Recent results from Atmospheric v and K2K Y.Itow ICRR, Univ.of Tokyo

Super- Kamiokande and K2K experiment

• 1996.4 Start data taking World Largest Water Cherenkov detector 10<mark>00 m underground</mark> **50.000** ton ,<mark>50</mark>0 ton fid.) 46 20 inch PMTs anti-counter PMTs • 1999.3 K2K start • 2001.7 Detector upgrade • 2001.11 Accident partial reconstruction of the detector • 2002.10 resume data taking

K2K-I

• 2002.12 resume K2K beam

C Scientific American

42m

39m

SK is back !

Full water on 10-Dec.-2002

Sep.-2002, before water filling

Outline of this talk

Atmospheric results from SK-I • Entire re-analysis with new v-flux, v-int model. K2K-I results v u disappearance v_e appearance search Study v interaction Status of SK-II / K2K-II

Neutrino oscillation

$\frac{v_{\alpha}}{v_{\beta}} = \begin{pmatrix} \cos\theta & \sin\theta \\ \cos\theta & \cos\theta \end{pmatrix} \begin{pmatrix} v_{1} \\ v_{2} \end{pmatrix}$ $-\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} v_{1} \\ v_{2} \end{pmatrix}$ $P(v_{\alpha} \rightarrow v_{\beta}) = \sin^{2}2\theta \sin^{2}(1.27 \Delta m^{2}L/E)$

 $\Delta m^2 = m_2^2 - m_1^2 (eV^2)$ L (km): Distance from source to detector E (GeV): Neutrino energy

Atmospheric neutrinos

×

Atmospheric v categories at SK

Preliminary! Summary of SK-I contained events

Sub-GeV (Fully Contained)

Multi-GeV

$E_{vis} < 1.33 \text{ GeV},$ $P_e > 100 \text{ MeV}, P_{\mu} > 200 \text{ MeV}$			Fully Contained (E _{vis} > 1.3 GeV)			
					Data	MC(Honda)
	Data	MC(Honda)	1rina	e-like	746	700.4
1ring e-like	3353	3013.9		u-like	651	948 2
μ-like	3227	4466.9	Multi r		1504	1944 6
Multi ring	2361	2959.0		ung (μ-like)	(439)	(739.4)
(μ-like)	(208)	(346.4)	Total		2901	3593.2
Total	8941	10439.8				

 $\frac{(\mu/e)_{data}}{(\mu/e)_{MC}} = 0.649^{+0.016}_{-0.016} \pm 0.051$

Partially Contained (assigned as μ -like) Total

 $\frac{(\mu/e)_{data}}{(\mu/e)_{MC}} = 0.700^{+0.032}_{-0.030} \pm 0.083$

Atmospheric v zenith angle distribution

···· Honda

Best fit(sin²2θ=1.0, ∆m²=2.0 x 10⁻³ eV²)

Allowed region of the oscillation parameters (subGeV+multiGeV+PC+MultiRing+Upµ) (complete SK-I data set)

Assuming $v_{\mu} \diamond v_{\tau}$ oscillation ∆m² (eV²) All combined **Best fit** $\chi^2_{\rm min} = 170.8/170$ d.o.f. **SK-I** 1489 days at $(\sin^2 2\theta, \Delta m^2)$ $= (1.0, 2.0 \times 10^{-3} \,\mathrm{eV^2})$ **Preliminary!** 10 90% confidence level allowed region — 68% C.L. $sin^{2}2\theta > 0.9$ — 90% C.L. 10 – 99% C.L. $1.3 \times 10^{-3} < \Delta m^2 < 3.0 \times 10^{-3}$ (eV^2) Assuming null oscillation 0.6 0.7 1 8.0 sin²20

 $\chi^2 = 445.2/172$ d.o.f.

Comparison between old and new results

Each change slightly shifted the allowed region to lower Δm^2

Evidence for v_{μ} - v_{τ}

Search for ν_τ-cc like events
 Multi-GeV e-like multi ring events
 τ-likelihood
 Search for mixing supression by Matter effect

Absolute NC rate by NC1π⁰
 Use π⁰ rate measurement at K2K 1kt detector

zenith angle dist. of cc τ-enhanced sample

limit on $v_{\mu} \Leftrightarrow v_{s}$ admixture (4-flavor mixing)

(Following Fogli,Lisi, and Morrone, hep-ph/000299)

pure $v_{\mu} - v_s$ is excluded by $\Delta \chi^2 > 30$!

Check v _µ ↔ v by a N SK Data se	π^0 in atm-v s τ_{τ}^{0} and $v_{\mu} \leftrightarrow v_{s}$ hypoto IC rate measurements et : 1489 days (*)	sample at Sup $\nu_{\mu} \rightarrow$ theses π^{0} μ \downarrow normalized by livetime	er-k ν _τ	$ \begin{array}{c} & & \\ & $
SK-atmv	Data	MC(*)	se K	
π ⁰ 1-R FC μ π ⁰ /μ	475 3878 $0.122 \pm 5\% \pm \frac{7\%}{(stat)}$ (stat) (sys)	$483.8 \\ 5415.1 \\ 0.089 \pm \underline{-30\%} \\ 0.087 \pm \underline{-13\%} \\ (sys)$	2K results	(π ⁰ /μ) _{MC} ●No osc 0.087 ●Pure νμ–ντ 0.124 ●Pure νμ–νs 0.103
Detector s Particle Ring co	ID K2K mo unting, etc S <u>K- K2</u>	easurement (8%) K v–flux differen <u>ce (4%</u>	5), etc	@ sin²2θ=1.0 ∆m²=2.0x10⁻³ e\

$NC\pi^0$ measurement at K2K

Atm-v π^0/μ for data, v μ -v τ and v μ -vs hypothesis @ sin²2 θ =1.0 Δ m²=2.0x10⁻³ eV²

$\nu\mu$ - $\nu\tau$ is consistent

3 Flavor Mixing

If neutrinos are massive particles, then it is possible that the mass eigenstates and the weak eigenstates are not the same:

MNS (Maki-Nakagawa-Sakata) matrix

Allowed region for active 3-flavor oscillations

consistent with CHOOZ's excluded region

K2K experiment

<u>KEK to Kamioka Neutrino Oscillation</u> Experiment

<u>Super-K</u>(far detector) 50 kton Water Cherenkov detector

Super-Kamiokande

νμ

Toyama

Ev~1.3 GeV

250km

Mt.Tsukuba

KE

K2K collaboration

- University of Barcelona
- Boston University
- Chonnam National University
- Dongshin University
- University of Geneva
- Hiroshima University
- ICRR
- Inst. for Nuclear Research, Moscow
- KEK

- Kobe University
 Korea University
- Kyoto University
- Massachusetts Institute of Technology
- Niigata University
- Okayama University
- University of Rome
- "La Sapienza"Saclay (DSM-DAPNIA)
- Seoul National University

- SUNY at Stony Brook
- Tokyo University of Science
- Tohoku University
- University of California, Irvine
- University of Hawaii
- University of Tokyo
- University of Washington
- University of Valencia
- Warsaw University

K2K near detector

SciBar detector

Full active

Large Volume: Fine segment: $2.5 \times 1.3 \times 300$ cm³ Large Light Yield: **Particle ID:** p/π : dE/dx μ/π : range **Proton Momentum:** by dE/dx and the range #channels : ~15,000

Cosmic Ray muon at SCIBAR

SIDE View

TOP View

Results of K2K-I

Ev spectrum analysis Determination of expected Φ(Ev) spectrum Beam Monte Carlo

- π-monitor
- Measurement of CC spectrum by near detector

Ev spectrum results in K2K-I

 Reconstructed Ev shape of 1-RFCµ at SK (29 1-R events in Nov99-Jul01)

Allowed regions and Null osc. probability

56FC events observed / 80.1 expected (Jun99-Jul01 data)

29 1-R FCµ events shape (Nov99-Jul01 data)

Total no. of Events only

Spectrum Shape only

Shape and N_{SK} +Shape indicate consistent parameter region

Combined Allowed region (Shape+Norm) for K2K-I

Search for v_e appearance DATA SET June'99 – July'01 (4.8 × 10¹⁹POT)

	DATA	ν_{μ} MC	beam V_e MC	signal V _e MC (CC)
				sin²2θ _{μe} =1, ∆m²=2.8x10 ⁻³ eV²
generated		104 events V_{μ}		28 events
FCFV	56	80 (78%)	20.52 (83%)	28 (98%)
Single ring	32	50 (48%)	0.48 (48%)	20 (71%)
PID (e-like)	1	2.9 (2.7%)	0.42 (42%)	18 (63%)
Signal MeV	$\rightarrow_{\mathcal{V}}$	2.6 (2.4%)	0.41 (41%)	18 (63%)
wgecay-e b	eah_{v}	, <u>2.0 (1.9%)</u>	BG.35 (35%)	sing (55%)

<u>NC:87% CC1 π :7% CCm π :4% CCQE:2% electron candidate: 1 event observed 2.4 events expected.</u>

Electron Candidate

reconst. momentum 597 MeV/c

reconst. Ev assuming ve CCQE 612 MeV

Allowed region for $sin^2 2\theta_{\mu e}$

Status of K2K-II

Status of K2K-II K2K-II Preliminary

K2K-II experiment observed consistent reduction rate

Summary

- Atmospheric v results from SK-I
 - Finalization for SK-I data is going on
 - Δm²=1.3~3.0x10⁻³eV², sin²2θ>0.92 @ 90%CL
- K2K results
 - K2K-I results (Total events + Ev spectrum)
 - Null oscillation probability is less than 1%
 - Δm²=1.5~3.9x10⁻³eV² for sin²2θ=1 @ 90%CL
- Sk-II / K2K-II successfully resumed
 - K2K-II observe consistent v rate with K2K-I