Exclusive Baryonic B Decays

Hai-Yang Cheng
 Academia Sinica

October 6-11, 2003

ICFP 2003

in collaboration with Kwei-Chou Yang

- History
- Two-body baryonic B decays
- Three-body baryonic B decays
- Radiative baryonic B decays
- Conclusions

History

Hadronic B decays can contain a baryon pair in the final state.

ARGUS ('87): $\mathcal{B}\left(B^{-} \rightarrow p \bar{p} \pi^{-}\right)=(3.7 \pm 1.9) \times 10^{-4}$

$$
\mathcal{B}\left(\bar{B}^{0} \rightarrow p \bar{p} \pi^{+} \pi^{-}\right)=(6.0 \pm 1.9) \times 10^{-4}
$$

\Rightarrow stimulate extensive studies (16 theory papers) during the years of 1988-92.

- pole model: Deshpande, Trampetic, Soni; Jarfi et al.
- QCD sum rule: Chernyak, Zhitnitsky
- diquark model: Ball, Dosch
- symmetry: He, McKeller, Wu; Sheikholeslami, Khanna

After 92' experimental and theoretical studies in baryonic B decays fade away; revived in recent years

Experimental status

Except for recently measured $\bar{B}^{0} \rightarrow \Lambda_{c}^{+} \bar{p}$ by Belle,

$$
\mathcal{B}\left(\bar{B}^{0} \rightarrow \Lambda_{c}^{+} \bar{p}\right)=\left(2.19_{-0.49}^{+0.56} \pm 0.32 \pm 0.57\right) \times 10^{-5}
$$

none of two-body baryonic B decays has been observed. The upper limits are:

Decay	CLEO	Belle	BaBar
$\bar{B}^{0} \rightarrow p \bar{p}$	1.4×10^{-6}	1.2×10^{-6}	2.7×10^{-7}
$\bar{B}^{0} \rightarrow \Lambda \bar{\Lambda}$	1.2×10^{-6}	1.0×10^{-6}	
$B^{-} \rightarrow \Lambda \bar{p}$	1.5×10^{-6}	2.2×10^{-6}	
$B^{-} \rightarrow \Sigma_{c}^{0}(2455) \bar{p}$	8.0×10^{-5}	9.3×10^{-5}	
$B^{-} \rightarrow \Sigma_{c 1}^{0}(2520) \bar{p}$		4.6×10^{-5}	

Charmful Baryonic B Decays

\[

\]

Charmless Baryonic B Decays

Belle measurements (in units of 10^{-6}):

$$
\begin{array}{ll}
\bar{B}^{0} \rightarrow \Lambda \bar{p} \pi^{+} & 3.97_{-0.80}^{+1.00} \pm 0.56 \\
B^{-} \rightarrow p \bar{p} K^{-} & 4.89_{-0.55}^{+0.59} \pm 0.54 \quad \text { first observation of charmless baryonic } B \text { decay } \\
B^{-} \rightarrow p \bar{p} K^{*-} & 6.70_{-1.95-1.07}^{+2.36+0.87} \\
\bar{B}^{0} \rightarrow p \bar{p} K_{S} & 1.56_{-0.82}^{+0.84} \pm 0.19 \\
B^{-} \rightarrow p \bar{p} \pi^{-} & 1.76_{-0.37}^{+0.42} \pm 0.21
\end{array}
$$

Spectrum for $B \rightarrow \mathcal{B}_{1} \overline{\mathcal{B}}_{2} M$ (e.g. $\bar{B}^{0} \rightarrow \Lambda \bar{p} \pi^{+}$)
shows threshold enhancement behavior
of baryon pairs

Expt. $\Rightarrow \quad \mathcal{B}\left(B^{-} \rightarrow \Lambda_{c}^{+} \bar{p} \pi^{-}\right) \gg \mathcal{B}\left(\bar{B}^{0} \rightarrow \Lambda_{c}^{+} \bar{p}\right)$,

$$
\begin{aligned}
& \mathcal{B}\left(B^{-} \rightarrow p \bar{p} K^{-}\right) \gg \mathcal{B}\left(\bar{B}^{0} \rightarrow p \bar{p}\right) \\
& \mathcal{B}\left(B^{-} \rightarrow \Sigma_{c}^{0} \bar{p} \pi^{0}\right) \gg \mathcal{B}\left(B^{-} \rightarrow \Sigma_{c}^{0} \bar{p}\right)
\end{aligned}
$$

In many cases, $\Gamma\left(B \rightarrow \mathcal{B}_{1} \overline{\mathcal{B}}_{2} M M^{\prime}\right) \gg \Gamma\left(B \rightarrow \mathcal{B}_{1} \overline{\mathcal{B}}_{2} M\right) \gg \Gamma\left(B \rightarrow \mathcal{B}_{1} \overline{\mathcal{B}}_{2}\right)$
This phenomenon can be understood in terms of threshold effect: the invariant mass of baryon pairs is preferred to be close to threshold

The question is why the $\mathcal{B}_{1} \bar{B}_{2}$ pair prefers to have an invariant mass near threshold ?

Recent Theoretical Studies

Two-body baryonic decays: dominated by nonfactorizable contributions

- Pole model with matrix elements being evaluated by MIT bag model (HYC, Yang 01)
- Diquark model: Chang and Hou (01) have generalized the diquark model of Ball and Dosch (91) to include penguin effects
- Quark-diagram approach: model independent analysis charmless baryonic B decay (Chua 03); charmful decay (Luo, Rosner 03)

Three-body baryonic decays: two different types of factorizable contributions
$\langle M|\left(\bar{q}_{3} q_{2}\right)|0\rangle\left\langle\mathcal{B}_{1} \overline{\mathcal{B}}_{2}\right|\left(\bar{q}_{1} b\right)|B\rangle$: transition process
$\left\langle\mathcal{B}_{1} \overline{\mathcal{B}}_{2}\right|\left(\bar{q}_{1} q_{2}\right)|0\rangle\langle M|\left(\bar{q}_{3} b\right)|B\rangle$: current-produced process
The matrix element $\left\langle\mathcal{B}_{1} \overline{\mathcal{B}}_{2}\right|\left(\bar{q}_{1} q_{2}\right)|0\rangle$ can be related to some measurable quantities for octet baryon pair

- Current-induced process can be evaluated under factorization and QCD counting rule for form factors (Chua, Hou, Tsai 01,02) (Chua, Hou 02) (HYC, Yang 01,02)
- Pole model is suitable for dealing with transition process (HYC, Yang 01)

2-body baryonic B decays

$B \rightarrow \mathcal{B}_{1} \overline{\mathcal{B}}_{2}$: via internal W-emission, $b \rightarrow d(s)$ penguin transition and weak annihilation. need two-pair creation $\Rightarrow B \rightarrow \mathcal{B}_{1} \overline{\mathcal{B}}_{2}<B \rightarrow M_{1} M_{2}$

The nonfactorizable amplitude is difficult to evaluate. We shall consider the pole contribution and assume that the decay amplitude is saturated by one-particle low-lying intermediate states.

$$
\mathcal{A}\left(B \rightarrow \mathcal{B}_{1} \overline{\mathcal{B}}_{2}\right)=\bar{u}_{1}\left(A+B \gamma_{5}\right) v_{2}
$$

Pole model \Rightarrow parity-conserving (pc) amplitude is governed by $\frac{1}{2}^{+}$ground-state baryon
states, pv one by $\frac{1}{2}^{-}$low-lying baryon resonances.

$$
A=-\sum_{\mathcal{B}_{b}^{*}} \frac{g_{\mathcal{B}_{b}^{*} \rightarrow B \mathcal{B}_{2}} b_{\mathcal{B}_{b}^{*} \mathcal{B}_{1}}}{m_{1}-m_{\mathcal{B}_{b}^{*}}}, \quad B=\sum_{\mathcal{B}_{b}} \frac{g_{\mathcal{B}_{b} \rightarrow B \mathcal{B}_{2}} a_{\mathcal{B}_{b} \mathcal{B}_{1}}}{m_{1}-m_{\mathcal{B}_{b}}}
$$

Two unknown quantities need to be determined:

- Weak matrix elements $\langle\mathcal{B}| H_{\text {eff }}^{P V(P C)}\left|\mathcal{B}_{b}^{(*)}\right\rangle$: apply MIT bag model to compute weak baryon-baryon transition.
- Strong couplings: two distinct models for quark pair creation

1. ${ }^{3} P_{0}$ model: $q \bar{q}$ pair is created from the vacuum with vacuum quantum numbers. Presumably it works in the nonperturbative low energy regime.
2. ${ }^{3} S_{1}$ model: quark pair is created perturbatively via one gluon exchange with one-gluon quantum numbers ${ }^{3} S_{1}$. May be more relevant for $B \rightarrow \mathcal{B}_{1} \overline{\mathcal{B}}_{2}$ where pQCD is presumably applicable.

Results for charmful $B \rightarrow \mathcal{B}_{c} \overline{\mathcal{B}}$

	CZ	Jarfi et al.	This work	Expt.
$\bar{B}^{0} \rightarrow \Lambda_{c}^{+} \bar{p}$	4×10^{-4}	1.1×10^{-3}	1.1×10^{-5}	$(2.19 \pm 0.84) \times 10^{-5}$
$B^{-} \rightarrow \Sigma_{c}^{0} \bar{p}$		1.5×10^{-2}	6.0×10^{-5}	$<8.0 \times 10^{-5}$
$\bar{B}^{0} \rightarrow \Sigma_{c}^{0} \bar{n}$		5.8×10^{-3}	6.0×10^{-7}	
$B^{-} \rightarrow \Lambda_{c}^{+} \bar{\Delta}^{--}$		3.6×10^{-2}	1.9×10^{-5}	

(CZ=Chernyak \& Zhitnitsky)
All earlier predictions based on sum-rule analysis, pole model and diquark model are too large compared to experiment.
$B^{-} \rightarrow \Sigma_{c}^{0} \bar{p}$ proceeds via Λ_{b} pole, while $\bar{B}^{0} \rightarrow \Lambda_{c}^{+} \bar{p}$ via Σ_{b} pole. Since $\Lambda_{b} N \bar{B}$ coupling $>\Sigma_{b} N \bar{B}$ one $\Rightarrow \Sigma_{c}^{0} \bar{p}$ has a larger rate than $\Lambda_{c} \bar{p}$.

An earlier measurement by Belle : $\mathcal{B}\left(B^{-} \rightarrow \Sigma_{c}^{0} \bar{p}\right)=\left(4.5_{-1.9}^{+2.6} \pm 0.7 \pm 1.2\right) \times 10^{-5}$

Results for charmless $B \rightarrow \mathcal{B}_{1} \overline{\mathcal{B}}_{2}$

	CZ	Jarfi et al.	This work	Expt.
$\bar{B}^{0} \rightarrow p \bar{p}$	1.2×10^{-6}	7.0×10^{-6}	$1.1 \times 10^{-7 \dagger}$	$<2.7 \times 10^{-7}$
$\bar{B}^{0} \rightarrow n \bar{n}$	3.5×10^{-7}	7.0×10^{-6}	$1.2 \times 10^{-7 \dagger}$	
$B^{-} \rightarrow n \bar{p}$	6.9×10^{-7}	1.7×10^{-5}	5.0×10^{-7}	
$\bar{B}^{0} \rightarrow \Lambda \bar{\Lambda}$		2×10^{-7}	0^{\dagger}	$<1.0 \times 10^{-6}$
$B^{-} \rightarrow p \overline{\Delta^{--}}$	2.9×10^{-7}	3.2×10^{-4}	1.4×10^{-6}	$<1.5 \times 10^{-4}$
$\bar{B}^{0} \rightarrow p \bar{\Delta}^{-}$	7×10^{-8}	1.0×10^{-4}	4.3×10^{-7}	
$B^{-} \rightarrow n \bar{\Delta}^{-}$		1×10^{-7}	4.6×10^{-7}	
$\bar{B}^{0} \rightarrow n \bar{\Delta}^{0}$		1.0×10^{-4}	4.3×10^{-7}	
$B^{-} \rightarrow \Lambda \bar{p}$	$\lesssim 3 \times 10^{-6}$		$2.2 \times 10^{-7 \dagger}$	$<2.2 \times 10^{-6}$
$\bar{B}^{0} \rightarrow \Lambda \bar{n}$			$2.1 \times 10^{-7 \dagger}$	
$\bar{B}^{0} \rightarrow \Sigma^{+} \bar{p}$	6×10^{-6}		$1.8 \times 10^{-8 \dagger}$	
$B^{-} \rightarrow \Sigma^{0} \bar{p}$	3×10^{-6}		$5.8 \times 10^{-8 \dagger}$	
$B^{-} \rightarrow \Sigma^{+} \bar{\Delta}^{--}$	6×10^{-6}		2.0×10^{-7}	
$\bar{B}^{0} \rightarrow \Sigma^{+} \bar{\Delta}^{-}$	6×10^{-6}		6.3×10^{-8}	
$B^{-} \rightarrow \Sigma^{-} \bar{\Delta}^{0}$	2×10^{-6}		8.7×10^{-8}	

\dagger only PC part is considered here
Observation of $\bar{B}^{0} \rightarrow \Lambda_{c}^{+} \bar{p} \Rightarrow$ charmless $B \rightarrow \mathcal{B}_{1} \overline{\mathcal{B}}_{2} \sim 10^{-7}$

There are 9 distinct quark diagrams. Six of them are factorizable, but only two, Figs.(b) and (d), are directly calculable in practice

$$
\begin{array}{ll}
\text { Figs. (a), (c) : } & \mathcal{A} \propto\langle M|\left(\bar{q}_{3} q_{2}\right)|0\rangle\left\langle\mathcal{B}_{1} \overline{\mathcal{B}}_{2}\right|\left(\bar{q}_{1} b\right)|B\rangle, \\
\text { Figs. (b), (d): } & \mathcal{A} \propto\left\langle\mathcal{B}_{1} \overline{\mathcal{B}}_{2}\right|\left(\bar{q}_{1} q_{2}\right)|0\rangle\langle M|\left(\bar{q}_{3} b\right)|B\rangle, \\
\text { Figs. (g), (h): } & \mathcal{A} \propto\left\langle\mathcal{B}_{1} \overline{\mathcal{B}}_{2} M\right|\left(\bar{q}_{1} q_{2}\right)|0\rangle\langle 0|\left(\bar{q}_{3} b\right)|B\rangle .
\end{array}
$$

Two remarks:

1. For Figs. (b) and (d) the two-body matrix element $\left\langle\mathcal{B}_{1} \overline{\mathcal{B}}_{2}\right|\left(\bar{q}_{1} q_{2}\right)|0\rangle$ for octet baryons can be related to the e.m. form factors of the nucleon.
2. For Figs. (a) and (c) we will consider the pole diagrams to evaluate 3-body matrix elements. The 3-body matrix element $\left\langle\mathcal{B}_{1} \overline{\mathcal{B}}_{2}\right|\left(\bar{q}_{1} b\right)|B\rangle$ receives contributions from point-like contact interaction (i.e. direct weak transition) and pole diagrams.

$$
\text { Why is } \Gamma\left(B \rightarrow \mathcal{B}_{1} \overline{\mathcal{B}}_{2} M\right) \gg \Gamma\left(B \rightarrow \mathcal{B}_{1} \overline{\mathcal{B}}_{2}\right) \text { ? }
$$

- Hou and Soni (01): Smallness of $B \rightarrow \mathcal{B}_{1} \overline{\mathcal{B}}_{2}$ has to do with the large energy release. They conjectured that in order to have larger baryonic B decays, one has to reduce the energy release and allow for baryonic ingredients to be present in the final state. \Rightarrow $\Gamma(B \rightarrow \rho p \bar{n})>\Gamma(B \rightarrow p \bar{p})$ since the ejected ρ meson in the former decay carries away much energies and the configuration is more favorable for baryon production.
- Dunietz (95): Invariant mass of diquark $u d$ peaks at the highest possible values in a Dalitz plot for $b \rightarrow u d \bar{d}$ transition due to its $V-A$ feature. (Buchalla, Dunietz, Yamamoto)
\Rightarrow Very massive $u d q$ objects will intend to form a highly excited baryon state such as Δ and N^{*} and will be seen as $N n \pi(n \geq 1)$. This explains the non-observation of the $N \bar{N}$ final states, the large BR of $\bar{B} \rightarrow N \bar{\Delta}$ and why the three-body mode $N \bar{N} \pi(\rho)$ is favored.

Dalitz plot of $b \rightarrow c \bar{c} s$ as a function of $u=m_{c s}^{2} / m_{b}^{2}$ and $s=m_{\bar{c} s}^{2} / m_{b}^{2}$ (from Buchalla, Dunietz, Yamamoto, PL, B364, 188 (1995)).

$B \rightarrow \mathcal{B}_{1} \overline{\mathcal{B}}_{2} M$ in Pole Model

Consider $B^{-} \rightarrow \Lambda_{c}^{+} \bar{p} \pi^{-}$as an example

$$
\begin{aligned}
\Gamma\left(B^{-} \rightarrow \Lambda_{c}^{+} \bar{p} \pi^{-}\right) & =\Gamma\left(B^{-} \rightarrow \Lambda_{c}^{+} \bar{p} \pi^{-}\right)_{\mathrm{nonr}}+\Gamma\left(B^{-} \rightarrow \Sigma_{c}^{0} \bar{p} \rightarrow \Lambda_{c}^{+} \bar{p} \pi^{-}\right) \\
& +\Gamma\left(B^{-} \rightarrow \Lambda_{c}^{+} \bar{\Delta}^{--} \rightarrow \Lambda_{c}^{+} \bar{p} \pi^{-}\right)
\end{aligned}
$$

(a)

(b)

(c)

$$
\begin{aligned}
A\left(B^{-} \rightarrow \Lambda_{c} \bar{p} \pi^{-}\right)_{\mathrm{fact}} & =\frac{G_{F}}{\sqrt{2}} V_{c b} V_{u d}^{*}\left\{a_{1}\left\langle\pi^{-}\right|(\bar{d} u)|0\rangle\left\langle\Lambda_{c}^{+} \bar{p}\right|(\bar{c} b)\left|B^{-}\right\rangle\right. \\
& \left.+a_{2}\left\langle\pi^{-}\right|(\bar{d} b)\left|B^{-}\right\rangle\left\langle\Lambda_{c}^{+} \bar{p}\right|(\bar{c} u)|0\rangle\right\} \equiv A_{1}+A_{2}
\end{aligned}
$$

Factorizable amplitude A_{2} can be directly calculated. For amplitude A_{1} we evaluate the baryon and meson pole diagrams.

$$
\Lambda_{b} \text { propagator : } \quad \frac{1}{m_{\Lambda_{b}}^{2}-m_{\Lambda_{c} \pi}^{2}}
$$

not $1 / m_{b}^{2}$ suppressed at the region where invariant mass of $\Lambda_{c} \pi$ is large (e.g. π carries away much energy)

$$
D \text { propagator : } \frac{1}{m_{D}^{2}-m_{\Lambda_{c} \bar{p}}^{2}}
$$

not small if invariant mass of $\Lambda_{c} \bar{p}$ is near threshold
This explains the threshold effect in spectrum and why

$$
\mathcal{B}\left(B^{-} \rightarrow \Lambda_{c}^{+} \bar{p} \pi^{-}\right) \gg \mathcal{B}\left(\bar{B}^{0} \rightarrow \Lambda_{c}^{+} \bar{p}\right)
$$

Some Highlights

- $\mathcal{B}\left(B^{-} \rightarrow \Lambda_{c}^{+} \bar{p} \pi^{-}\right) \approx 2.4 \times 10^{-4}$, in agreement with CLEO and Belle. About $1 / 4$ of the rate comes from resonant contributions
- Factorization $\Rightarrow \frac{\Gamma\left(B \rightarrow D^{*+} n \bar{p}\right)}{\Gamma\left(B \rightarrow D^{+} n \bar{p}\right)} \sim 3$ should be tested experimentally by measuring $D^{+} n \bar{p}$ production.
- Charmless decays $B^{-} \rightarrow p \bar{p} K^{-}\left(K^{*-}\right)$ are penguin-dominated

$$
\begin{array}{rll}
\mathcal{B}\left(B^{-} \rightarrow p \bar{p} K^{-}\right) & \approx 4.0 \times 10^{-6} & \left(4.89_{-0.55}^{+0.59} \pm 0.54\right) \times 10^{-6} \\
\mathcal{B}\left(B^{-} \rightarrow p \bar{p} K^{*-}\right) & \approx 2.3 \times 10^{-6} & \left(6.70_{-1.95-1.07}^{+2.36+0.87}\right) \times 10^{-6}
\end{array}
$$

Naively it is expected that $p \bar{p} K^{*-}<p \bar{p} K^{-}$due to absence of penguin contributions of a_{6} and a_{8} to the former. This is not borne out by experiment, why ?

- $B \rightarrow \Lambda \bar{p} \pi$ was previously argued to be small $<10^{-6}$. Its sizable $\mathrm{BR} \sim 4.0 \times 10^{-6}$ now can be understood as a proper treatment of pseudoscalar form factor arising from penguin matrix element (Chua, Hou 02).

Radiative baryonic B decays

Naively it is expected that $\Gamma\left(B \rightarrow \mathcal{B}_{1} \overline{\mathcal{B}}_{2} \gamma\right) \sim \mathcal{O}\left(\alpha_{\mathrm{em}}\right) \Gamma\left(B \rightarrow \mathcal{B}_{1} \overline{\mathcal{B}}_{2}\right) \Rightarrow$ it is difficult to observe radiative baryonic B decays via bremsstrahlung.
Owing to large $m_{t}, b \rightarrow s \gamma$ penguin transition is neither quark mixing nor loop suppressed.

Consider Λ_{b} pole diagram and apply heavy quark spin symmetry and static b quark limit to evaluate tensor matrix element in

$$
\begin{aligned}
\left\langle\Lambda\left(p_{\Lambda}\right) \gamma(\varepsilon, k)\right| \mathcal{H}_{W}\left|\Lambda_{b}\left(p_{\Lambda_{b}}\right)\right\rangle= & -i \frac{G_{F}}{\sqrt{2}} \frac{e}{8 \pi^{2}} V_{t s}^{*} V_{t b} 2 c_{7}^{\text {eff }} m_{b} \varepsilon^{\mu} k^{\nu} \\
& \times\langle\Lambda| \bar{\sigma} \sigma_{\mu \nu}\left(1+\gamma_{5}\right) b\left|\Lambda_{b}\right\rangle
\end{aligned}
$$

which can be related to $\Lambda_{b} \rightarrow \Lambda$ form factors.

The decay rate depends on $g_{\Lambda_{b} \rightarrow B^{-} p}$ and form factors of $\Lambda_{b} \rightarrow \Lambda$:

$$
\mathcal{B}\left(B^{-} \rightarrow \Lambda \bar{p} \gamma\right) \approx 1.1 \times 10^{-6}
$$

For comparison,

$$
\mathcal{B}\left(\Lambda_{b} \rightarrow \Lambda \gamma\right)=1.9 \times 10^{-5}
$$

$\mathrm{CLEO} \Rightarrow\left[\mathcal{B}\left(B^{-} \rightarrow \Lambda \bar{p} \gamma\right)+0.36 \mathcal{B}\left(B^{-} \rightarrow \Sigma^{0} \bar{p} \gamma\right)\right]_{E_{\gamma}>1.5 \mathrm{GeV}}<3.9 \times 10^{-6}$

Penguin-induced radiative baryonic B decay modes should be readily accessible by B factories.

Summary

1. $B \rightarrow \mathcal{B}_{1} \overline{\mathcal{B}}_{2}$ receives main contributions from internal W-emission diagram. The predicted branching ratios are in general very small, typically less than 10^{-7}.
2. As predicted, many of charmless three-body final states have a larger rate than their two-body counterparts.
3. Three-dominated modes $\bar{B}^{0} \rightarrow n \bar{p} \pi^{+}\left(\rho^{+}\right)$have BR of order of $(1 \sim 4) \times 10^{-6}$ for π^{+}production and $(3 \sim 5) \times 10^{-6}$ for ρ^{+}production. Moreover, $\mathcal{B}\left(\bar{B}^{0} \rightarrow p \bar{n} \pi^{-}\right) \sim 3 \times 10^{-6}$ and $\mathcal{B}\left(\bar{B}^{0} \rightarrow p \bar{n} \rho^{-}\right) \sim 8 \times 10^{-6}$ are predicted.
4. For penguin-dominated modes we predict that $\mathcal{B}\left(B^{-} \rightarrow p \bar{p} K^{-}\right) \sim 4 \times 10^{-6}$, and the decays $B^{-} \rightarrow p \bar{p} K^{*-}, \bar{B}^{0} \rightarrow p \bar{n} K^{-}$and $\bar{B}^{0} \rightarrow p \bar{n} K^{*-}$ all have the branching ratio of order 2×10^{-6}. Therefore, several $B \rightarrow N \bar{N} K^{(*)}$ decays should be easily seen by B factories at the present level of sensitivity.
5. The rates of $B^{-} \rightarrow \Lambda \bar{p} \gamma$ and $B^{-} \rightarrow \Xi^{0} \bar{\Sigma}^{-} \gamma$ are sizable, of order 1×10^{-6}.
