## Subleading Corrections to 2-body Hadronic B Decays

Kwei-Chou Yang

Chung Yuan Christian University, Taiwan

October 6, 2003
ICFP 2003

- Brief review on $P P, P V$ modes
- Can we understand why $\omega K / \omega \pi \sim 1$ ?
- Corrections from 3-parton distribution amplitudes of the final state mesons
- impact of subleading corrections
- Summary Ref.: hep-ph/0308005


## Brief review on $P P, V P$ modes

QCD Factorization vs. PQCD: (hep-ph/0207228, M.Beneke; hep-ph/0303116, H.N.Li)

| Decay Mode | Exp. Average | Default fit (QCDF) | Fit2 (QCDF) | PQCD |
| :--- | :---: | :---: | :---: | :---: |
| $B^{0} \rightarrow \pi^{+} \pi^{-}$ | $5.15 \pm 0.61$ | 5.12 | 5.24 | $7.0_{-1.5}^{+2.0}$ |
| $B^{ \pm} \rightarrow \pi^{ \pm} \pi^{0}$ | $4.88 \pm 1.06$ | 5.00 | 4.57 | $3.7_{-1.1}^{+1.3}$ |
| $B^{0} \rightarrow \pi^{0} \pi^{0}$ | $(2.07 \pm 0.57)$ | 0.78 | 0.94 | $0.3 \pm 0.1$ |
| $B^{0} \rightarrow \pi^{\mp} K^{ \pm}$ | $18.56 \pm 1.08$ | 17.99 | 18.47 | $15.5_{-2.5}^{+3.1}$ |
| $B^{ \pm} \rightarrow \pi^{0} K^{ \pm}$ | $11.49 \pm 1.26$ | 12.07 | 11.83 | $9.1_{-1.5}^{+1.9}$ |
| $B^{ \pm} \rightarrow \pi^{ \pm} K^{0}$ | $17.93 \pm 1.70$ | 15.65 | 17.88 | $17.3 \pm 2.7$ |
| $B^{0} \rightarrow \pi^{0} K^{0}$ | $8.82 \pm 2.20$ | 5.55 | 6.87 | $8.6 \pm 0.3$ |

Table 1: (in units of $10^{-6}$ ): The default fit (QCDF): $\gamma=116^{\circ}$ with $\chi^{2}=4.5$. "Fit2" (QCDF): $\gamma=97^{\circ}, \chi^{2}=1.0$ refers to a fit without annihilation contributions and chirally enhanced spectator corrections but with $m_{s}=80 \mathrm{MeV}$. PQCD predictions for the $B \rightarrow$ $\pi \pi$ and $K \pi$ branching ratios in unit of $10^{-6}$ with $\phi_{3}=80^{\circ}$.

QCDF: annihilation effects are probably not large in PP modes, yet they constitute the largest uncertainty in the calculation of this amplitude.
PQCD: dynamical penguin enhancement (to Brs) + imaginary annihilation penguins (to ACPs)

## Problems in QCD factorization approaches

- The recent QCDF fitting result (by D.S.Du et al) hints that, to account for the large $\omega \bar{K}^{0}$ rate,
the annihilation contributions to modes $\phi K^{-, 0}, K^{-} \rho^{+}, \omega K^{-, 0}$ may be over 80\%.
- In case the annihilation effects dominate in Brs of $B \rightarrow K h^{*}$, experiments should observe a simple relation among these modes, for instance $\rho^{+} K^{-, 0}: \rho^{0} K^{-, 0}: \omega K^{-, 0} \approx 1:(1 / \sqrt{2})^{2}:(1 / \sqrt{2})^{2}:(1 / \sqrt{2})^{2}$, the same as their annihilation ratios squared. It should be easily checked from experimental measurements.
- Recently a global fit for all measured $B \rightarrow P V$ rates was performed by R.Aleksan et al. They conclude that it is impossible to reach a reliable best fit even considering the charming-penguin effects.
- Note that Charming penguin effects are shown to be negligible by $A$. Khodjamiriam. T. Mannel and B. Melić


## Problems in QCD factorization approaches

Two possible ways to solve the ratio problem for $\pi^{+} \pi^{-} / \pi^{-} \pi^{0} \lesssim 1$ :
(i) large $\gamma>90^{\circ}$;
(ii) a smaller form factor $F_{0}^{B \pi}=0.25+$ large ratio $a_{2} / a_{1}$ (which is parametrized in the analysis).

Beneke and Neubert (hep-ph/0308039) showed that
(ii) together with $m_{s}=80 \mathrm{MeV}$ and $\rho_{A}=1$ is favored by the data.
$\checkmark$ They chose $a_{2}(\pi \pi) / a_{1}(\pi \pi)=0.48 / 0.88, a_{2}(\pi \rho) / a_{1}(\pi \rho)=0.41 / 0.90$. But why?

- Large $a_{2}$ and small $\gamma$ are good for producing the large $K \omega$ rates.
$\downarrow \phi$ Brs are sensitive to $\rho_{A}$, the annihilation contributions. (H.Y. Cheng, KCY)
However they obtained $\pi^{-} \omega / \bar{K}^{0} \omega \simeq 8.4 / 4.9 \approx 1.7$, but the data is $\sim 1$


## Can we understand why $\omega K / \omega \pi \sim 1$ ?

- Data (in units of $10^{-6}$ ):

BaBar

$$
\begin{aligned}
& \mathcal{B}\left(B^{ \pm} \rightarrow \omega K^{ \pm}\right)=(5.0 \pm 1.0 \pm 0.4) \\
& \mathcal{B}\left(B^{0} \rightarrow \omega K^{0}\right)=(5.3 \pm 1.3 \pm 0.5) \\
& \mathcal{B}\left(B^{ \pm} \rightarrow \omega \pi^{ \pm}\right)=(5.4 \pm 1.0 \pm 0.5), \\
& \text { Belle } \\
& \mathcal{B}\left(B^{ \pm} \rightarrow \omega K^{ \pm}\right)=\left(6.7_{-1.2}^{+1.3} \pm 0.6\right) \\
& \mathcal{B}\left(B^{0} \rightarrow \omega K^{0}\right)=\left(4.0 \pm_{1.6}^{1.9} \pm 0.5\right) \\
& \mathcal{B}\left(B^{ \pm} \rightarrow \omega \pi^{ \pm}\right)=\left(4.2_{-1.8}^{+2.0} \pm 0.5\right),
\end{aligned}
$$

- Theoretical results (in units of $10^{-6}$ ):
(Generalized) factorization: $\mathrm{Nc}=2 \sim 3$ :
$\omega \pi^{ \pm}: 11-5, \omega K^{ \pm}: 0.9-1.5, \omega K^{0}: 0.6-0.3$
$\omega K / \omega \pi^{ \pm} \lesssim 0.2$ by Cheng et al. ( $<0.5$ by Ali et al.)
Earlier QCDF calculation:
$\omega \pi^{ \pm}: 6-7, \omega K^{ \pm}: 0.4-0.5, \omega K^{0}: \sim 0.01$ (D.S.Du et al)
$\Rightarrow \omega K / \omega \pi^{ \pm}<0.1$
PQCD: $\omega \pi^{ \pm}: 8 \pm 2$ for $\gamma=75^{\circ}-180^{\circ}$ (C.D.Lu \& M.Z. Yang)
$\omega K^{ \pm}: 3.2, \omega K^{0} \sim 2.2$ (C.H. Chen)
$\Rightarrow \omega K / \omega \pi^{ \pm}<0.5$
theoretically, why the ratio $\omega K / \omega \pi$ is small?

$$
\begin{aligned}
M\left(B^{-} \rightarrow \pi^{-} \omega\right) \simeq & G_{F} m_{\omega}\left(\epsilon \cdot p_{\pi}\right)\left(f_{\pi} A_{0}^{B \rightarrow \omega}\left(m_{\pi}^{2}\right)\left\{V_{u b} V_{u d}^{*} a_{1}-V_{t b} V_{t d}^{*}\left[a_{4}-a_{6} r_{\chi}^{\pi}\right]\right\}\right. \\
+ & \left.f_{\omega} F_{1}^{B \rightarrow \pi}\left(m_{\omega}^{2}\right)\left\{V_{u b} V_{u d}^{*} a_{2}-V_{t b} V_{t d}^{*}\left[a_{4}+2\left(a_{3}+a_{5}\right)+\frac{1}{2} a_{9}\right]\right\}\right) \\
M\left(\bar{B}^{0} \rightarrow \bar{K}^{0} \omega\right) \simeq & G_{F} m_{\omega}\left(\epsilon \cdot p_{K}\right)\left[-f_{K} A_{0}^{B \rightarrow \omega}\left(m_{K^{0}}^{2}\right) V_{t b} V_{t s}^{*}\left(a_{4}-a_{6} r_{\chi}^{K}\right)\right. \\
+ & \left.f_{\omega} F_{1}^{B \rightarrow K}\left(m_{\omega}^{2}\right)\left\{V_{u b} V_{u s}^{*} a_{2}-V_{t b} V_{t s}^{*}\left(2\left(a_{3}+a_{5}\right)+\frac{1}{2} a_{9}\right)\right\}\right] \\
M\left(B^{-} \rightarrow K^{-} \omega\right)= & G_{F} m_{\omega}\left(\epsilon \cdot p_{K}\right)\left[f_{K} A_{0}^{B \rightarrow \omega}\left(m_{K}^{2}\right)\left\{V_{u b} V_{u s}^{*} a_{1}-V_{t b} V_{t s}^{*}\left(a_{4}-a_{6} r_{\chi}^{K}\right)\right\}\right. \\
& \left.+f_{\omega} F_{1}^{B \rightarrow K}\left(m_{\omega}^{2}\right)\left\{V_{u b} V_{u s}^{*} a_{2}-V_{t b} V_{t s}^{*}\left(2\left(a_{3}+a_{5}\right)+\frac{1}{2} a_{9}\right)\right\}\right]
\end{aligned}
$$

where $r_{\chi}^{\pi} \approx r_{\chi}^{K}=\frac{2 m_{K}^{2}}{\left(m_{b}+m_{u}\right)\left(m_{u}+m_{s}\right)} \approx 1$,
$a_{2 i}=c_{2 i}+c_{2 i-1} / N_{c}, a_{2 i-1}=c_{2 i-1}+c_{2 i} / N_{c}$
$a_{1} \approx 1, a_{4} \approx-0.0041-0.0036 i, a_{6}=-0.0548-0.0036$
$\uparrow \omega \pi$ : is not small and tree dominated $\propto a_{1} \rightarrow$ Annihilation is negligible.
$\uparrow \omega K$ : should be small because $a_{4}, a_{6}$ terms are destructive

The ratio $\bar{K}^{0} \omega / \pi^{-} \omega$ reads
$\frac{\bar{K}^{0} \omega}{\pi^{-} \omega} \approx\left|\frac{V_{c b}}{V_{u b}}\right|^{2}\left(\frac{f_{K}}{f_{\pi}}\right)^{2}\left|\frac{a_{4}-a_{6} r_{\chi}^{K}+\left(F_{1}^{B K} f_{\pi}\right) /\left(F_{1}^{B \pi} f_{K}\right) r_{1} a_{9} / 2+f_{B} f_{K} b_{3}(K, \omega)}{a_{1}+r_{1} a_{2}}\right|^{2}$,
where $r_{1}=f_{\omega} F_{1}^{B \pi} / f_{\pi} A_{0}^{B \omega}$.
Without annihilation contributions, because in the $\bar{K}^{0} \omega$ amplitude $a_{4}$ and $a_{6} r_{\chi}^{K}$ terms are opposite in sign, the ratio $\bar{K}^{0} \omega / \pi^{-} \omega$ should be very small.

- Choosing smaller $m_{s}$ can enlarge the ratio but it is still $\lesssim 0.2$ for $m_{s} \gtrsim$ 80 MeV .
$\checkmark$ QCDF:VP modes may be dominated by annihilation contribution (fit by D.S.Du et al.) but this possibility seems to be ruled out in the recent fitting analysis in which $C L<0.1 \%$ (by R.Aleksan et al.)
$\checkmark$ PQCD cannot offer the explanation. the annihilation contribution, $b_{3}$, is imaginary.
$\uparrow$ Can the contribution arising from tree-parton distribution amplitudes (DAs) of the final state mesons improve the results?


## Answer is YES.

## 3-parton distribution amplitudes



$$
\begin{aligned}
M\left(B^{-} \rightarrow \pi^{-} \omega\right) & =\cdots+G_{F} m_{\omega}\left(\epsilon \cdot p_{\pi}\right) f_{\omega} F_{1}^{B \rightarrow \pi}\left(m_{\omega}^{2}\right)\left(V_{u b} V_{u d}^{*} c_{1}-V_{t b} V_{t d}^{*}\left(2 c_{4}-2 c_{6}+c_{3}\right)\right) f_{3} \\
M\left(\bar{B}^{0} \rightarrow \bar{K}^{0} \omega\right) & =\cdots+G_{F} m_{\omega}\left(\epsilon \cdot p_{K}\right) f_{\omega} F_{1}^{B \rightarrow K}\left(m_{\omega}^{2}\right)\left(V_{u b} V_{u s}^{*} c_{1}-V_{t b} V_{t s}^{*}\left(2 c_{4}-2 c_{6}\right)\right) f_{3} \\
f_{3} & =\frac{\sqrt{2}}{m_{B}^{2} f_{\omega} F_{1}^{B \pi}\left(m_{\omega}^{2}\right)}\left\langle\omega \pi^{-}\right| O_{1}\left|B^{-}\right\rangle_{\mathrm{qqg}}=-\frac{4}{\bar{\alpha}_{g} m_{B}^{4} F_{1}^{B \pi}\left(m_{\omega}^{2}\right)} p_{\omega}^{\alpha}\left\langle\pi^{-}\right| \bar{d}^{\mu} \gamma_{5} g_{s} \widetilde{G}_{\alpha \mu} b\left|B^{-}\right\rangle \\
& =0.12
\end{aligned}
$$

$\checkmark$ Result:in units of $10^{-6}$
(We have adopted LC sum rule results for form factors but with $A_{0}^{B \omega}=0.28$ )


For $\gamma \approx 90^{\circ}, \omega \pi^{ \pm} \approx 5.5$ (dashes line), sensitive to $A_{0}^{B \omega}$,
$\omega K^{ \pm} \approx 4.5$ (solid line)
$\omega K^{0} \approx 4.3$ (dash-dotted line),
$\rightarrow$ Data: $\mathcal{B}\left(B^{ \pm} \rightarrow \omega \pi^{ \pm}\right)=(5.9 \pm 0.9)$

$$
\mathcal{B}\left(B^{ \pm} \rightarrow \omega K^{ \pm}\right)=(5.3 \pm 0.8)
$$

$$
\mathcal{B}\left(B^{0} \rightarrow \omega K^{0}\right)=(5.1 \pm 1.1)
$$

Note that
(i) without the contributions from 3-parton Fock states of mesons, $\phi K^{-}, \omega \pi^{-}, \omega K^{-}, \omega \bar{K}^{0} \simeq 11,3.9,3.1,2.9$. The 3-parton Fock state effects give constructive contributions to $\omega \pi, \omega K$ modes, but destructive one to the $\phi K$ mode;
(ii) the annihilation parameter can be determined from the fit of $\phi K \operatorname{Brs} \sim 8.5 \times 10^{-6}$.

$$
\begin{aligned}
& \begin{aligned}
& T_{\alpha}(p, q)=i \int d^{4} x e^{i p x}\left\langle\pi^{-}(q)\right| \bar{d}(x) g_{s} \widetilde{G}_{\alpha \mu}(x) \gamma^{\mu} \gamma_{5} b(x) \bar{b}(0) i \gamma_{5} u(0)|0\rangle \\
&=\frac{m_{B}^{2} f_{B}}{m_{b}} \frac{1}{m_{B}^{2}-(p+q)^{2}}\left\langle\pi^{-}(q)\right| \bar{d} \gamma^{\mu} \gamma_{5} g_{s} \widetilde{G}_{\alpha \mu} b\left|B^{-}(p+q)\right\rangle+\cdots . \\
&\left\langle\pi^{-}(q)\right| \bar{d} \gamma^{\mu} \gamma_{5} g_{s} \widetilde{G}_{\alpha \mu} b\left|B^{-}(p+q)\right\rangle=p_{\alpha} f_{-}\left(p^{2}\right)+\left(p_{\alpha}+2 q_{\alpha}\right) f_{+}\left(p^{2}\right)
\end{aligned} .
\end{aligned}
$$

Under the Borel transformation $-(p+q)^{2} \rightarrow M^{2}$, the final sum rule takes the form

$$
\begin{aligned}
f_{-}\left(p^{2}\right) & =-f_{+}\left(p^{2}\right)=-\frac{m_{b}}{2 m_{B}^{2} f_{B}} \int_{0}^{1} d u \int_{0}^{u} d \alpha_{g} \exp \left(\frac{m_{B}^{2}}{M^{2}}-\frac{m_{b}^{2}-\bar{u} p^{2}}{u M^{2}}\right) \Theta\left(u-\frac{m_{b}^{2}-p^{2}}{s_{0}-p^{2}}\right) \\
& \times\left[-f_{3 \pi} \frac{m_{b}^{2}-p^{2}}{u^{2}} \phi_{3 \pi}+f_{\pi} \frac{m_{b}}{u}\left(\tilde{\phi}_{\|}-2 \tilde{\phi}_{\perp}\right)\right] \\
& \Rightarrow f_{\mp}\left(\omega^{2}\right)=-(0.057 \pm 0.005) \text { for Borel window: } 9 \mathrm{GeV}^{2}<M^{2}<20 \mathrm{GeV}^{2}
\end{aligned}
$$

( $s_{0} \simeq 37 G e V^{2}:$ the threshold of resonances)

$$
\begin{aligned}
& \langle\pi(q)| \bar{d}(x) g_{s} G_{\mu \nu}(v x) \sigma_{\alpha \beta} \gamma_{5} u(0)|0\rangle \\
& \quad=\quad i f_{3 \pi}\left[q_{\beta}\left(q_{\mu} g_{\nu \alpha}-q_{\nu} g_{\mu \alpha}\right)-q_{\alpha}\left(q_{\mu} g_{\nu \beta}-q_{\nu} g_{\mu \beta}\right)\right] \int \mathcal{D} \alpha \phi_{3 \pi} e^{i q x\left(\alpha_{d}+v \alpha_{g}\right)}, \\
& \quad\langle\pi(q)| \bar{d}(x) \gamma_{\mu} g_{s} \tilde{G}_{\alpha \beta}(v x) u(0)|0\rangle=i f_{\pi}\left(q_{\alpha} g_{\beta \mu}-q_{\beta} g_{\alpha \mu}\right) \\
& \quad \times \int \mathcal{D} \alpha \tilde{\phi}_{\perp} e^{i q x\left(\alpha_{d}+v \alpha_{g}\right)}-i f_{\pi} \frac{q_{\mu}}{q x}\left(q_{\alpha} x_{\beta}-q_{\beta} x_{\alpha}\right) \int \mathcal{D} \alpha\left(\tilde{\phi}_{\|}+\tilde{\phi}_{\perp}\right) e^{i q x\left(\alpha_{d}+v \alpha_{g}\right)} .
\end{aligned}
$$

where $\tilde{G}_{\alpha \beta}=\frac{1}{2} \epsilon_{\alpha \beta \sigma \tau} G^{\sigma \tau}$ and $\mathcal{D} \alpha_{i}=d \alpha_{1} d \alpha_{2} d \alpha_{3} \delta\left(1-\alpha_{1}-\alpha_{2}-\alpha_{3}\right)$. While $\phi_{3 \pi}\left(\alpha_{i}\right)$ is a twist 3 wave function, the remaining functions $\tilde{\phi}_{\perp}$ and $\tilde{\phi}_{\|}$are all of twist 4 .

$$
\begin{aligned}
\phi_{3 \pi}\left(\alpha_{i}\right)= & 360 \alpha_{d} \alpha_{\bar{u}} \alpha_{g}^{2}\left[1+\omega_{1,0} \frac{1}{2}\left(7 \alpha_{g}-3\right)+\omega_{2,0}\left(2-4 \alpha_{d} \alpha_{\bar{u}}-8 \alpha_{g}+8 \alpha_{g}^{2}\right)\right. \\
& \left.+\omega_{1,1}\left(3 \alpha_{d} \alpha_{\bar{u}}-2 \alpha_{g}+3 \alpha_{g}^{2}\right)\right] \\
\tilde{\phi}_{\perp}\left(\alpha_{i}\right)= & 30 \delta^{2} \alpha_{g}^{2}\left(1-\alpha_{g}\right)\left[\frac{1}{3}+2 \varepsilon\left(1-2 \alpha_{g}\right)\right] \\
\tilde{\phi}_{\|}\left(\alpha_{i}\right)= & -120 \delta^{2} \alpha_{d} \alpha_{\bar{u}} \alpha_{g}\left[\frac{1}{3}+\varepsilon\left(1-3 \alpha_{g}\right)\right] .
\end{aligned}
$$


$f_{-}\left(m_{\omega}^{2}\right)=\int_{0}^{1} d u \int_{0}^{u} d \alpha_{g} A_{f_{-}}$with $M^{2}=10 \mathrm{GeV}^{2}$. The volume in the plot is equal to $f_{-}\left(m_{\omega}^{2}\right)$. Here $u=\alpha_{d}+\alpha_{g}$.

In $\pi^{-}$, the averaged gluon momentum fraction is:
$\bar{\alpha}_{g}^{\pi}=\left(\int_{0}^{1} d u \int_{0}^{u} d \alpha_{g} \times \alpha_{g} A_{f_{1}}\right) / f_{1} \simeq 0.23 ;$
the averaged momentum fraction of gluon $+d$ quark:
$u=\left(\int_{0}^{1} d u \int_{0}^{u} d \alpha_{g} \times u A_{f_{1}}\right) / f_{1} \simeq 0.83$.
$\Rightarrow$ to this order the gluon and d quark can account for $83 \%$ momentum fraction of the final state $\pi^{-}$meson.

## Impact of the subleading corrections



$$
\sim \int_{0}^{1} \frac{d \bar{u}}{\bar{u}} \frac{\Phi_{\sigma}^{M_{1}}(\bar{u})}{6 \bar{u}}
$$



## Impact of the subleading corrections

Effective coefficients $a_{i}^{\mathrm{SL}}$ with the subleading corrections for $P P, V P$ modes:

$$
\begin{aligned}
a_{2 i}^{\mathrm{SL}} & =a_{2 i}+\left[1+(-1)^{\delta_{3 i}+\delta_{4 i}}\right] c_{2 i-1} f_{3} / 2 \\
a_{2 i-1}^{\mathrm{SL}} & =a_{2 i-1}+(-1)^{\delta_{3 i}+\delta_{4 i}} c_{2 i} f_{3}
\end{aligned}
$$

where $i=1, \cdots, 5$, and $c_{i}$ are Wilson coefficients defined at the scale $\mu_{h}=\sqrt{\Lambda_{\chi} m_{B} / 2} \simeq 1.4 \mathrm{GeV}$ with $\Lambda_{\chi}$ the momentum of the emitted gluon.

Table 2: Values for $a_{i}$ for charmless $B$ decay processes without (first row) and with (second row) 3-parton Fock state contributions of final state mesons, where $a_{3-10}$ are in units of $10^{-4}$ and the annihilation effects are not included.

| $a_{1}$ | $a_{2}$ | $a_{3}$ | $a_{4}$ | $a_{5}$ | $a_{6}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $1.02+0.014 i$ | $0.10-0.08 i$ | $26+26 i$ | $-328-91 i$ | $1.2-30 i$ | $-487-72 i$ |
| $0.974+0.014 i$ | $0.25-0.08 i$ | $-55+26 i$ | $-291-91 i$ | $112-30 i$ | $-487-72 i$ |

Note that
(i) 3DAs give significant corrections to $a_{2}, a_{3}, a_{5}$, i.e., they are important in consideration of color suppressed modes and decay channels with singlet meson(s).

## Impact of the subleading corrections

- $B \rightarrow J / \psi K$ Decay

$$
A(B \rightarrow J / \psi K) \cong \frac{G_{F}}{\sqrt{2}} V_{c b} V_{c s}^{*} a_{2} f_{J / \psi} m_{J / \psi} F_{1}^{B K}\left(m_{J / \psi}^{2}\right)\left(2 \varepsilon^{*} \cdot p_{B}\right),
$$

- extraction from the data, $\left|a_{2}\right| \simeq 0.25-0.3$
$\checkmark a_{2}^{\mathrm{SL}}=a_{2}^{\mathrm{t} 2}+c_{1} \times f_{3}=0.10+0.05 i+c_{1}\left(\mu_{h}\right) 0.14=0.27+0.05 i$
- This solves the long-standing sign ambiguity of $a_{2}(J / \psi K)$ which turns out to be positive for its real part. Note that if $\operatorname{Re}\left(a_{2}\right)$ were negative, $f_{3}$ would have to be $\sim-0.3$ which in turns would lead to
i) $\phi K \sim 20 \times 10^{-6}$,
ii) $\omega \pi^{-}, \omega K \sim 1 \times 10^{-6}$ and
iii) too small Brs of $K^{*} \eta, K \eta^{\prime}$ !


## Impact of the subleading corrections





- If $\eta^{\left({ }^{\prime}\right)}$ is emitted, we have the correction
$a_{3}+a_{5}=\left(c_{4}+c_{6}\right) \times 0.12+a_{3}^{2 \text { DAs }}+a_{5}^{2 \text { DAs }}$
- With (without) the subleading corrections, $K^{-} \eta^{\prime} \gtrsim \bar{K}^{0} \eta^{\prime} \approx 55$ (35), and $K^{*-} \eta \gtrsim \bar{K}^{* 0} \eta \approx 24(20)$, in units of $10^{-6}$, where $X^{P P}$ is set to be 0 .
- At $\gamma=90^{\circ}$, we have $\bar{K}^{0} \rho^{0}, K^{-} \rho^{+}, \bar{K}^{0} \rho^{-}, K^{-} \rho^{0}=6,7,7,2\left(\times 10^{-6}\right)$, and $K^{*-} \pi^{+}, \bar{K}^{* 0} \pi^{0}, \rho^{-} \eta, \rho^{-} \eta^{\prime}=9,2,6,4\left(\times 10^{-6}\right)$.
$\uparrow$ QCDF without 3DA contributions (Du et al; Beneke, Neubert): $\rho^{+} K^{-, 0}: \rho^{0} K^{-, 0}: \omega K^{-, 0} \approx 1:(1 / \sqrt{2})^{2}:(1 / \sqrt{2})^{2}$
$\checkmark$ PQCD (C.H. Chen): $\bar{K}^{0} \rho^{0}, K^{-} \rho^{+}, \bar{K}^{0} \rho^{-}, K^{-} \rho^{0}=2.5,5.4,3.0,2.2\left(\times 10^{-6}\right)$


## Summary

$\uparrow$ Including the $K_{\bar{q} s g}$ corrections we obtain $a_{2}(J / \psi K) \approx 0.27+0.05 i$ which is well consistent with the data. The sign of $\operatorname{Re}\left(a_{2}\right)$ turns out to be positive.

- With (without) 3-Fock state corrections,

$$
a_{3}=-55+26 i(26+26 i), \quad a_{5}=112-30 i(1.2-30 i)
$$

$\downarrow$ For $\gamma \approx(60-110)^{\circ}, \omega \pi^{-}, \omega K^{-}, \omega \bar{K}^{0} \approx 6.0,(6 \sim 5), 5.1 \times 10^{-6}$
$\checkmark$ With (without) the subleading corrections, $K^{-} \eta^{\prime} \gtrsim \bar{K}^{0} \eta^{\prime} \approx 55$ (35), and $K^{*-} \eta \gtrsim \bar{K}^{* 0} \eta \approx 24(20)$, in units of $10^{-6}$, where the annihilation contribution of the $K \eta^{\prime}$ modes is chosen to be 0 .
$\downarrow$ At $\gamma=90^{\circ}$, we have $K^{*-} \pi^{+}, \bar{K}^{* 0} \pi^{0}, \rho^{-} \eta, \rho^{-} \eta^{\prime}=9,2,6,4\left(\times 10^{-6}\right)$.

- This work:

$$
\begin{aligned}
& \bar{K}^{0} \rho^{0}, K^{-} \rho^{+}, \bar{K}^{0} \rho^{-}, K^{-} \rho^{0}=6,7,7,2 \times 10^{-6} . \\
& \bar{K}^{0} \rho^{0} / \omega K^{-} \gtreqless 1 \text {, sensitive to } \gamma .
\end{aligned}
$$

$\downarrow$ PQCD by C.H.Chen: $\bar{K}^{0} \rho^{0}, K^{-} \rho^{+}, \bar{K}^{0} \rho^{-}, K^{-} \rho^{0}=2.5,5.4,3.0,2.2 \times 10^{-6}$.
$\downarrow$ QCDF (Du et al; Beneke, Neubert):

$$
\bar{K}^{0} \rho^{0}: K^{-} \rho^{+}: \bar{K}^{0} \rho^{-}: K^{-} \rho^{0} \approx(1 / \sqrt{2})^{2}: 1: 1:(1 / \sqrt{2})^{2}
$$

## Brief review on $P P, V P$ modes

Table 3: (in units of $10^{-6}$ ), $\gamma=70^{\circ}$. The first error: parameter variations, the second one:the uncertainty due to weak annihilation. The "default" refers to $m_{s}=100 \mathrm{MeV}$ and $F_{2}=0$.

| Mode | Default | $m_{s}=80 \mathrm{MeV}$ | $F_{2}=0.1$ | pQCD | Experiment |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $B^{-} \rightarrow K^{-} \eta^{\prime}$ | $42_{-12+27}^{+16}$ | $59_{-16}^{+22+11}$ | $56_{-14}^{+19+13}$ |  | $77.6 \pm 4.6$ |
| $\bar{B}^{0} \rightarrow \bar{K}^{0} \eta^{\prime}$ | $41_{-11}^{+15-26}$ | $57_{-15}^{+21}{ }_{-16}^{+39}$ | $56_{-13}^{+14-13}{ }_{-13}^{+13}$ | 41 | $60.6 \pm 7.0$ |
| $B^{-} \rightarrow K^{-} \eta$ | $1.7{ }_{-1.5}^{+2.0}+1.3$ | $2.2{ }_{-2.0}^{+2.7}{ }_{-0.8}^{+1.9}$ | $1.4{ }^{+1.8}{ }^{+1.8}{ }^{+1.1}$ |  | $3.1 \pm 0.7$ |
| $\bar{B}^{0} \rightarrow \bar{K}^{0} \eta$ | 1.0 ${ }_{\text {-1.2 }}^{+1.7}+{ }_{-0.4}^{+1.1}$ | $1.4{ }_{-17}^{+2.4}{ }^{+1.6}{ }^{+1.6}$ | $0.7_{-0.5}^{+1.5-0.9}$ | 7.0 | < $<4.6$ |
| $B^{-} \rightarrow K^{-} \pi^{0}$ | $9.44_{-2.9}^{+3.2}+{ }_{-2.4}^{+3.2}$ | $12.6{ }^{-3.8}+{ }_{-3.5}^{+4.3+2.2}$ | $9.4{ }_{-2.9}^{+3.4}{ }_{-2.4}^{+3.2}$ |  | $12.8 \pm 1.1$ |
| $\bar{B}^{0} \rightarrow \bar{K}^{0} \pi^{0}$ | 5.9 ${ }_{-2.3}^{+2.7}+{ }_{-1.9}^{+2.4}$ | ${ }^{8.5} 5_{-3.1}^{+3.7}{ }_{-2.8}^{+6.8}$ | $5.9{ }_{-2.3}^{+2.7 .9}$ | 11 | $11.2 \pm 1.4$ |
| $B^{-} \rightarrow K^{*-} \eta^{\prime}$ | $3.5{ }_{-3.7}^{+4.4}+1.7$ | $7.7_{-6.7}^{+7.6+3.0}$ | $2.7_{-2.6}^{+3.5}{ }_{-1.3}^{+3.9}$ |  | < 35 |
| $\bar{B}^{0} \rightarrow \bar{K}^{* 0} \eta^{\prime}$ | $2.5{ }_{-3.1}^{+3.8}+1.5$ | $6.3{ }_{-5.8}^{+6.8}{ }_{-2.9}^{+7.4}$ | $1.22_{-1.8}^{+2.7}{ }_{-0.9}^{+3.2}$ |  | < 13 |
| $B^{-} \rightarrow K^{*-} \eta$ | $8.6{ }_{-2.6-4.4}^{+3.0+14.0}$ | $13.8{ }_{-4.2}^{+4.8+19.8}$ | $9.1{ }_{-2.7}^{+3.1}{ }_{-14.6}^{+14.3}$ |  | $25.4 \pm 5.3$ |
| $\bar{B}^{0} \rightarrow \bar{K}^{* 0} \eta$ | $8.7{ }^{-2.6}{ }_{-2.6}^{+2.6-14.0}{ }^{\text {+ }}$ | $13.9{ }^{-4.6-4.2}+19.7$ | $9.2_{-2.7}^{+3.0}{ }_{-14.7}^{+14.2}$ |  | $16.4 \pm 3.0$ |
| $B^{-} \rightarrow K^{*-} \pi^{0}$ | $3.2_{-1.1}^{-1.6-4.0}$ | ${ }^{3.9} 3_{-1.2}^{+4.1}+{ }_{-1.5}^{+1.8}$ | $3.2{ }_{-1.1}^{+1.3}{ }^{+1.0}{ }^{\text {a }}$ | $2.8{ }_{-1}^{+1.6} \pm 0.0$ | <31 |
| $\bar{B}^{0} \rightarrow \bar{K}^{* 0} \pi^{0}$ | $0.7_{-0.5}^{+0.6}$ | $0.7{ }_{-0.5}^{+0.6-0.6}$ | $0.7_{-0.5}^{+0.6}$ | $3.2_{-1.2-0.2}^{+1.9+0.6}$ | < 3.5 |

## 2 Global fit with QCD factorization

## By D.S.Du,J.F.Sun,D.S.Yang,G.H.Zhu using the CKMFITTER package

Table 4: "No chiral": neglecting the chirally enhanced hard spectator contributions and the annihilation topology. The branching ratios are in units of $10^{-6}$.

| Mode | $\pi^{+} \pi^{-}$ | $\pi^{+} \pi^{0}$ | $K^{+} \pi^{-}$ | $K^{+} \pi^{0}$ | $K^{0} \pi^{+}$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Expt. | $4.77 \pm 0.54$ | $5.78 \pm 0.95$ | $18.5 \pm 1.0$ | $12.7 \pm 1.2$ | $18.1 \pm 1.7$ |
| Best fit | 4.82 | 5.35 | 19.0 | 11.4 | 20.1 |
| No chiral | 5.68 | 3.25 | 18.8 | 12.6 | 20.2 |
| Mode | $\pi^{0} K^{0}$ | $\eta \pi^{+}$ | $\rho^{ \pm} \pi^{\mp}$ | $\rho^{0} \pi^{+}$ | $\eta \rho^{+}$ |
| Expt. | $10.2 \pm 1.5$ | $<5.2$ | $25.4 \pm 4.3$ | $8.6 \pm 2.0$ | $<6.2$ |
| Best fit | 8.2 | 2.8 | 26.7 | 8.9 | 4.6 |
| No chiral | 7.3 | 1.8 | 29.5 | 8.5 | 3.8 |
| Mode | $\phi K^{+}$ | $\phi K^{0}$ | $K^{+} \rho^{-}$ | $\omega K^{0}$ |  |
| Expt. | $8.9 \pm 1.0$ | $8.6 \pm 1.3$ | $13.1 \pm 4.7$ | $5.9 \pm 1.9$ |  |
| Best fit | 8.9 | 8.4 | 12.1 | 6.3 |  |
| No chiral | 7.1 | 6.7 | 5.1 | 1.2 |  |

Best fit values: $\left|V_{u b}\right|=3.57 \times 10^{-3}, \gamma=79^{\circ}, F^{B \pi}=0.24$ ??, $A_{0}^{B \rho}=0.31, m_{s}=85 \mathrm{MeV}$, $\mu=2.5 \mathrm{GeV}, f_{B}=220 \mathrm{MeV}, \rho_{A}^{P P}=0.5, \phi_{A}^{P P}=10^{\circ}, \rho_{A}^{P V}=1, \phi_{A}^{P V}=-30^{\circ}$. As to $F^{B K}$, there is no strong constraint ?? and the range $[0.24,0.30]$ is acceptable from the current global analysis.

$$
\begin{aligned}
M\left(B^{-} \rightarrow \pi^{-} \pi^{0}\right) & =-i \frac{G_{F}}{2} f_{\pi} F_{0}^{B \rightarrow \pi}\left(m_{\pi}^{2}\right)\left(m_{B}^{2}-m_{\pi}^{2}\right) \\
& \times\left\{V_{u b} V_{u d}^{*}\left(a_{1}+a_{2}\right)-V_{t b} V_{t d}^{*} \times \frac{3}{2}\left[a_{9}+a_{10}-a_{7}+a_{8} r_{\chi}^{\pi}\right]\right\} .
\end{aligned}
$$

