Flavor and Little Higgs

— Talk at the 2nd International Conference on $Flavor\ Physics\ ({\it Oct}\ 2003)$

OTTO C. W. KONG

— Nat'l Central U, Taiwan

Physics Beyond the Standard Model

WHY?

WHAT?

WHERE?

- Theoretical —supersymmetry Vs little Higgs
- Experimental $m_{\nu}, B \to K\phi, \Delta a_{\mu}$ (?)
 - * Flavor Problems

The Hierarchy Problem:-

— one-loop corrections to the boson mass contain quadratically divergent contributions

e.g. for
$$\Lambda = 10$$
 (TeV)
$$-\frac{3}{8\pi^2}\lambda_t^2\Lambda^2 \sim -(2)^2 \qquad \frac{1}{16\pi^2}g^2\Lambda^2 \sim (0.7)^2 \qquad \frac{1}{16\pi^2}\lambda^2\Lambda^2 \sim (0.5)^2$$

Schmaltz hep-ph/0210415

$$m_h^2 = m_{tree}^2 - [100 - 10 - 5] (200 GeV)^2$$

Solution — cancellation by pairing (protected by symmetry)

e.g. supersymmetry:

$$\lambda_B = \lambda_F^2 \longrightarrow \delta M_B^2 = 0$$

- note (Schmaltz) there is also bosonic pairing
- even in SUSY (SSM) : squark, gaugino, & higgsino

The Little Higgs Idea:-

- cancel *only* one-loop quadratic divergence
- mainly for the *t* contribution
- use only bosonic symmetry
- Higgs as *pseudo-Nambu-Goldstone boson* described by nonlinear sigma model
- \implies produce safe little hierarchy
- to be completed by background strong dynamics at 10-50 TeV $\it cf.$ (TeV scale) technicolor

10 TeV +

UV completion?
sigma model cut-off

1 TeV

colored fermion related to top quark new gauge bosons related to SU(2) new scalars related to Higgs

200 GeV-

1 or 2 Higgs doublets, possibly more scalars

Little Higgs · · · · ·

• bosonic pairings required

SM loop	maximum mass of new particles
top	$2 \mathrm{TeV}$
weak bosons	$5 \mathrm{TeV}$
${ m Higgs}$	$10 \mathrm{TeV}$

★ phenomenological constraints (PDG)

100 GeV	new leptons
$200 \mathrm{GeV}$	new quarks
$300 \mathrm{GeV}$	leptoquarks
$700 \mathrm{GeV}$	W' or Z'

A Toy Model (Kaplan & Schmaltz)

hep-ph/0302049

- extended EW gauge symmetry
- $-SU(3)_L \times U(1)_X$ with $Q^a = (T^a, t^a, b^a)^T$
- Higgs sector global symmetry protecting hierarchy
- $-[SU(3)/SU(2)]^2$
- violated by gauge and Yukawa couplings
- but one-loop diagrams are protected
- e.g. Φ_1 & Φ_2 with aligned VEVs

$$\mathcal{L}_{top} = y_1 \, \bar{t}'_a \, \underline{\Phi}_1 \, Q^a + y_2 \, \bar{T}'_a \, \underline{\Phi}_2 \, Q^a$$

$$= f(y_1 \,\bar{t}' + y_2 \,\bar{T}') \,T + \frac{i}{\sqrt{2}} (y_1 \,\bar{t}' - y_2 \,\bar{T}') \,\frac{h}{b} \begin{pmatrix} t \\ b \end{pmatrix} + \cdots$$

- either $\Phi \longrightarrow 5$ NGB states from gauged $SU(3) \to SU(2)$
- either $\Phi \longrightarrow 5$ NGB states from (axial) global $SU(3) \to SU(2)$
- protected from having mass term
- nonlinear sigma model —

$$\Phi_1 = e^{i\theta/f} \begin{pmatrix} 0 & 0 & f \end{pmatrix}^T \qquad \Phi_2 = e^{-i\theta/f} \begin{pmatrix} 0 & 0 & f \end{pmatrix}^T$$

$$\theta = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 0 & h \\ 0 & 0 & h \\ h^{\dagger} & 0 \end{pmatrix} + \frac{\eta}{4} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}$$

\star HOWEVER —

- Q^a no consistent quantum numbers under SU(3)'s
- h (SM Higgs doublet) and $\eta \longrightarrow PNGB$'s
- subtle symmetry breaking
- 1-loop diagram without both Φ 's
 - \longrightarrow each Φ behaves like the one with NGB
- gauge boson loop
- → small log-divergent mass contribution

QUARTIC COUPLING PROBLEM $\longrightarrow SU(4)$ MODEL

e.g.

Towards Realistic Little Higgs Models:-

- Is it a really viable alternative to SUSY (SSM)?
- nice toy models that work
- need to have realistic models
- has to be complete
- does incorporate everything in SM
- need consistent fermion spectrum
- the Major Step:
- anomaly free fermionic spectra for the extended EW symmetries (3 families SM fermion + vectorlike states)

SM spectrum:-

- one-family spectrum very unique
- taking $SU(3)_C \times SU(2)_L \times U(1)_Y$
- assuming a (3, 2, 1) multiplet
- obtained as the minimal chiral set free from all gauge anomalies

O.K. Mod. Phys. Lett. A11, 2547

O.K. Phys. Rev. D55, 383

- SU(3) requires $(\bar{3},1,a)$ and $(\bar{3},1,b)$
- SU(2) requires an extra (1, 2, c)
- U(1) anomalies have no solution
- \longrightarrow adding a (1,1,k) give the unique solution
- \star idea extended to derive the 3-family spectrum

e.g. $SU(4)_A \times SU(3)_C \times SU(2)_L \times U(1)_X$

multiplets	X	Gauge anomalies					$U(1)_Y$ states	
		t-1	441	331	221	1^{3}		
(4, 3, 2)	1	24	6	8	12	24	3 1 (Q)	- $5(Q^{'})$
$(\mathbf{\bar{4}},\mathbf{\bar{3}},1)$	5	60	15	20		1500	3 - $4(ar{u})$	${\bf 2}(\bar{d})$
$({f ar 4},{f 1},{f 2})$	3	24	6		12	216	3 - 3(L)	${\bf 3}(\bar{L})$
$({f ar 4},{f 1},{f 1})$	9	36	9			2916	3 -6 $(ar{E})$	0 (N)
(6, 1, 1)	-18	-108	-36			-34992	3 6 (E)	3 12 (S)
$(1, \mathbf{ar{3}}, 2)$	-10	-60		-20	-30	-6000	${\bf 5}({\bar Q}')$	
$(1,\mathbf{\bar{3}},1)$	-4	-12		-4		-192	${f 2}(ar d)$	
$(1,\mathbf{\bar{3}},1)$	-4	-12		-4		-192	${f 2}(ar d)$	
$({f 1},{f 1},{f 2})$	6	12			6	432	-3(L)	
3 (1, 1, 1)	24	72				41472	3 -12 $(ar{S})$	
3 (1, 1, 1)	-12	-36				-5184	3 6 (E)	
	Total	0	0	0	0	0		

Flavor Physics:-

* Why 3 families?!

- mass heirarchy (quarks & charged leptons), CKM mixing
- MNS mixing (BSM neutrino masses)
- ? FCNC, CP violations

Vs little Higgs (Kaplan & Schmaltz):-

- $SU(3)_L \times U(1)_X$ gauge symmetry forbides $\bar{b}_a \Phi_i Q^a$ or $\bar{b}_a \Phi_i^{\dagger} Q^a$
- family universal embeddings of SM fermions *inconsistent*
- e.g. $SU(3)_L$ gauge anomaly
- \star realistic little Higgs models \Longrightarrow new perspective on flavor physics

Anomaly Free Gauged $SU(N)_L \times U(1)_X$ Models :-

- with family non-universal SM embeddings
- some in the literature
- Frampton, PRL 69, 2889; Singer et.al., PRD 22, 738; Pisano & Pleitez, PRD 46, 410; Foot et.al., PRD 50, R34
- infinite number exist under simple construction rules!

Compatible with little Higgs?

- one for N=3
 - cf. Kaplan & Schmaltz; Skiba & Terning, hep-ph/0305302
- ullet more for N=4 Kaplan & Schmaltz $+ \cdot \cdot \cdot \cdot$

The Construction Rules:-

- (t,b) containing Q^a as $(3,N,X_Q)$
- other quark doublets in $(3, \bar{N}, X_{Q'})$
- because $N_f = N_c \longrightarrow SU(N)_L$ anomaly cancels by 3 N's - 6 \bar{N} 's + 3 family universal leptonic $(1, N, X_L)$'s
- $[SU(N)_L]^2U(1)_X$ anomaly with correct doublet embeddings $N_cX_Q + 2N_cX_{Q'} + N_fX_L = 0$

e.g. (with N = 4)

$$Q = \frac{1}{2}\lambda^3 + \frac{A}{3}\lambda^8 + \frac{B}{6}\lambda^{15} + X$$

- \longrightarrow condition: $A + B + X_Q = \frac{1}{6}$ etc.
- add singlets to keep QCD & QED spectra vectorlike

See Anomaly Spreadsheets

Flavor Structure of the 331-little Higgs Model(s):-

- top Yukawa $y_1 \, \bar{t}'_a \, \Phi_1 \, Q^a + y_2 \, \bar{T}'_a \, \Phi_2 \, Q^a \longrightarrow y_t \, \bar{t} \, h \left(\begin{smallmatrix} t \\ b \end{smallmatrix} \right)$
- bottom Yukawa no $\bar{b} \Phi_i^{\dagger} Q^a$ but $\bar{b} \Phi_i^{\dagger} \Phi_j^{\dagger} Q^a$
- \bullet extra S and D may be relevant to B (b) physics
- \star others may be killed by the global SU(3)'s otherwise:-
- u and c Yukawa $\rightarrow 1_L \Phi_i \Phi_j \bar{3}_L$
- d and s Yukawa $\rightarrow 1_L \Phi_i^{\dagger} \bar{3}_L$
- family universal leptonic Yukawa $\rightarrow \ell^+ \Phi_i^{\dagger} \Phi_j^{\dagger} L$
- also extra singlet neutrinos · · · · ·

Flavor Structure of new 341-little Higgs Model:-

- top Yukawa standard
- bottom Yukawa same as t
- Higgs sector 2 doublets (+ singlets) with NFC (?), large $\tan\beta$
- 2 set of 2 aligned Φ 's with opposite X-charges
- b-loop quadratic divergence canceled by B (as t-T)
- \star duplicated fermion spectrum (e.g. U, D, C, S, also T, B)
- \bullet need the global SU(4)'s to suppress other Yukawa
- also extra singlet neutrinos · · · · ·

Final Remarks:-

- fermion spectra is the key
 for taking any (scalar sector) little Higgs model realistic
- $SU(N) \times U(1)$ extended EW symmetry models exist with little Higgs compatibility options
- fermion spectra likely to be (SM) family non-universal
- strong implications on flavor structure issues
- anomaly cancellation conditions link the 3 families
- may be a way to answer why $3 (= N_c)$
- spectra *not* as beautiful as one-family SM (SUSY?) but viable alternatives

THANK YOU!

Supplementary (Vs $T.Han's \ talk$) :-

- different models simple models Vs littlest Higgs (SU(5)/SO(5) Georgi et.al.) "The littler the Higgs the bigger the group" (S.Glashow)
- model building Vs phenomenology
 may be "The earlier the model the less complete the physics"
 care mainly about establishing the little Higgs mechanism
- \bullet my focus complete ($not\ UV$) model(s) of TeV physics
- ? full SU(5) or SO(5), and gauge group, multiplets
- survival hypothesis Vs vectorlike fermions