Photon Polarization with anomalous right-handed top couplings in B→Kresγ

At Seoul WorldCup Stadium (Sang-Am)

Based on hep-ph/0309018

Jong-Phil Lee

(Yonsei Univ.) At The 2nd International Conference on Flavor Physics, 2003.10.6, KIAS, Korea

Why $\mathbf{B} \rightarrow \mathbf{K}_{res} \gamma$?

- b→sγ is a good testing ground for the Standard Model and probing new physics.
- Photons from $b \rightarrow s\gamma$ are predominantly lefthanded in the SM up to m_s/m_b .
- K_{res} hadronic three-body decay ($\rightarrow K\pi\pi$) can provide a direct measurement of the photon polarization λ_{γ} through a triple vector product $p_{\gamma}(p_1xp_2)$.
- Current B factories are capable of doing the analysis.

Kaon Resonances

Resonances	5 J P	$(M_{\rm res}, \Gamma_{\rm res})({\rm MeV})$	Decay Mode	Br(%)
<i>K</i> ₁ (1270)	1+	(1273+-7, 90+-20)	ρ Κ	42+-6
			Κ *π	16+-5
			Κ*0 (1430)π	28+-4
<i>K</i> ₁ (1400)	1+	(1402+-7, 174+-13)	Κ *π	94+-6
			թ K	3.0+-3.0
<i>K</i> *(1410)	1-	(1414+-15, 232+-21)	Κ *π	>40
			թ K	<7
K [*] ₂ (1430)	2+	(1425.6+-1.5, 98.5+-2.7)	Κ *π	24.7+-1.5
		(charged K* ₂)	ρ Κ	8.7+-0.8

Possible Decay Modes of Kres

In the Lab frame,

To construct a meaningful triple vector product $\rho_{\gamma} \cdot (\rho_1 \times \rho_2)$, at least three particles at the final state are needed.

It is known that...

Resonances	JP	Decay Mode	Br(%)	M. Gron
<i>K</i> ₁ (1270)	1+	ρ Κ	42+6	PRL88 (.
		$K^{*}\pi$	16+-5	
		Κ*0 (1430)π	28+-4	Ph
K ₁ (1400)	1+	Κ *π	94+6	
		ρ Κ	3.0+-3.0	
<i>K</i> *(1410)	1-	Κ *π	>40	
		ρΚ	<7	
K [*] ₂ (1430)	2+	Κ *π	24.7+-1.5	
		ρΚ	8.7+-0.8	, /

M. Gronau et al., PRL88 (2002) 051802;PRD66 (2002) 054008

Jong-Phil LEE at ICFP2003, KIAS, Oct.6 – 11

What to do here?

- Introduce the anomalous right-handed top couplings, $\bar{t}bW$ and $\bar{t}sW$.
- Investigate new effects on λ_{γ} .
- Current experimental bounds on B →X_sγ are included.
- Ignore possible additional left-handed interactions and new particles.
- Do not consider the underlying models.

Anomalous Couplings

Effective Lagrangian

$$\mathcal{L} = -\frac{g}{\sqrt{2}} \sum_{q=s,b} V_{tq} \bar{t} \gamma^{\mu} (P_L + \xi_q P_R) q W_{\mu}^+ + \text{h.c.}$$

Effective Hamiltonian

$$\mathcal{H}_{\rm rad} = -\frac{4G_F}{\sqrt{2}} V_{ts}^* V_{tb} \Big[C_{12}(\mu) O_{12}(\mu) + C_{12}'(\mu) O_{12}'(\mu) \Big] ,$$
$$O_{12}^{(\prime)} = \frac{e}{16\pi^2} m_b \bar{s} P_{R(L)} \sigma_{\mu\nu} b F^{\mu\nu} ,$$

Wilson Coefficients

• In the SM at
$$\mu = m_W (x_t = m_t^2 / m_W^2)$$

$$C_{12}(m_W) = F(x_t)$$

= $\frac{x_t(7 - 5x_t - 8x_t^2)}{24(x_t - 1)^3} - \frac{x_t^2(2 - 3x_t)}{4(x_t - 1)^4} \ln x_t$,
 $C'_{12}(m_W) = 0$,

After turning on the new couplings

$$C_{12}(m_W) \to F(x_t) + \xi_b \frac{m_t}{m_b} F_R(x_t) ,$$

$$C'_{12}(m_W) \to \xi_s \frac{m_t}{m_b} F_R(x_t) ,$$

New loop function

$$F_R(x) = \frac{-20 + 31x - 5x^2}{12(x-1)^2} + \frac{x(2-3x)}{2(x-1)^3} \ln x$$

W.Y. Song and K.Y. Lee, Phys. Rev. D66 (2002) 05 P. Cho and M. Misiak, Phys. Rev. D49 (1994) 5894

γ Polarization Parameter

• **Define** $\lambda_{\gamma}^{(i)} = \frac{|A_R^{(i)}|^2 - |A_L^{(i)}|^2}{|A_R^{(i)}|^2 + |A_L^{(i)}|^2}$,

$$A_{L(R)}^{(i)} \equiv \mathcal{A}(\bar{B} \to \bar{K}_{\mathrm{res}}^{(i)} \gamma_{L(R)})$$

Properties

✓ independent of K_{res} states

$$\lambda_{\gamma}^{(i)} = \frac{|C_{12}'|^2 - |C_{12}|^2}{|C_{12}'|^2 + |C_{12}|^2} \equiv \lambda_{\gamma}$$

$$\langle K_{\rm res}^{(i)R} \gamma_R | O_{12}' | \bar{B} \rangle$$

= $(-1)^{J_i - 1} P_i \langle K_{\rm res}^{(i)L} \gamma_L | O_{12} | \bar{B} \rangle$
 $|A_R^{(i)}| / |A_L^{(i)}| = |C_{12}'| / |C_{12}|$

 \checkmark in the SM, $\lambda_{\gamma} \approx -1 \ (+1 \text{ for } \bar{b} \rightarrow \bar{s}\gamma)$

Constraints from B \rightarrow X_{s\gamma}

Experimental bounds

 $Br(B \to X_s \gamma) = (3.23 \pm 0.41) \times 10^{-4}$,

 $A_{CP}(B \to X_s \gamma) = \frac{\Gamma(\bar{B} \to X_s \gamma) - \Gamma(B \to X_{\bar{s}} \gamma)}{\Gamma(\bar{B} \to X_s \gamma) + \Gamma(B \to X_{\bar{s}} \gamma)}$

 $= (-0.079 \pm 0.108 \pm 0.022)(1.0 \pm 0.030)$ CLEO (2001) result

Weighted average over ALEPH, BELLE, and CLEO G.L. Kane et al., JHEP 01 (2002) 022

• Constraints on $\xi_{b,s}$ at 2σ C.L.

$$\begin{split} -0.002 < \mathrm{Re}\xi_b + 22|\xi_b|^2 < 0.0033 \ , \\ -0.299 < \frac{0.27\mathrm{Im}\xi_b}{0.095 + 12.54\mathrm{Re}\xi_b + 414.23|\xi_b|^2} < 0.141 \ , \\ |\xi_s| < 0.012 \ . \end{split}$$

J.-P. Lee and K.Y. Lee, Eur. Phys. J. C 29 (2003) 373 W.Y. Song and K.Y. Lee, Phys. Rev. D66 (2002) 057901

Allowed region of ξ_b

Taken from J.-P. Lee and K.Y. Lee, Eur. Phys. J. C 29 (2003

Contour Plots for λ_{γ}

λ_{γ} vs ξ_b (Assuming Imξ_{b,s}=0)

 $\xi_s=0.001, 0.002, ..., 0.012$, from bottom to top

Results

• $|\lambda_{\gamma}|$ can be small for real $\xi_{b,s}$:

 $-1 \leq \lambda_{\gamma} \lesssim -0.12$.

- Experimental bounds do not allow the different sign of λ_{γ} from the SM prediction.
- If the new coupling is flavor-blind ($\xi_b = \xi_s$), then $\lambda_\gamma \lesssim -0.96$

Comparison with uMSSM

- Chargino, neutralino, and gluino contributions to C₁₂ are canceled by the W and Higgs contributions.
 G.L. Kane et al., JHEP 01 (2002) 022
- The main contribution to $Br(b \rightarrow s\gamma)$ is by C'_{12} .

"C'12 – dominated" scenario

- They expect $\lambda_{\gamma} = +1$ as an extreme case, quite contrary to the SM prediction.
- If sgn(λ_{γ})>0, then the "C'₁₂ –dominated" scenario would be more favored.

How many Bs are needed?

- The integrated up-down asymmetry in K₁ is (0.33+-0.05) λ_γ
- In the SM where $\lambda_{\gamma} \approx -1$, about 80 charged and neutral $B\bar{B}$ decays into $K\pi\pi\gamma$ are needed to measure an asymmetry of -0.33 at 3 σ level.
- At least $2 \times 10^7 B\overline{B}$ pairs of both neutral and charged are required.

Br
$$(B \to K_1(1400)\gamma) = 0.7 \times 10^{-5}$$

Br $(K_1(1400) \to K^*\pi) = 0.94 \pm 0.06$

M. Gronau et al., PRL88 (2002) 051802

How many...?

- For smaller value of $|\lambda_{\gamma}|$, more $B\bar{B}$ pairs are required.
- In case of λ_{γ} =-0.5, we need 4 times larger number of $B\bar{B}$ pairs (8x10⁷).
- This number is already within the reach of current B factories!

Summary

- Radiative B decays B→K_{res}(→Kππ)γ are useful for measuring the photon polarization.
- The photon polarization parameter λ_{γ} encapsulates the emitted photon polarization, which is solely determined by the relevant Wilson coefficients.
- New couplings can reduce $|\lambda_{\gamma}|$ significantly, compared to the SM prediction $\lambda_{\gamma} \approx -1$, but would not change the sign.
- Current B factories are already within the reach of producing enough B mesons.

This file will be available at http://phya.snu.ac.kr/~jplee