

# - Outline

## • Introduction

- Effective Hamiltonian (R-parity violating SUSY)
- QCD factorization
- Decay amplitudes of  $B \to \phi K$  and  $B \to \eta^{(\prime)} K$  decays
- Our analysis and results
- SM case
- R-parity violating SUSY case
- Summary

- Introduction

**CP** asymmetry in  $B^0 \rightarrow \phi K_S$ 

• CP violation in B system has been confirmed in measurements of time-dependent CP asymmetries in  $B^0 \rightarrow J/\Psi K_S$  decay. World average (2003):  $(\phi_1 \equiv \beta)$   $b \rightarrow c\bar{c}s$ 

 $\sin(2\phi_1)_{J/\Psi K_S} = +0.731 \pm 0.056$ 

• Recent measurements in  $B^0 \to \phi K_S$  (2003):  $b \to s\bar{s}s$   $\sin(2\phi_1)^{Belle}_{\phi K_S} = -0.96 \pm 0.50^{+0.09}_{-0.11}$  (3.5 $\sigma$  off) [(2002)  $-0.73 \pm 0.64 \pm 0.22$ ]  $\sin(2\phi_1)^{BaBar}_{\phi K_S} = +0.45 \pm 0.43 \pm 0.07$  [(2002)  $-0.18 \pm 0.51 \pm 0.09$ ]  $\Rightarrow$  Average  $= -0.15 \pm 0.33$  (2.7 $\sigma$  off the SM)  $\mathcal{B}(B^0 \to \phi K_S) = (8.0 \pm 1.3) \times 10^{-6}$   $\mathcal{B}(B^+ \to \phi K^+) = (10.9 \pm 1.0) \times 10^{-6}$  $\mathcal{A}_{CP}(B^+ \to \phi K^+) = (3.9 \pm 8.8 \pm 1.1)\%$ 

- Any new physics effects in time-dependent CP asymmetries:
- $B^0 \bar{B}^0$  mixing amplitude (universal to all  $B^0_d$  decays) and/or
- decay amplitude of each mode
  - $\Rightarrow$  New physics effect from the decay amplitude of  $B^0 \rightarrow \phi K_S$  .

$$\underline{\sin(2\tilde{\phi}_1)_{XY}} \text{ for } B \to XY$$

$$\sin(2\tilde{\phi}_1)_{XY} = -\frac{2 \operatorname{Im}\lambda_{XY}}{(1+|\lambda_{XY}|^2)}$$

$$\lambda_{XY} = e^{-2i\phi_1} \frac{\bar{\mathcal{A}}_{XY}}{\mathcal{A}_{XY}} = e^{-i(2\phi_1+\theta)} \left| \frac{\bar{\mathcal{A}}_{XY}}{\mathcal{A}_{XY}} \right|$$

$$\mathcal{A}_{XY} = \mathcal{A}_{XY}^{SM} + \mathcal{A}_{XY}^{R_p}$$

$$\Rightarrow \text{ effective CP angle:} \quad 2\tilde{\phi}_1 = 2\phi_1 + \theta$$

 What about other decay modes having the same internal quark level process b → ss̄s (e.g., B<sup>0</sup> → η'K<sub>S</sub>)?
 ⇒ recent data

> $\sin(2\phi_1)_{\eta'K_S}^{Belle} = +0.43 \pm 0.27 \pm 0.05 \quad (hep - ex/0308035)$  $\sin(2\phi_1)_{\eta'K_S}^{BaBar} = +0.02 \pm 0.34 \pm 0.03 \quad (hep - ex/0303046)$

BR of  $B^+ \to \eta' K^+$ 

• Recent experimental data :

$$\begin{aligned} \mathcal{B}(B^+ \to \eta' K^+) &= (78 \pm 6 \pm 9) \times 10^{-6} \quad \text{[Belle]} \\ &= (76.9 \pm 3.5 \pm 4.4) \times 10^{-6} \quad \text{[BaBar]} \\ &= (80^{+10}_{-9} \pm 7) \times 10^{-6} \quad \text{[CLEO]} \end{aligned}$$

 $\Rightarrow$  still larger than that expected within the SM.

#### The goal

Try to find a *consistent* explanation for the recent data on  $B \to \phi K_S$ ,  $\eta' K_S$ , and  $\eta' K^+$  without disturbing all the other  $B \to PP$  and  $B \to VP$  decay modes within the framework of  $\mathbb{R}_p$  SUSY.



For  $b \rightarrow s\bar{s}s$  transitions,

the sneutrino mediated diagrams: Tree level effect!

$$\frac{\lambda_{i22}'\lambda_{i23}'^*}{m_{\tilde{\nu}}^2}(\bar{s}_L^{\alpha}b_R^{\alpha})(\bar{s}_R^{\beta}s_L^{\beta})$$
$$\frac{\lambda_{i32}'\lambda_{i22}'^*}{m_{\tilde{\nu}}^2}(\bar{s}_R^{\alpha}b_L^{\alpha})(\bar{s}_L^{\beta}s_R^{\beta})$$

 $\Rightarrow$  after the Fierz rearrangement:

$$\frac{\lambda_{i22}^{\prime}\lambda_{i23}^{\prime*}}{8m_{\tilde{\nu}}^{2}}(\bar{s}^{\alpha}\gamma_{L}^{\mu}s^{\beta})(\bar{s}^{\beta}\gamma_{\mu R}b^{\alpha})$$
$$\frac{\lambda_{i32}^{\prime}\lambda_{i22}^{\prime*}}{8m_{\tilde{\nu}}^{2}}(\bar{s}^{\alpha}\gamma_{R}^{\mu}s^{\beta})(\bar{s}^{\beta}\gamma_{\mu L}b^{\alpha})$$
$$\gamma_{R,L}^{\mu}=\gamma^{\mu}(1\pm\gamma_{5})$$

$$\sum_{i=1}^{3} \frac{\lambda'_{i22} \lambda'^{*}_{i23}}{8m^{2}_{\tilde{\nu}_{iL}}} \equiv d^{R}_{222} , \quad \sum_{i=1}^{3} \frac{\lambda'_{i32} \lambda'^{*}_{i22}}{8m^{2}_{\tilde{\nu}_{iL}}} \equiv d^{L}_{222}$$

$$\begin{split} H_{eff}^{\lambda'}(b \to \bar{d}_{j}d_{k}d_{n}) &= d_{jkn}^{R}[\bar{d}_{n\alpha}\gamma_{L}^{\mu}d_{j\beta}\ \bar{d}_{k\beta}\gamma_{\mu R}b_{\alpha}] \\ &+ d_{jkn}^{L}[\bar{d}_{n\alpha}\gamma_{L}^{\mu}b_{\beta}\ \bar{d}_{k\beta}\gamma_{\mu R}d_{j\alpha}], \\ H_{eff}^{\lambda''}(b \to \bar{u}_{j}u_{k}d_{n}) &= u_{jkn}^{R}[\bar{u}_{k\alpha}\gamma_{L}^{\mu}u_{j\beta}\ \bar{d}_{n\beta}\gamma_{\mu R}b_{\alpha}], \\ H_{eff}^{\lambda''}(b \to \bar{d}_{j}d_{k}d_{n}) &= \frac{1}{2}d_{jkn}^{\prime'}[\bar{d}_{k\alpha}\gamma_{R}^{\mu}d_{j\beta}\cdot\bar{d}_{n\beta}\gamma_{\mu R}b_{\alpha}] \\ &- \bar{d}_{k\alpha}\gamma_{R}^{\mu}d_{j\alpha}\cdot\bar{d}_{n\beta}\gamma_{\mu R}b_{\beta}] \\ H_{eff}^{\lambda''}(b \to \bar{u}_{j}u_{k}d_{n}) &= u_{jkn}^{\prime'}[\bar{u}_{k\alpha}\gamma_{R}^{\mu}u_{j\beta}\cdot\bar{d}_{n\beta}\gamma_{\mu R}b_{\alpha}] \\ &- \bar{u}_{k\alpha}\gamma_{R}^{\mu}u_{j\alpha}\cdot\bar{d}_{n\beta}\gamma_{\mu R}b_{\beta}] \end{split}$$

with

$$\begin{split} d_{jkn}^{R} &= \sum_{i=1}^{3} \frac{\lambda'_{ijk} \lambda'^{*}_{in3}}{8m_{\tilde{\nu}_{iL}}^{2}} \\ d_{jkn}^{L} &= \sum_{i=1}^{3} \frac{\lambda'_{i3k} \lambda'^{*}_{inj}}{8m_{\tilde{\nu}_{iL}}^{2}} \ (j,k,n=1,2) \\ u_{jkn}^{R} &= \sum_{i=1}^{3} \frac{\lambda'_{ijn} \lambda'^{*}_{ik3}}{8m_{\tilde{e}_{iL}}^{2}} \ (j,k=1; \ n=2) \\ d_{jkn}'' &= \sum_{i=1}^{3} \frac{\lambda''_{ij3} \lambda'^{*}_{ikn}}{4m_{\tilde{u}_{iR}}^{2}} \\ u_{jkn}'' &= \sum_{i=1}^{2} \frac{\lambda''_{ji3} \lambda'^{*}_{kin}}{4m_{\tilde{u}_{iR}}^{2}} \ (j=1,2; \ k=1; \ n=2) \\ \alpha, \ \beta: \text{ color indices} \end{split}$$

2nd International Conference on Flavor Physics (KIAS, Oct. 10, 2003) A consistent resolution for possible anomalies in  $B \to \phi K_S$  and  $B \to \eta' K$  decays (page 8)

Sechul OH KEK

# - QCD Factorization

Beneke, Buchalla, Neubert, Sachrajda

- allows calculations of non-factorizable contributions (dominated by hard gluon exchange)
- Decay amplitude

$$\mathcal{A}(B \to PV) = \mathcal{A}^f(B \to PV) + \mathcal{A}^a(B \to PV) ,$$

where

$$\mathcal{A}^f(B \to PV) = \frac{G_F}{\sqrt{2}} \sum_{p=u,c} \sum_{i=1}^{10} V_{pb} V_{pq}^* a_i^p \langle PV | O_i | B \rangle_{\rm NF} ,$$

(q=d, s)

including vertex corrections, penguin corrections, and hard spectator scattering contributions.

$$\mathcal{A}^{a}(B \rightarrow PV) \propto f_{B} f_{P} f_{V} \sum V_{pb} V_{pq}^{*} b_{i}$$
,

including weak annihilation contributions



#### Decay amplitude of $B \to \phi K$

$$\begin{aligned} \mathcal{A}(B \to \phi K) &\equiv \mathcal{A}_{\phi K} = \mathcal{A}_{\phi K}^{SM} + \mathcal{A}_{\phi K}^{R_{p}} \ ,\\ \mathcal{A}_{\phi K}^{SM} &= \frac{G_{F}}{\sqrt{2}} \sum_{p=u,c} V_{pb} V_{pq}^{*} \left( a_{3} + a_{4}^{p} + a_{5} - \frac{1}{2}a_{7} - \frac{1}{2}a_{9} - \frac{1}{2}a_{10}^{p} \right) A_{\phi} + \mathcal{A}_{\phi K}^{a} \\ \mathcal{A}_{\phi K}^{R_{p}} &\propto \left( d_{222}^{L} + d_{222}^{R} \right) A_{\phi} \qquad \left( d_{222}^{L} \sim \frac{\lambda_{323}^{\prime} \lambda_{322}^{\prime}}{8m_{\tilde{\nu}}^{2}} \right) \\ A_{\phi} &= \langle K | \bar{s} \gamma^{\mu} (1 - \gamma_{5}) b | B \rangle \ \langle \phi | \bar{s} \gamma_{\mu} s | 0 \rangle \ , \qquad a_{i} = a_{i}^{L} + a_{i}^{V} + a_{i}^{P} + a_{i}^{H} \end{aligned}$$

 $\begin{aligned} \frac{\text{Decay amplitude of } B \to \eta' K}{\mathcal{A}_{\eta'K}^{R_p} \sim \left(d_{222}^L - d_{222}^R\right) \left[\frac{\bar{m}}{m_s} \left(A_{\eta'}^s - A_{\eta'}^u\right) \left(\tilde{a}_6 + \frac{f_{\eta'}^u}{f_{\eta'}^s} \tilde{a}_6'\right) + A_{\eta'}^s (\tilde{a}_4 - \tilde{a}_5) + A_{\eta'}^u \tilde{a}_4\right]} \\ \bar{m} &\equiv m_{\eta'}^2 / (m_b - m_s), \qquad A_{\eta'}^{u(s)} = f_{\eta'}^{u(s)} F^{B \to K} (m_B^2 - m_K^2) \\ \bullet \ \eta - \eta' \text{ mixing }: \\ & |\eta\rangle = \cos \theta_8 |\eta_8\rangle - \sin \theta_0 |\eta_0\rangle \\ & |\eta'\rangle = \sin \theta_8 |\eta_8\rangle + \cos \theta_0 |\eta_0\rangle \quad (\theta_8 \approx -22.2^0, \ \theta_0 \approx -9.1^0) \end{aligned}$ 

2nd International Conference on Flavor Physics (KIAS, Oct. 10, 2003) A consistent resolution for possible anomalies in  $B \to \phi K_S$  and  $B \to \eta' K$  decays (page 11)



# - SM & QCD Factorization

#### **New parameters**

• End point divergent integrals in hard spectator scattering & weak annihilation contributions

 $\Rightarrow$  phenomenological parameters (8 new parameters for  $B \rightarrow PP \& PV$ )

 $X_{H,A} \equiv \int_0^1 \frac{dx}{x} = \left(1 + \rho_{H,A} e^{i\phi_{H,A}}\right) \ln \frac{m_B}{\Lambda_h}$ 

 $\rho_{H,A} \le 1 , \quad 0^0 \le \phi_{H,A} \le 360^0 , \quad \Lambda_h = 0.5 \text{ GeV}$ 

**<u>Global fit for**</u>  $B \to PP \& B \to PV$ : to determine  $\rho_{H,A} \& \phi_{H,A}$  (Du, Gong, Sun, Yang, Zhu)

(12 modes:  $B \to \pi\pi$  ,  $\pi K$  ,  $\pi \rho$  ,  $K \rho$  , ..., except  $B \to \phi K$  ,  $\eta^{(')} X$  )

• Large  $X_A \& X_H$  case (unphysical)  $\rho_H = \rho_A = 1$ ,  $\phi_H^{PP} = -22^0$ ,  $\phi_H^{PV} = 198^0$ ,  $\phi_A^{PP} = 54^0$ ,  $\phi_A^{PV} = -55^0$   $\Rightarrow$  BR for  $B \rightarrow \phi K$  and  $B \rightarrow \eta' K$ : fit the exp. data ( $\chi^2 = 7.6$ )  $\Rightarrow$  No solution for  $\sin(2\phi_1)_{\phi K_S}$ 

 $\begin{array}{ll} \bullet & \displaystyle \frac{{\rm Small}\; X_A\;\&\; X_H\; {\rm case}}{\rho_A^{PP}=0\;,\; \rho_A^{PV}=0.5}\;,\; \rho_H^{PP}=1\;,\; \rho_H^{PV}=0.746\;\;,\\ \phi_H^{PP}=\phi_H^{PV}=180^0\;,\; \phi_A^{PV}=-6^0\;\;\; (\chi^2=18.3)\\ \Rightarrow \; \mathcal{B}(B^+\to\phi K^+)=7.35\times 10^{-6}\;\;\; {\rm somewhat\; small}\\ \mathcal{B}(B^+\to\eta' K^+)=48.5\times 10^{-6}\;\;\; {\rm quite\; small} \end{array}$ 

2nd International Conference on Flavor Physics (KIAS, Oct. 10, 2003) A consistent resolution for possible anomalies in  $B \to \phi K_S$  and  $B \to \eta' K$  decays (page 13)

# Analysis & Results

#### Strategy for finding possible solutions

- Need new amplitude(s) to explain the large  $\mathcal{B}(B^{\pm} \to \eta' K^{\pm})$ , but do not affect (much) the BRs of  $B^{\pm(0)} \to \phi K^{\pm(0)}$ ,  $B \to \pi\pi$ ,  $K\pi$ ,  $\rho\pi$ , etc.
- Need new phase(s) to understand  $\sin(2\phi_1)_{\phi K_S}$  [Belle, or Average of Belle & BaBar], but do not affect  $\sin(2\phi_1)_{\eta'K_S}$  [Belle, or Average of Belle & BaBar]
- Concentrate on  $d_{222}^L$  and  $d_{222}^R$ : less constrained &  $\underline{b} \rightarrow s\bar{s}s$  only!  $\Rightarrow$  No contribution to most  $B \rightarrow PP$  and  $B \rightarrow PV$  modes (e.g.,  $B \rightarrow \pi\pi$ ,  $K\pi$ ,  $\rho K$ , etc), except  $B \rightarrow \eta^{(\prime)}K$ ,  $B \rightarrow \eta^{(\prime)}K^*$ ,  $B \rightarrow \phi K$

• 
$$\bar{\mathcal{A}}_{\phi K}^{R_p} \propto (d_{222}^L + d_{222}^R)$$
 only  
 $\bar{\mathcal{A}}_{\eta' K}^{R_p} \propto (d_{222}^L - d_{222}^R)$ 

## **Solution**

In QCD factorization,

 $\delta'$ : possible strong phase from  $O(\Lambda_{QCD}/m_b) \sim O(\alpha_s)$ 

For  $\delta' = 0 \Rightarrow$  unlikely to find a solution For  $\delta' = 30^0 \Rightarrow$  Solution !!

 $d_{222}^L \propto |\lambda'_{i32} \lambda'^*_{i22}| e^{i\theta_L}$ ,  $d_{222}^R \propto |\lambda'_{i22} \lambda'^*_{i23}| e^{i\theta_R}$ 

$$|\lambda'_{322}| = 0.086$$
,  $|\lambda'_{332}| = 0.089$ ,  $|\lambda'_{323}| = 0.030$ ,  
 $\theta_L = 0.66$ ,  $\theta_R = -2.25$ ,  $m_{\text{SUSY}} = 200 \text{ GeV}$ 





| Table 1: CP asymmetries in $B^0 \rightarrow \phi K_S$ and $B^0 \rightarrow \eta' K_S$ |            |                                  |  |  |  |  |  |
|---------------------------------------------------------------------------------------|------------|----------------------------------|--|--|--|--|--|
| $\sin(2\tilde{\phi}_1)$                                                               | Our result | experimental data                |  |  |  |  |  |
| $\sin(2\tilde{\phi}_1)_{\phi K_S}$                                                    | -0.64      | $-0.96 \pm 0.50^{+0.09}_{-0.11}$ |  |  |  |  |  |
|                                                                                       |            | [Belle]                          |  |  |  |  |  |
|                                                                                       |            | $+0.45 \pm 0.43 \pm 0.07$        |  |  |  |  |  |
|                                                                                       |            | [BaBar]                          |  |  |  |  |  |
| $\sin(2\tilde{\phi}_1)_{\eta'K_S}$                                                    | +0.55      | $+0.43 \pm 0.27 \pm 0.05$        |  |  |  |  |  |
|                                                                                       |            | [Belle]                          |  |  |  |  |  |
|                                                                                       |            | $+0.02 \pm 0.34 \pm 0.03$        |  |  |  |  |  |
|                                                                                       |            | [BaBar]                          |  |  |  |  |  |

Table 2: The BRs ( $\mathcal{B}$ ) and CP rate asymmetries ( $\mathcal{A}_{CP}$ ) for  $B \to \eta' K$  and  $B \to \phi K$ .

|                     | Our result               |                    | Exp. data               |                           |
|---------------------|--------------------------|--------------------|-------------------------|---------------------------|
| mode                | $\mathcal{B} 	imes 10^6$ | $\mathcal{A}_{CP}$ | $\mathcal{B}	imes 10^6$ | $\mathcal{A}_{CP}$        |
| $B^- \to \phi K^-$  | 10.5                     | -4%                | $(10.9 \pm 1.0)$        | $(3.9 \pm 8.8 \pm 1.1)\%$ |
| $B^0 \to \phi K_S$  | 9.8                      | -2%                | $(8.0 \pm 1.3)$         | $(-19 \pm 30)\%$          |
| $B^- \to \eta' K^-$ | 71.1                     | 8%                 | $(77.6 \pm 4.6)$        | $(2 \pm 4)\%$             |
| $B^0 \to \eta' K_S$ | 65.9                     | 8%                 | $(60.6 \pm 7.0)$        | $(8 \pm 18)\%$            |

### **In Generalized Factorization**

Table 3: CP asymmetries in  $B^0 \to \phi K_S$  and  $B^0 \to \eta' K_S$ .

| $\sin(2	ilde{\phi}_1)$             | Case 1            | Case 2            | experimental data                                                   |
|------------------------------------|-------------------|-------------------|---------------------------------------------------------------------|
|                                    | $(N_c \approx 2)$ | $(N_c \approx 4)$ |                                                                     |
| $\sin(2\tilde{\phi}_1)_{\phi K_S}$ | 0                 | -0.82             | $-0.73 \pm 0.64 \pm 0.22$ [(NEW) $-0.96 \pm 0.50^{+0.09}_{-0.11}$ ] |
|                                    |                   |                   | [Belle]                                                             |
|                                    |                   |                   | $-0.19^{+0.52}_{-0.50} \pm 0.09$ [(NEW) $+0.45 \pm 0.43 \pm 0.07$ ] |
|                                    |                   |                   | [BaBar]                                                             |
| $\sin(2\tilde{\phi}_1)_{\eta'K_S}$ | 0.73              | 0.72              | $+0.71 \pm 0.37^{+0.05}_{-0.06}$ [(NEW) $+0.43 \pm 0.27 \pm 0.05$ ] |
|                                    |                   |                   | [Belle]                                                             |
|                                    |                   |                   | $+0.02 \pm 0.34 \pm 0.03$                                           |
|                                    |                   |                   | [BaBar]                                                             |

Table 4: The BRs ( $\mathcal{B}$ ) and CP rate asymmetries ( $\mathcal{A}_{CP}$ ) for  $B \to \eta^{(\prime)} K^{(*)}$  and  $B \to \phi K$ .

|                       | Case 1                   |                    | Case 2                   |                    |
|-----------------------|--------------------------|--------------------|--------------------------|--------------------|
| mode                  | $\mathcal{B} 	imes 10^6$ | $\mathcal{A}_{CP}$ | $\mathcal{B} 	imes 10^6$ | $\mathcal{A}_{CP}$ |
| $B^+ \to \eta' K^+$   | 69.3                     | 0.01               | 76.1                     | 0.01               |
| $B^+ \to \eta K^{*+}$ | 27.9                     | 0.04               | 35.2                     | 0.03               |
| $B^0 \to \eta' K^0$   | 107.4                    | 0.00               | 98.9                     | 0.00               |
| $B^0 \to \eta K^{*0}$ | 20.5                     | -0.71              | 11.7                     | -0.15              |
| $B^+ \to \phi K^+$    | 8.99                     | 0.21               | 8.52                     | 0.25               |
|                       |                          |                    | •                        |                    |

- Summary

- In  $R_p$  violating SUSY & QCDF, possible to consistently understand: the *anomalous*  $\sin(2\phi_1)_{\phi K_S}$  as well as the *normal*  $\sin(2\phi_1)_{\eta'K_S}$ & the large  $\mathcal{B}(B \to \eta'K)$ .
  - $\Rightarrow$  Need a sizable strong phase from  $O(\Lambda_{QCD}/m_b)$  contributions.
- All the observed data can be accommodated for certain values of  $\mathbb{R}_p$  couplings.
- RPV with (QCDF vs. pQCD) would be interesting

#### • future measurement:

- $b \rightarrow s\bar{q}q$  penguin processes (q = s, u, d): precise measurement of direct CP asymmetries for  $B \rightarrow \phi K$ ,  $\eta' K$
- $\eta K$  decay channels: small BR
- *R<sub>p</sub>* conserving SUSY (minimal extension of mSUGRA : non-universal soft breaking *A* terms)
   ⇒ interesting solutions (coming soon)
   Arnowitt, Dutta, Hu Khalil, Kou

2nd International Conference on Flavor Physics (KIAS, Oct. 10, 2003) A consistent resolution for possible anomalies in  $B \to \phi K_S$  and  $B \to \eta' K$  decays (page 20)