Exclusive Baryonic B Decays

Hai-Yang Cheng Academia Sinica

October 6-11, 2003

in collaboration with Kwei-Chou Yang

- History
- Two-body baryonic B decays
- Three-body baryonic ${\cal B}$ decays
- Radiative baryonic ${\cal B}$ decays
- Conclusions

October 6-11, 2003

Exclusive Baryonic B Decays (page 1)

History

Hadronic B decays can contain a baryon pair in the final state.

ARGUS ('87):
$$\mathcal{B}(B^- \to p\bar{p}\pi^-) = (3.7 \pm 1.9) \times 10^{-4}$$

 $\mathcal{B}(\overline{B}^0 \to p\bar{p}\pi^+\pi^-) = (6.0 \pm 1.9) \times 10^{-4}$

 \Rightarrow stimulate extensive studies (16 theory papers) during the years of 1988-92.

- pole model: Deshpande, Trampetic, Soni; Jarfi et al.
- QCD sum rule: Chernyak, Zhitnitsky
- diquark model: Ball, Dosch
- symmetry: He, McKeller, Wu; Sheikholeslami, Khanna

After 92' experimental and theoretical studies in baryonic ${\cal B}$ decays fade away; revived in recent years

Experimental status

Except for recently measured $\overline{B}^0 \to \Lambda_c^+ \bar{p}$ by Belle,

 $\mathcal{B}(\overline{B}^0 \to \Lambda_c^+ \bar{p}) = (2.19^{+0.56}_{-0.49} \pm 0.32 \pm 0.57) \times 10^{-5}$

none of two-body baryonic ${\cal B}$ decays has been observed. The upper limits are:

Decay	CLEO	Belle	BaBar
$\overline{B}^0 \to p\bar{p}$	1.4×10^{-6}	1.2×10^{-6}	2.7×10^{-7}
$\overline{B}^0 \to \Lambda \bar{\Lambda}$	1.2×10^{-6}	1.0×10^{-6}	
$B^- \to \Lambda \bar{p}$	1.5×10^{-6}	2.2×10^{-6}	
$B^- \to \Sigma_c^0(2455)\bar{p}$	8.0×10^{-5}	9.3×10^{-5}	
$B^- \to \Sigma^0_{c1}(2520)\bar{p}$		4.6×10^{-5}	

Charmful Baryonic *B* **Decays**

Mode	Belle (10^{-4})	$CLEO(10^{-4})$
$\overline{B}^0 \to D^{*+} n \bar{p}$		$14.5^{+3.4}_{-3.0} \pm 2.7$
$\overline{B}^0 \to D^{*+} p \bar{p} \pi^-$		$6.5^{+1.3}_{-1.2} \pm 1.0$
$\overline{B}^0 \to D^{*0} p \bar{p}$	$1.20^{+0.33}_{-0.29} \pm 0.21$	
$\overline{B}^0 \to D^0 p \bar{p}$	$1.18 \pm 0.15 \pm 0.16$	
$B^- \to \Lambda^+_c \bar{p} \pi^- \pi^0$		$18.1 \pm 2.9^{+2.2}_{-1.6} \pm 4.7$
$\overline{B}^0 \to \Lambda_c^+ \bar{p} \pi^+ \pi^-$	$11.0 \pm 1.2 \pm 1.9 \pm 2.9$	$16.7 \pm 1.9^{+1.9}_{-1.6} \pm 4.3$
$B^- \to \Lambda_c^+ \bar{p} \pi^-$	$1.87^{+0.43}_{-0.40} \pm 0.28 \pm 0.49$	$2.4 \pm 0.6^{+0.19}_{-0.17} \pm 0.6$
$B^- \to \Sigma_c^{++} \bar{p} \pi^- \pi^-$	$\Sigma_c = \Sigma_c(2455)$	$2.8 \pm 0.9 \pm 0.5 \pm 0.7$
$B^- \to \Sigma_c^0 \bar{p} \pi^+ \pi^-$		$4.4 \pm 1.2 \pm 0.5 \pm 1.1$
$\overline{B}^0_{} \rightarrow \Sigma_c^{++} \bar{p} \pi^-$	$2.38^{+0.63}_{-0.55} \pm 0.41 \pm 0.62$	$3.7 \pm 0.8 \pm 0.7 \pm 0.8$
$\overline{B}^0 \to \Sigma_c^0 \bar{p} \pi^+$	$0.84^{+0.42}_{-0.35} \pm 0.14 \pm 0.22 < 1.59$	$2.2 \pm 0.6 \pm 0.4 \pm 0.5$
$B^- \to \Sigma_c^0 \bar{p} \pi^0$		$4.2 \pm 1.3 \pm 0.4 \pm 1.0$
$\overline{B}^0 \longrightarrow \Sigma_{c1}^{++} \overline{p} \pi^-$	$1.63^{+0.57}_{-0.51} \pm 0.28 \pm 0.42$	$\Sigma_{c1} = \Sigma_c(2520)$
$\overline{B}^0 \to \Sigma^0_{c1} \bar{p} \pi^+$	$0.48^{+0.45}_{-0.40} \pm 0.08 \pm 0.12 < 1.21$	

 ${\cal B}(B^-\to J/\psi\Lambda\bar{p})=(12^{+9}_{-6})\times 10^{-6}$ by BaBar and $<4.1\times 10^{-5}$ by Belle

October 6-11, 2003

Exclusive Baryonic B Decays (page 4)

Charmless Baryonic *B* **Decays**

Belle measurements (in units of 10^{-6}):

$$\overline{B}^{0} \to \Lambda \bar{p} \pi^{+} \qquad 3.97^{+1.00}_{-0.80} \pm 0.56
B^{-} \to p \bar{p} K^{-} \qquad 4.89^{+0.59}_{-0.55} \pm 0.54
B^{-} \to p \bar{p} K^{*-} \qquad 6.70^{+2.36+0.87}_{-1.95-1.07}
\overline{B}^{0} \to p \bar{p} K_{S} \qquad 1.56^{+0.84}_{-0.82} \pm 0.19
B^{-} \to p \bar{p} \pi^{-} \qquad 1.76^{+0.42}_{-0.37} \pm 0.21$$

first observation of charmless baryonic B decay

Spectrum for $B \to \mathcal{B}_1 \overline{\mathcal{B}}_2 M$ (e.g. $\overline{B}^0 \to \Lambda \overline{p} \pi^+$) shows threshold enhancement behavior of baryon pairs

Exclusive Baryonic B Decays (page 5)

Expt.
$$\Rightarrow \qquad \mathcal{B}(B^- \to \Lambda_c^+ \bar{p}\pi^-) \gg \mathcal{B}(\overline{B}^0 \to \Lambda_c^+ \bar{p}),$$
$$\mathcal{B}(B^- \to p\bar{p}K^-) \gg \mathcal{B}(\overline{B}^0 \to p\bar{p}),$$
$$\mathcal{B}(B^- \to \Sigma_c^0 \bar{p}\pi^0) \gg \mathcal{B}(B^- \to \Sigma_c^0 \bar{p})$$

In many cases, $\Gamma(B \to \mathcal{B}_1 \overline{\mathcal{B}}_2 M M') \gg \Gamma(B \to \mathcal{B}_1 \overline{\mathcal{B}}_2 M) \gg \Gamma(B \to \mathcal{B}_1 \overline{\mathcal{B}}_2)$

This phenomenon can be understood in terms of threshold effect: the invariant mass of baryon pairs is preferred to be close to threshold

The question is why the $\mathcal{B}_1\overline{B}_2$ pair prefers to have an invariant mass near threshold ?

Recent Theoretical Studies

Two-body baryonic decays: dominated by nonfactorizable contributions

- Pole model with matrix elements being evaluated by MIT bag model (HYC, Yang 01)
- Diquark model: Chang and Hou (01) have generalized the diquark model of Ball and Dosch (91) to include penguin effects
- Quark-diagram approach: model independent analysis charmless baryonic *B* decay (Chua 03); charmful decay (Luo, Rosner 03)

Three-body baryonic decays: two different types of factorizable contributions

 $\langle M|(\bar{q}_3q_2)|0\rangle\langle \mathcal{B}_1\overline{\mathcal{B}}_2|(\bar{q}_1b)|B\rangle$: transition process

 $\langle \mathcal{B}_1 \overline{\mathcal{B}}_2 | (\bar{q}_1 q_2) | 0 \rangle \langle M | (\bar{q}_3 b) | B \rangle$: current-produced process

The matrix element $\langle \mathcal{B}_1 \overline{\mathcal{B}}_2 | (\bar{q}_1 q_2) | 0 \rangle$ can be related to some measurable quantities for octet baryon pair

- Current-induced process can be evaluated under factorization and QCD counting rule for form factors (Chua, Hou, Tsai 01,02) (Chua, Hou 02) (HYC, Yang 01,02)
- Pole model is suitable for dealing with transition process (HYC, Yang 01)

2-body baryonic *B* **decays**

 $B \to \mathcal{B}_1 \overline{\mathcal{B}}_2$: via internal *W*-emission, $b \to d(s)$ penguin transition and weak annihilation. need two-pair creation $\Rightarrow B \to \mathcal{B}_1 \overline{\mathcal{B}}_2 < B \to M_1 M_2$

The nonfactorizable amplitude is difficult to evaluate. We shall consider the pole contribution and assume that the decay amplitude is saturated by one-particle low-lying intermediate states.

$$\mathcal{A}(B \to \mathcal{B}_1 \overline{\mathcal{B}}_2) = \bar{u}_1 (A + B\gamma_5) v_2$$

Pole model \Rightarrow parity-conserving (pc) amplitude is governed by $\frac{1}{2}^+$ ground-state baryon

October 6-11, 2003

Exclusive Baryonic B Decays (page 8)

states, pv one by $\frac{1}{2}^-$ low-lying baryon resonances.

$$A = -\sum_{\mathcal{B}_b^*} \frac{g_{\mathcal{B}_b^* \to B\mathcal{B}_2} \, b_{\mathcal{B}_b^*\mathcal{B}_1}}{m_1 - m_{\mathcal{B}_b^*}}, \qquad B = \sum_{\mathcal{B}_b} \frac{g_{\mathcal{B}_b \to B\mathcal{B}_2} \, a_{\mathcal{B}_b\mathcal{B}_1}}{m_1 - m_{\mathcal{B}_b}}$$

Two unknown quantities need to be determined:

• Weak matrix elements $\langle \mathcal{B} | H_{\text{eff}}^{PV(PC)} | \mathcal{B}_b^{(*)} \rangle$: apply MIT bag model to compute weak baryon-baryon transition.

- Strong couplings: two distinct models for quark pair creation
- 1. ${}^{3}P_{0}$ model: $q\bar{q}$ pair is created from the vacuum with vacuum quantum numbers. Presumably it works in the nonperturbative low energy regime.
- 2. ${}^{3}S_{1}$ model: quark pair is created perturbatively via one gluon exchange with one-gluon quantum numbers ${}^{3}S_{1}$. May be more relevant for $B \to \mathcal{B}_{1}\overline{\mathcal{B}}_{2}$ where pQCD is presumably applicable.

Results for charmful $B \to \mathcal{B}_c \overline{\mathcal{B}}$

	CZ	Jarfi et al.	This work	Expt.
$\overline{B}^0 \to \Lambda_c^+ \bar{p}$	4×10^{-4}	1.1×10^{-3}	1.1×10^{-5}	$(2.19 \pm 0.84) \times 10^{-5}$
$B^- \rightarrow \Sigma_c^0 \bar{p}$		1.5×10^{-2}	$6.0 imes 10^{-5}$	$< 8.0 \times 10^{-5}$
$\overline{B}^0 \to \Sigma_c^0 \bar{n}$		5.8×10^{-3}	6.0×10^{-7}	
$B^- \to \Lambda_c^+ \bar{\Delta}^{}$		3.6×10^{-2}	1.9×10^{-5}	

(CZ=Chernyak & Zhitnitsky)

All earlier predictions based on sum-rule analysis, pole model and diquark model are too large compared to experiment.

 $B^- \to \Sigma_c^0 \bar{p}$ proceeds via Λ_b pole, while $\overline{B}^0 \to \Lambda_c^+ \bar{p}$ via Σ_b pole. Since $\Lambda_b N \bar{B}$ coupling $> \Sigma_b N \bar{B}$ one $\Rightarrow \Sigma_c^0 \bar{p}$ has a larger rate than $\Lambda_c \bar{p}$.

An earlier measurement by Belle : $\mathcal{B}(B^- \rightarrow \Sigma_c^0 \bar{p}) = (4.5^{+2.6}_{-1.9} \pm 0.7 \pm 1.2) \times 10^{-5}$

Results for charmless $B \to \mathcal{B}_1 \overline{\mathcal{B}}_2$

	CZ	Jarfi et al.	This work	Expt.
$\overline{B}^0 \to p\bar{p}$	1.2×10^{-6}	7.0×10^{-6}	$1.1 \times 10^{-7\dagger}$	$<2.7\times10^{-7}$
$\overline{B}^0 o n \bar{n}$	$3.5 imes 10^{-7}$	$7.0 imes 10^{-6}$	$1.2 imes 10^{-7\dagger}$	
$B^- \rightarrow n\bar{p}$	$6.9 imes 10^{-7}$	1.7×10^{-5}	5.0×10^{-7}	
$\overline{B}^0 ightarrow \Lambda ar{\Lambda}$		2×10^{-7}	0^{\dagger}	$< 1.0 \times 10^{-6}$
$B^- \to p\bar{\Delta}^{}$	$2.9 imes 10^{-7}$	$3.2 imes 10^{-4}$	1.4×10^{-6}	$< 1.5 \times 10^{-4}$
$\overline{B}^0 \to p\bar{\Delta}^-$	7×10^{-8}	$1.0 imes 10^{-4}$	$4.3 imes 10^{-7}$	
$B^- ightarrow n \bar{\Delta}^-$		1×10^{-7}	4.6×10^{-7}	
$\overline{B}^0 o n \bar{\Delta}^0$		$1.0 imes 10^{-4}$	$4.3 imes 10^{-7}$	
$B^- \to \Lambda \bar{p}$	$\lesssim 3 imes 10^{-6}$		$2.2 \times 10^{-7\dagger}$	$<2.2\times10^{-6}$
$\overline{B}^0 \to \Lambda \bar{n}$			$2.1\times 10^{-7\dagger}$	
$\overline{B}^0 \to \Sigma^+ \bar{p}$	6×10^{-6}		$1.8 imes 10^{-8\dagger}$	
$B^- ightarrow \Sigma^0 \bar{p}$	3×10^{-6}		$5.8 imes 10^{-8\dagger}$	
$B^- \to \Sigma^+ \bar{\Delta}^{}$	6×10^{-6}		$2.0 imes 10^{-7}$	
$\overline{B}^0 \to \Sigma^+ \bar{\Delta}^-$	6×10^{-6}		$6.3 imes 10^{-8}$	
$B^- \to \Sigma^- \bar{\Delta}^0$	2×10^{-6}		$8.7 imes 10^{-8}$	

[†] only PC part is considered here

Observation of $\overline{B}^0 \to \Lambda_c^+ \bar{p} \Rightarrow$ charmless $B \to \mathcal{B}_1 \overline{\mathcal{B}}_2 \sim 10^{-7}$

October 6-11, 2003

Exclusive Baryonic B Decays (page 11)

3-body baryonic B decays

There are 9 distinct quark diagrams. Six of them are factorizable, but only two, Figs.(b) and (d), are directly calculable in practice

Figs. $(a), (c)$:	$\mathcal{A} \propto \langle M (\bar{q}_3 q_2) 0 \rangle \langle \mathcal{B}_1 \overline{\mathcal{B}}_2 (\bar{q}_1 b) B \rangle,$
Figs. $(b), (d) :$	$\mathcal{A} \propto \langle \mathcal{B}_1 \overline{\mathcal{B}}_2 (\bar{q}_1 q_2) 0 \rangle \langle M (\bar{q}_3 b) B \rangle,$
Figs. $(g), (h) :$	$\mathcal{A} \propto \langle \mathcal{B}_1 \overline{\mathcal{B}}_2 M (\bar{q}_1 q_2) 0 \rangle \langle 0 (\bar{q}_3 b) B \rangle.$

Two remarks:

1. For Figs. (b) and (d) the two-body matrix element $\langle \mathcal{B}_1 \overline{\mathcal{B}}_2 | (\bar{q}_1 q_2) | 0 \rangle$ for octet baryons can be related to the e.m. form factors of the nucleon.

2. For Figs. (a) and (c) we will consider the pole diagrams to evaluate 3-body matrix elements. The 3-body matrix element $\langle \mathcal{B}_1 \overline{\mathcal{B}}_2 | (\bar{q}_1 b) | B \rangle$ receives contributions from point-like contact interaction (i.e. direct weak transition) and pole diagrams.

Why is $\Gamma(B \to \mathcal{B}_1 \overline{\mathcal{B}}_2 M) \gg \Gamma(B \to \mathcal{B}_1 \overline{\mathcal{B}}_2)$?

• Hou and Soni (01): Smallness of $B \to \mathcal{B}_1 \overline{\mathcal{B}}_2$ has to do with the large energy release. They conjectured that in order to have larger baryonic B decays, one has to reduce the energy release and allow for baryonic ingredients to be present in the final state. \Rightarrow $\Gamma(B \to \rho p \bar{n}) > \Gamma(B \to p \bar{p})$ since the ejected ρ meson in the former decay carries away much energies and the configuration is more favorable for baryon production.

• Dunietz (95): Invariant mass of diquark ud peaks at the highest possible values in a Dalitz plot for $b \rightarrow u d\bar{d}$ transition due to its V - A feature. (Buchalla, Dunietz, Yamamoto)

 \Rightarrow Very massive udq objects will intend to form a highly excited baryon state such as Δ and N^* and will be seen as $Nn\pi(n \ge 1)$. This explains the non-observation of the $N\overline{N}$ final states, the large BR of $\overline{B} \to N\overline{\Delta}$ and why the three-body mode $N\overline{N}\pi(\rho)$ is favored.

Dalitz plot of $b \to c\bar{c}s$ as a function of $u = m_{cs}^2/m_b^2$ and $s = m_{\bar{c}s}^2/m_b^2$ (from Buchalla, Dunietz, Yamamoto, PL, B364, 188 (1995)).

 $B \to \mathcal{B}_1 \overline{\mathcal{B}}_2 M$ in Pole Model

Consider $B^- \to \Lambda_c^+ \bar{p} \pi^-$ as an example

$$\begin{split} \Gamma(B^- \to \Lambda_c^+ \bar{p}\pi^-) &= \Gamma(B^- \to \Lambda_c^+ \bar{p}\pi^-)_{\rm nonr} + \Gamma(B^- \to \Sigma_c^0 \bar{p} \to \Lambda_c^+ \bar{p}\pi^-) \\ &+ \Gamma(B^- \to \Lambda_c^+ \bar{\Delta}^{--} \to \Lambda_c^+ \bar{p}\pi^-) \end{split}$$

Exclusive Baryonic B Decays (page 16)

$$\begin{aligned} A(B^- \to \Lambda_c \bar{p}\pi^-)_{\text{fact}} &= \frac{G_F}{\sqrt{2}} V_{cb} V_{ud}^* \Big\{ a_1 \langle \pi^- | (\bar{d}u) | 0 \rangle \langle \Lambda_c^+ \bar{p} | (\bar{c}b) | B^- \rangle \\ &+ a_2 \langle \pi^- | (\bar{d}b) | B^- \rangle \langle \Lambda_c^+ \bar{p} | (\bar{c}u) | 0 \rangle \Big\} \equiv A_1 + A_2 \end{aligned}$$

Factorizable amplitude A_2 can be directly calculated. For amplitude A_1 we evaluate the baryon and meson pole diagrams.

$$\Lambda_b \text{ propagator}: \qquad \frac{1}{m_{\Lambda_b}^2 - m_{\Lambda_c\pi}^2}$$

not $1/m_b^2$ suppressed at the region where invariant mass of $\Lambda_c \pi$ is large (e.g. π carries away much energy)

$$D \text{ propagator}: \qquad \frac{1}{m_D^2 - m_{\Lambda_c \bar{p}}^2}$$

not small if invariant mass of $\Lambda_c \bar{p}$ is near threshold

This explains the threshold effect in spectrum and why $\mathcal{B}(B^- \to \Lambda_c^+ \bar{p}\pi^-) \gg \mathcal{B}(\overline{B}^0 \to \Lambda_c^+ \bar{p})$

Exclusive Baryonic B Decays (page 17)

October 6-11, 2003

Some Highlights

• $\mathcal{B}(B^- \to \Lambda_c^+ \bar{p}\pi^-) \approx 2.4 \times 10^{-4}$, in agreement with CLEO and Belle. About 1/4 of the rate comes from resonant contributions

• Factorization $\Rightarrow \frac{\Gamma(B \to D^{*+}n\bar{p})}{\Gamma(B \to D^{+}n\bar{p})} \sim 3$ should be tested experimentally by measuring $D^{+}n\bar{p}$ production.

 \bullet Charmless decays $B^- \to p \bar{p} K^- (K^{*-})$ are penguin-dominated

$\mathcal{B}(B^- \to p\bar{p}K^-)$	\approx	4.0×10^{-6}	$(4.89^{+0.59}_{-0.55} \pm 0.54) \times 10^{-6}$
$\mathcal{B}(B^- \to p\bar{p}K^{*-})$	\approx	2.3×10^{-6}	$(6.70^{+2.36+0.87}_{-1.95-1.07}) \times 10^{-6}$

Naively it is expected that $p\bar{p}K^{*-} < p\bar{p}K^-$ due to absence of penguin contributions of a_6 and a_8 to the former. This is not borne out by experiment, why ?

• $B \to \Lambda \bar{p}\pi$ was previously argued to be small $< 10^{-6}$. Its sizable BR $\sim 4.0 \times 10^{-6}$ now can be understood as a proper treatment of pseudoscalar form factor arising from penguin matrix element (Chua, Hou 02).

Radiative baryonic *B* **decays**

Naively it is expected that $\Gamma(B \to \mathcal{B}_1 \overline{\mathcal{B}}_2 \gamma) \sim \mathcal{O}(\alpha_{em}) \Gamma(B \to \mathcal{B}_1 \overline{\mathcal{B}}_2) \Rightarrow$ it is difficult to observe radiative baryonic B decays via bremsstrahlung.

Owing to large m_t , $b \rightarrow s\gamma$ penguin transition is neither quark mixing nor loop suppressed.

Consider Λ_b pole diagram and apply heavy quark spin symmetry and static b quark limit to evaluate tensor matrix element in

$$\langle \Lambda(p_{\Lambda})\gamma(\varepsilon,k)|\mathcal{H}_{W}|\Lambda_{b}(p_{\Lambda_{b}})\rangle = -i\frac{G_{F}}{\sqrt{2}}\frac{e}{8\pi^{2}}V_{ts}^{*}V_{tb}\,2c_{7}^{\text{eff}}m_{b}\varepsilon^{\mu}k^{\nu} \\ \times \langle \Lambda|\bar{s}\sigma_{\mu\nu}(1+\gamma_{5})b|\Lambda_{b}\rangle$$

which can be related to $\Lambda_b \to \Lambda$ form factors.

October 6-11, 2003

Exclusive Baryonic B Decays (page 19)

The decay rate depends on $g_{\Lambda_b \to B^- p}$ and form factors of $\Lambda_b \to \Lambda$:

$$\mathcal{B}(B^- \to \Lambda \bar{p}\gamma) \approx 1.1 \times 10^{-6}$$

For comparison,

$$\mathcal{B}(\Lambda_b \to \Lambda \gamma) = 1.9 \times 10^{-5}$$

 $\mathsf{CLEO} \Rightarrow [\mathcal{B}(B^- \to \Lambda \bar{p}\gamma) + 0.36\mathcal{B}(B^- \to \Sigma^0 \bar{p}\gamma)]_{E_{\gamma} > 1.5 \,\mathrm{GeV}} < 3.9 \times 10^{-6}$

Penguin-induced radiative baryonic B decay modes should be readily accessible by B factories.

Summary

- 1. $B \rightarrow \mathcal{B}_1 \overline{\mathcal{B}}_2$ receives main contributions from internal W-emission diagram. The predicted branching ratios are in general very small, typically less than 10^{-7} .
- 2. As predicted, many of charmless three-body final states have a larger rate than their two-body counterparts.
- 3. Three-dominated modes $\bar{B}^0 \to n\bar{p}\pi^+(\rho^+)$ have BR of order of $(1 \sim 4) \times 10^{-6}$ for π^+ production and $(3 \sim 5) \times 10^{-6}$ for ρ^+ production. Moreover, $\mathcal{B}(\bar{B}^0 \to p\bar{n}\pi^-) \sim 3 \times 10^{-6}$ and $\mathcal{B}(\bar{B}^0 \to p\bar{n}\rho^-) \sim 8 \times 10^{-6}$ are predicted.
- 4. For penguin-dominated modes we predict that $\mathcal{B}(B^- \to p\bar{p}K^-) \sim 4 \times 10^{-6}$, and the decays $B^- \to p\bar{p}K^{*-}$, $\overline{B}^0 \to p\bar{n}K^-$ and $\overline{B}^0 \to p\bar{n}K^{*-}$ all have the branching ratio of order 2×10^{-6} . Therefore, several $B \to N\bar{N}K^{(*)}$ decays should be easily seen by B factories at the present level of sensitivity.
- 5. The rates of $B^- \to \Lambda \bar{p}\gamma$ and $B^- \to \Xi^0 \bar{\Sigma}^- \gamma$ are sizable, of order 1×10^{-6} .