

Rare B Decays at BaBar

Eunil Won

Harvard University

on behalf of the BaBar Collaboration

- ✓ Purely leptonic decays
- ✓ Radiative decays
- ✓ $b \rightarrow sll$ decays
- $\checkmark D^{(*)}K^{(*)}$ decays
- ✓ Charmless hadronic decays

✓ All results are preliminary unless journal ref. is given✓ All limit values are 90% CL unless otherwise specified

- This is 2nd experimental talk (must have been 3rd...)
- All are already shown in LP03
- Confusion due to αβγ vs φ₁φ₂φ₃? (Don't worry, no triangle in this talk!)

B Decays

B mesons decay lots of different ways :
→ provide wide range of different physics topics to study

What are Rare B Decays? (1)

What are Rare B Decays? (2)

• Leading diagram involves a quantum loop ("penguin" loop)

 $B \rightarrow K \nu \nu, K ll$

BR~10 -6

 \overline{S}

d, u

• Constrain & test Standard Model

✓ Sides of the unitary triangle: radiative decays $|V_{td}/V_{ts}| : B \rightarrow K^*\gamma$, $\rho\gamma$ complements B^0 mixing studies ($\Delta m_{d,s}$) QCD: inclusive $b \rightarrow s\gamma$ (photon spectrum) →HQET parameters, useful for V_{ub}

• Search for direct CPV

✓ Direct CP asymmetry occurs if $B \rightarrow f$ (any final state) with at least two (SM or New Physics) amplitudes with different weak and strong phases:

Outline of the talk

Eunil Won, Harvard University for ICFP03 @ KIAS

Located in the 2.2 km PEP tunnel at the Stanford Linear Accelerator Center

e⁺e⁻ collisions at BABAR

Experimental Tools

kinematical variables to select B

Experimental Tools

Continuum suppression

• Moments (Fox-Wolfram moments) Thurst, helicity angle (if available)...

• Occasionally, some of correlated variables are inputs to multivariate techniques (Neural network, Fisher discriminator...)

Purely leptonic decays

 $B^+ \rightarrow l^+ v$

predictions for $B \rightarrow l v$ are especially clean – good test of SM SM: W-annihilation decays with V_{ub} vertex

$$BR(B^{+} \to l^{+}\upsilon) = \frac{G_{F}^{2}m_{B}m_{l}^{2}}{8\pi} \left(1 - \frac{m_{l}^{2}}{m_{B}^{2}}\right)^{2} f_{B}^{2} |V_{ub}|^{2} \tau_{B} \qquad u \qquad u \qquad v$$

✓ *BR* is very small for $l = e, \mu$ (helicity suppression) ✓ *BR* (*B* → $\tau\nu$) ~ 250 *BR* (*B* → $\mu\nu$) but experimentally more difficult (multiple neutrinos)

A good place look for new physics : charged Higgs Hou, PRD 48 2342 (1993) leptoquark Valencia, Willenbrock PRD 50 6843 (1994)

Purely leptonic decays

- Selection:
- ✓ Event shape cuts
- \checkmark Select mono-energetic muons
- ✓ ΔE and m_{ES} cuts

Purely leptonic decays $B^+ \rightarrow \tau^+ \nu$ BaBar reconstructs the other B by: And look for τ decays of : $B^{-} \rightarrow D^{0}l^{-} \overline{v} + X$ semi-leptonic tag hadronic -tag" $B^{-} \rightarrow D^{(*)0} + n_1 \pi^{\pm} + n_2 K^{\pm} + n_3 \pi^{0} + n_4 K_{s}^{0}$ hadronic tag hep-ex/0304030 30 Events / (0.04 GeV) semi-leptonic **B**A**B**AR Events/0.11 GeV hadronic-tag: 14 25 taa $\tau^+ \rightarrow e^+ v_e^- v_{\tau}$ 12 20 10 hep-ex/0303034 data 15 -- bka data -- sig (BR=10⁻³ assumed) 10 all bkg siq 2 0.1 0.2 0.5 0.3 0.40.6 0.7 0.2 0.4 neutral energy GeV) 0.6 0.8 1.2

neutral energy $BR(B \rightarrow \tau v) < 7.7 \times 10^{-4}$ (had.-tag) $BR(B \rightarrow \tau v) < 4.9 \times 10^{-4}$ (semi.-tag) $\int BR(B \rightarrow \tau v) < 4.1 \times 10^{-4}$ (combined) SM : BR ~ 4 x 10^{-5} 10/7/2003 Eunil Won, Harvard University for ICFP03 @ KIAS

So far, we covered...

Purely leptonic decays
 Exclusive τν search

 $f_B \mid V_{ub} \mid$

• Radiative decays Exclusive $K^*\gamma$ BRs, $\rho\gamma$ and $\omega\gamma$ searches $|V_{td}| / |V_{ts}|$

• $B \rightarrow X_s ll$ decays $K^{(*)} ll BR$ Inclusive $X_s ll$ search for $B \rightarrow K \overline{\nu}\nu$

- $D^{(*)}K^{(*)}$ decays $B^{-} \rightarrow D^{*0}K^{-}$
- Charmless hadronic decays $B \rightarrow hh$ Inclusive $B \rightarrow hhh$, $B \rightarrow Khh$

$$b \rightarrow s \gamma$$

Wilson coefficients: contain short distance physics only

• Loop diagrams can accommodate heavy new particles (SUSY,*H*⁺)

• Formulated in an effective Hamiltonian:

$$H_{eff} \propto \sum_{i=1}^{10} C_i(\mu) O_i(\mu)$$

Long-distance contributions are here

$$\Gamma(b \to s\gamma) = \frac{G_F^2 \alpha_{em} m_b^5}{32\pi^4} |V_{ts}^* V_{tb}|^2 \left(|C_7^{eff}|^2 + O(1/m_b, 1/m_c) \right)$$

Can be normalized with $b \rightarrow clv$: $(G_F^2 m_b^5 | V_{ts} * V_{tb} |^2 \text{ cancels by assuming } | V_{ts}^* V_{tb} | = | V_{cb} |)$

• Probe new physics through Wilson coefficient $|C_7|$, NLO calculation for SM and various new physics scenarios available

• A_{cp} in $B \rightarrow X_s \gamma$ A_{cp} can be significant if new CPV phase in $b \rightarrow s\gamma$ very small (<1%) in SM

• Photon spectrum

: expected to be $\delta(E_{\gamma}-m_b/2)$, smeared due to perturbative gluon brem + non-perturbative b quark motion

: a precise measurement of the photon spectrum allows to determine $|V_{ub}|$ 10/7/2003 Eunil Won, Harvard University for ICFP03 @ KIAS

✓ Semi-inclusive (pseudo-reconstruction) : reconstruct 12 exclusive modes obtain a hadronic mass spectrum with shape by Kagan and Neubert EPJ
 C7 5(1999) → extract E_γ moments and BR
 ✓ Inclusive γ measurement + B tag with lepton require E_γ > 2.1 GeV require a high momentum lepton (from the other B)

10/7/2003

0.1

hep-ex/0306038: 78/fb

a.

Limits on $B \rightarrow \rho(\omega)\gamma$ no evidence of signal observed

Limits on $|V_{td}/V_{ts}|$ usually comes $\Delta m_d/\Delta m_s$ but we also have

$$\frac{BR(B \to \rho \gamma)}{BR(B \to K^* \gamma)} = \frac{1}{2} \left| \frac{V_{td}}{V_{ts}} \right|^2 \frac{(1 - m_{\rho}^2 / m_B^2)^3}{(1 - m_{K^*}^2 / m_B^2)^3} \varsigma^2 \left[1 + \Delta R(\rho / K^*) \right]$$

Ali and Parkhomenko EPJ C23 89 (2002)

u, c, t

· hun h

s.d

 ζ : radio of the form factors ΔR : calculated to leading order in α_s and Λ_{OCD}/m_H

Eunil Won, Harvard University for ICFP03 @ KIAS

 $B \rightarrow K_{2}^{*}(1430)\gamma$ Branching fraction mesurements

Mode	BR x 10 ⁵
$B^0 \rightarrow K^{0^*}_{2} (1430) \gamma$	$1.22 \pm 0.25 \pm 0.11$
$B^{\pm} \rightarrow K^{\pm *}{}_{2}(1430)\gamma$	$1.44 \pm 0.40 \pm 0.13$

SM: (17.3 ± 8.0) x 10⁻⁶

Veseli and Olsson, relativistic formfactor model PLB **367** 309 (1996)

Eunil Won, Harvard University for ICFP03 @ KIAS

So far, we covered...

Purely leptonic decays
 Exclusive τν search

$f_B \mid V_{ub} \mid$

• Radiative decays Exclusive $K^*\gamma$ BRs, $\rho\gamma$ and $\omega\gamma$ searches $|V_{td}|/|V_{ts}|$

• $B \rightarrow X_s ll$ decays $K^{(*)} ll BR$ Inclusive $X_s ll$ search for $B \rightarrow K \overline{vv}$

- $D^{(*)}K^{(*)}$ decays $B^{-} \rightarrow D^{*0}K^{-}$
- Charmless hadronic decays

 $B \rightarrow hh$ Inclusive $B \rightarrow hhh$, $B \rightarrow Khh$

Usually formulated as a function of $s=q^2/m_b^2=(m(ll)/m_b)^2$

$$\frac{d\Gamma(b \to sl^+l^-)}{ds} = \left(\frac{\alpha_{em}}{4\pi}\right)^2 \frac{G_F^2 m_b^5 |V_{ts}^* V_{tb}|^2}{48\pi^3} (1-s)^2 \\ \times \left[(1+2s) \left(\left|C_9^{eff}\right|^2 + \left|C_{10}^{eff}\right|^2 \right) + 4 \left(1+\frac{2}{s}\right) \left|C_7^{eff}\right|^2 + 12 \operatorname{Re} \left(C_7^{eff} C_9^{eff}\right) \right] + corr.$$

- NNLO calculations (up to \overline{cc} threshold) available
- Sensitive to C_{9} , C_{10} and sign(C_{7}) (C_{7} from $b \rightarrow s\gamma$)
- q^2 distribution, forward-backward asymmetry (A_{FB}) may reveal new physics

$$b \rightarrow s \ \bar{vv}$$

• The decay $B \rightarrow X_s \quad \overline{vv}$ is theoretically cleanest (no photon-penguin), but experimentally difficult)

 SM predicts
 ✓ BR(B→X_s vv) = (3.5 ± 0.7) x 10⁻⁵ Buras hep-ph/9806417
 ✓ BR(B⁺→K⁺ vv) = (0.38 +0.12-0.06) x 10⁻⁵ Buchalla et al, PRD 63 014015 (2001)

- BaBar looked at the exclusive mode $B \rightarrow K \overline{vv}$
- Two undetected neutrinos → The other side of B must be tagged
- BaBar uses two methods for B reconstruction

Semi-leptonic tag

Hadronic tag

Hadronic tag $(B^{-} \rightarrow D^{0}X^{-})$

Events / 3

Events / 100 MeV/c

3 events seen BKG = 2.7 ± 0.8

✓ Signal side B : similar to semileptonic case (but remove π⁰)
 ✓ Select Hadronic decays (0.13%)

Method	BR x 10 ⁴
Hadronic tag	< 0.94
Semi-leptonic	< 1.05
Combined	< 0.70

- $D^{(*)}K^{(*)}$ decays $B^{-} \rightarrow D^{*0}K^{-}$
- Charmless hadronic decays

 $B \rightarrow hh$ Inclusive $B \rightarrow hhh$, $B \rightarrow Khh$

Eunil Won, Harvard University for ICFP03 @ KIAS

$$B^{-} \rightarrow D_{CP=+1} K^{-}$$

Look for $D_{CP} \rightarrow K^+K^-$ and $\pi^+\pi^-$ (CP=+1) Likelihood fits (m_{ES} , ΔE , particle ID (for KK), $m(D^0)$ (for $\pi\pi$)) in order to extract BRs

Summary of $B \rightarrow D^{(*)}K^{(*)}$

• Current experimental errors are too large for simultaneous extraction of γ , ratio of $b \rightarrow c$ and $b \rightarrow u$ amplitudes (r_{DK}) and the strong phase

So far, we covered...

- Purely leptonic decays $f_B | V_{ub} |$ Exclusive τv search
- Radiative decays Exclusive $K^*\gamma$ BRs, $\rho\gamma$ and $\omega\gamma$ searches $|V_{td}|/|V_{ts}|$

• $B \rightarrow X_s ll$ decays $K^{(*)} ll BR$ Inclusive $X_s ll$ search for $B \rightarrow K \overline{\nu}\nu$

• $D^{(*)}K^{(*)}$ decays $B^- \rightarrow D^{*0}K^-$

• Charmless hadronic decays $B \rightarrow hh$ Inclusive $B \rightarrow hhh$, $B \rightarrow Khh$

Charmless hadronic decays

Unfortunately, tree diagrams are not alone: penguins (gluonic and electroweak) can also lead to the same final states:

Data indicate gluonic penguins are large and complicate extraction of α

Interference of T & P results in Direct CPV and sensitivity to γ

Charmless hadronic decays

- ✓ Used the full data set (113/fb) LP03
- ✓ Major backgrounds include continuum and $B \rightarrow \rho^{\pm} \pi^{0}$
- ✓ maximum likelihood fit (m_{ES} , ΔE , Fisher) to extract the signal yield

Summary of $B \rightarrow hh$, including $\pi^0 \pi^0$

Measured Branching Fractions Search for direct CP

Eunil Won, Harvard University for ICFP03 @ KIAS

Inclusive $B^+ \rightarrow h^+ h^- h^+$, exclusive $K^+ \pi^+ \pi^-$

direct CP \rightarrow angle γ Blanco et al, PRL 86, 2720 (2001)

help for α Snyder and Quinn, PRD 48, 2139 (1993)

- ✓ BaBar inclusive $B^+ \rightarrow h^+ h^- h^+$
- \checkmark veto D^0 , J/ψ , ψ (2S), χ_{c0} mesons
- \checkmark efficiency varies across Dalitz plot
- \checkmark cross-feed between modes taken into account

vector-vector decays

hep-ex/0307026:81.9/fb

47

 $\begin{array}{ll} B \xrightarrow{} \rho K^* & : \text{ dominated by penguin? direct CP?} \\ B \xrightarrow{} \rho \rho & : \text{ angle } \alpha \end{array}$

 \checkmark similar angular analysis as in $B \rightarrow K\phi$

 $B \rightarrow \rho K^* \rho \rho$

✓ first observation for $B \rightarrow \rho^+ \rho^-$ (LP03) likelihood fit (m_{ES} , ΔE , Fisher, $m\rho_+$, $m\rho_-$, θ_1 , θ_2) simultaneous fit to signal yield and f_L reconstruction efficiency low : 4% signal yield : 93+23-21±9 significance > 5 σ

Mode	BR x 10 ⁻⁶	f_(%)	A_{CP}
$B^+ \rightarrow \rho^0 K^{*+}$	10.6+3.0-2.6±2.4	96+4-15±4	0.20+0.32-0.29±0.04
<i>B</i> + → ρ+ρ-	27.0+7-6±5-7	99+1-7±3	-
$B^+ \rightarrow \rho^+ \rho^0$	22.5+5.7-5.4±5.8	97+3-7±4	-0.19±0.23±0.03
$B^0 \rightarrow \rho^0 \rho^0$	< 2.1	-	_

Charmless hadronic decays - Summary

B^{\pm}		B^0	
Mode	BR x 10 ⁶	Mode	BR x 10 ⁶
η ' K+	76.9±3.5±4.4	η <i>'K</i> 0	55.4±5.2±4.0
η <i>K</i> +	2.8±0.8±0.2	η <i>K</i> *0	19.8+6.5-5.6±1.7
η <i>K</i> *+	22.1+11.1-9.2±3.3	η <i>K</i> ⁰	< 4.6
ω <i>K</i> +	5.0±1.0±0.4		
$K^{*0}\pi^{+}$	10.3±1.2+1.0-2.7		
$K^+\pi^+\pi^-$	59.1±3.8±3.2	$K^0\pi^+\pi^-$	47.0±5.0±6.0
K+K-K+	29.6±2.1±1.6	K ⁰ K ⁻ K ⁺	-
$K^{+}K^{0}_{\ s}K^{0}_{\ s}$	-	$K^{+}K^{0}_{\ s}K^{0}_{\ s}$	-
$ ho^0\pi^+$	24.0±8.0±3.0	$ ho^-\pi^+$	22.6±1.8±2.2
$\omega \pi^+$	5.4±1.0±0.4	ρ ⁻ <i>K</i> +	7.3±1.3±1.3
η π +	4.2±1.0±0.3	ωK ⁰	5.3±1.3±0.5
<i>К</i> +ф	10.0±0.9±0.5		
$\pi^+\phi$	< 0.38		

Belle has results in these channels

So, we are done

Summary

- 10⁸ B mesons provide unique opportunity to study rare B decays
- Purely leptonic decays approaching SM predictions
- Radiative decays

many studies were done (*BR*, γ spectrum, new physics scenarios) important to lower E_{γ} cut

• $B \rightarrow X_s ll$ decays

Most of decay modes identified Need to get differential distributions

• $D^{(*)}K^{(*)}$ decays

Lots more data is needed to extract angle γ

Charmless hadronic decays

 $\pi^0\pi^0$ observed

Still lots more data is needed for angle $\boldsymbol{\alpha}$

• No hints of new physics in rates, A_{CP} , and distributions **yet**

- BaBar is back in operation since September
- We expect to have more data: 500/fb in 2006

Backup

$$B \rightarrow s \gamma$$
 beyond SM

See more on talk by Vaidya (Thu) Yamada (Fri)

2HDM

MSSM (*m*(*H*⁺)=200 GeV, *m*(*stop*)=250 GeV, others 800 GeV)

Type I: u and d quarks get masses from the same Higgs doublet Type II: u quark gets from Yukawa couplings to H₂, d gets from couplings to H₁

