced 'stuff' overlapped with the beam-induced neutrino event
 - (undetected) cosmic muon induced which mimics the 2 GeV electron neutrino interaction in the direction from Fermilab within 10 µsec beam gate
- Expected to be very small
- Measured in a dedicated setup (under construction)

NuMI Off-axis sensitivity?

FAQ: What is the smallest $\sin^2 2\theta_{13}$ one can detect?

- > It depends on the exposure (proton beam intensity, eventual proton driver...)
- > It depends on unknown physics parameters:
 - Mass hierarchy. Matter effect can amplify or attenuate the signal.
 - CP violating angle δ
- Figure of Merit: 3 σ discovery limit as a function of the fracion of the possible range of δ 's

Two phase program

Phase I (~ \$150M, running 2009 - 2014)

- \triangleright 50 kton (fiducial) detector with ϵ ~35-40%
- \rightarrow 4x10²⁰ protons per year
- \triangleright 1.5 years neutrino (6000 v_{ij} CC, 70-80% 'oscillated')
- > 5 years antineutrino (6500 v_{μ} CC, 70-80% 'oscillated')

Phase II (running 2014-2020)

- \triangleright 200 kton (fiducial) detector with ϵ ~35-40%
- \gt 20x10²⁰ protons per year (new proton source?)
- > 1.5 years neutrino (120000 v_{ii} CC, 70-80% 'oscillated')
- > 5 years antineutrino (130000 v_{μ} CC, 70-80% 'oscillated')

NuMI and JPARC experiments in numbers (Phase I)

	NuMI Off-axis 50 kton, 85% eff, 5 years, 4x10 ²⁰ pot/y		JHF to SK Phase I, 5 years	
	all	After cuts	all	After cuts
v_{μ} CC (no osc)	28348	6.8	10714	1.8
NC	8650	19.4	4080	9.3
Beam v _e	604	31.2	292	11
Signal (∆m² ₂₃ =2.8/3 x 10 ⁻³ , NuMI/JHF)	867.3	307.9	302	123
FOM (signal/√bckg)		40.7		26.2

Determination of mass hierarchy: complementarity of JPARC and NuMI

Mass hierarchy determination with NuMI alone: reach depends on δ

Combination of different baselines: NuMI + JPARC extends the range of hierarchy discrimination to much lower angles mixing angles. P(NuMI) - P(JPARC) measures the mass shift due to matter effects

Minakata, Nunokawa, Parke

Conclusions I (NuMI/MINOS)

- > NuMI beam construction nearing completion. First operation expected end of 2004.
- > MINOS:
 - Far detector operational
 - Near detector 'constructed', will be installed in 2004,
- \triangleright MINOS: v_{μ} disappearance
 - Will demonstrate oscillatory energy dependence
 - Precision measurements of Δm^2 , $\sin^2(2\theta)$ (10%)
- > v_e appearance
 - Improved bounds on $|U_{e3}|^2$
- > Physics starting April 2005

Conclusions II (Off-axis)

- NuMI Off-axis beam offers a very powerful tool to study nue appearance
- Phase I detector will establish the existence of the effct (or improve the CHHOZ limit by a factor of ~20). With some luck it may establish the mass hierarchy, or even detect CP violation
- Phase II detector + proton driver may be able to establish/measure parameters of CP violation in a neutrino sector, or improve the limit by another factor of 10..

Conclusions III(General)

- * Neutrino Physics is an exciting field for many years to come
- * Most likely <u>several experiments</u> with different running conditions will be <u>required</u> to unravel the underlying physics. Healthy complementary program is shaping up (JPARC).
- ❖ Fermilab/NuMI beam is <u>uniquely matched</u> to this physics in terms of beam intensity, flexibility, beam energy, and potential source-to-detector distances that could be available.
- ❖ Important element of the <u>HEP program in the US</u> for the next 20 years.