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Abstract

We give examples of isospectral non-isometric surfaces of genus two and three with

variable curvature, as well as hyperbolic orbifolds of genus two. We apply the first result

to construct isospectral potentials on a Riemann surface of genus two.

1. Introduction

Much work has been done on the spectral determination of geometry since Kac [15]

popularised the topic in the sixties. For a recent survey of this area, see Gordon [13].

However, certain details remain open: for the spectrum of the Laplacian acting on smooth

functions, the problem that concerns us here is the construction of pairs of isospectral non-

isometric surfaces of low genus. By a surface, we understand a compact two-dimensional

Riemannian manifold without boundary, reserving the term Riemann surface for one with

constant curvature −1 and referring to its metric as hyperbolic. The first examples of such

pairs of Riemann surfaces, due to Vignéras [19], had rather high genera. Later, in [17],

Sunada developed a technique for producing isospectral manifolds using certain group

theoretic properties that, when applied to surfaces, gave examples of genus g = 8n+17 for

n = 0, 1, 2, . . . . Buser [9] analysed and developed Sunada’s method to obtain examples

of genus 5 and genera ≥ 7. Brooks and Tse [6] added two of the missing genera, 4 and

6, of Riemann surfaces and also constructed an example of such a pair of genus 3 with

non-constant curvature.

In this paper we obtain three results for genus two: isospectral non-isometric surfaces;

isospectral potentials on a Riemann surface and isospectral but non-isometric Rieman-

nian orbifolds. We also obtain isospectral non-isometric surfaces of genus three, distinct

from those of [6]. In all cases there are infinite families of examples. This, of course, still

leaves open the question of whether there are isospectral non-isometric Riemann surfaces

of genus two or three.

The paper is arranged as follows. In Section 2, we recall the necessary definitions for,

and give a statement of, Sunada’s theorem, for proofs and further details of which we

refer to Buser [9]. In Section 3, we show how to construct surfaces to which Sunada’s
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theorem will apply and, in Section 4, we describe the groups that give rise to our specific

examples of isospectral non-isometric surfaces. In Section 5, we give isometric hyperbolic

metrics on the genus two surfaces from Section 4 and, hence, obtain isospectral potentials

by applying Sunada’s theorem to Schrödinger operators. Finally, in Section 6, we describe

isospectral non-isometric orbisurfaces of genus two that have the hyperbolic metric except

at their singularities. Throughout the paper manifolds and, in particular, surfaces will

be compact and without boundary.

2. Sunada’s theorem

In order to state Sunada’s theorem, we require the following group theoretic concepts.

Definition 2·1. Let T be a finite group, and let U1 and U2 be subgroups of T . Then

(i) U1 and U2 are almost conjugate or Gassmann equivalent if for all g ∈ T ,∣∣[g] ∩ U1

∣∣ = ∣∣[g] ∩ U2

∣∣,
where [g] denotes the conjugacy class of g in T , and |X| the number of elements

of the set X;

(ii) (T,U1, U2) is called a Sunada triple if, in addition to (i), U1 and U2 are non-

conjugate in T. We refer to the index of the subgroups Ui in T as the index of the

Sunada triple.

The following version of Sunada’s theorem may be found in [9].

Theorem 2·2 (Sunada). If T is a finite group of isometries of a compact Riemannian

manifold M with Gassmann equivalent subgroups U1 and U2 that act freely on M , then

the quotient manifolds Mi = Ui\M , when given the quotient metrics, are isospectral for

the Laplacian acting on smooth functions.

We require that U1 and U2 not be conjugate in T since, if they were, then M1 and

M2 would be isometric. Unfortunately non-conjugacy is not a sufficient condition for

non-isometry. Indeed our examples illustrate that insufficiency: we shall see that, if the

covered manifolds are given metrics of constant curvature −1, making them Riemann

surfaces, then they are isometric; a fact of which we make use in Section 5. However

Sunada also showed that it is possible to ensure that M1 and M2 are not isometric,

while still remaining isospectral, by giving them the metrics induced from a ‘bumpy

metric’ on M0 = T\M , provided T itself acts freely on M so that M0 is indeed a

differential manifold. A ‘bumpy metric’ is one such that no two points have isometric

neighbourhoods, and Sunada showed that, given any metric, there exists a bumpy metric

which is arbitrarily close in the C∞-topology to the given one. In our case T , necessarily

for our purpose, will not act freely on the surfaces we consider. However all its isotropy

groups will be (finite) cyclic so thatM0 will be a topological surface which may be imbued

with a differential structure and a bumpy metric. The argument that non-isometry of the

Mi then follows from the non-conjugacy of U1 and U2 may be applied to the complement

of the images in the Mi of the (isolated) points in M with non-trivial isotropy groups.

3. Isospectral surfaces

In order to obtain the surfaces to which we shall apply Sunada’s theorem using a

given Sunada triple (T,U1, U2), we first construct a surface M on which T acts as a
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group of diffeomorphisms: when we choose a metric on M , these diffeomorphisms will

be isometries. The non-trivial isotropy groups of this action will all be point stabilisers,

which we can describe explicitly in order to ensure that U1 and U2 act freely.

3·1. Construction of the surfaces

The following well-known construction works for any number of generators but, since

both our groups in Section 4 are two-generator groups, we describe only that case. The

adaption to the three generator group that we use in section 6 is straightforward.

P

S R

αα−

β
−

β

θP

θS Rθ

θQ

Q.

Fig. 1. The quadrangular domain D

Given generators a, b of T , we choose a planar quadrangular domain D, illustrated in

Figure 1, with its boundary edges being given the induced orientation from that of the

plane and α and α having the same length, as do β and β. We then take the disjoint

union of copies Dg of D, one for each element g of T , and for each g ∈ T we identify the

copy, αg, of the edge α on Dg, by an orientation reversing isometry, with the copy, αga,

of the edge α on Dga and similarly identify the edge βg with the edge βgb.

The left action of h ∈ T on the resulting surface M is defined by identifying each copy,

Dg, of D in M with the copy Dhg in the natural way. This respects the identifications we

have made and so is well-defined on M . Moreover T acts on M with only the vertices as

potential fixed points.

In forming M , the vertex Pg in Dg is identified with |a| − 1 other copies Pga, Pga2 , . . .

to form a vertex P̃g in M , where |a| denotes the order of a. Then ag := gag−1 ∈ T maps

Pgar to Pgar+1 and so fixes P̃g which, since P̃ga = P̃g, etc., is also fixed by each (ar)g.

However no other elements of T can fix it.

Similarly, other copies Ph of P , where h ̸= gar, are identified in cycles of length |a| to
form other vertices P̃h in M with stabilisers generated by ah. Analogously the copies Qg

of the vertex Q are identified in cycles of length |b| to give vertices in M with stabilisers

generated by conjugates of b. However, the vertex Rg of Dg is identified with Sga in Dga

and then with Rgab in Dgab etc., so that it takes |ab| copies of each of R and S to form

a vertex in M with stabiliser generated by a conjugate of ab. The free left action of Ui

on M identifies the copies of D forming M in sets of size |Ui|, one for each cost of Ui

in T . Since, as noted above, this left action respects the identifications made in forming

M , this has the effect that Mi may be constructed from |T |/|Ui| copies of D, labelled

by the cosets Uig with corresponding edges in the different copies identified, as before,
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according to the right action of the chosen generators on these cosets: the edge α in the

copy of D labelled by Uig is identified, by an orientation reversing isometry, with the

copy of ᾱ in the copy of D labelled by Uiga, etc. See [6], [8] or [9] for full details.

Note that, if we wishM to remain smooth at the vertices when it inherits a Riemannian

metric from the various copies of D, the angle θP at P must be 2π/|a|, θQ must be 2π/|b|
and θR + θS must be 2π/|ab|. Such a quadrangle may not be realisable in the Euclidean

plane, but those that we require will always be realisable in the hyperbolic plane and,

for any metric of constant curvature, the symmetry will imply that θR = θS .

Since the vertices in copies of D are identified in sets of size |a|, |b| and |ab|, respectively,
and the quotient has |T | faces and 2|T | edges, we see that

χ(M) = |T |
(

1

|a|
+

1

|b|
+

1

|ab|
− 1

)
.

Then, provided the Gassman subgroups Ui of the Sunada triple (T,U1, U2) avoid all

the stabilisers in T described above, the Ui will act freely on M and so both quotients

Mi will have Euler characteristic

χ(Mi) = k

(
1

|a|
+

1

|b|
+

1

|ab|
− 1

)
,

where k is the common index of the subgroups Ui in T .

4. Examples of isospectral non-isometric surfaces

4·1. Isospectral surfaces of genus two

In [5], Bosma and de Smit proved that, up to isomorphism, there are exactly 19 Sunada

triples of index at most 15, and the group T that we consider here is the one they denote

by G2,2,3 ∩ A12. Their notation reflects the fact that G2,2,3 is one of the 3-step abelian

groups Gp,m,k constructed in [11].

In [16], the properties required of T and its subgroups were deduced, using the com-

puter algebra package MAGMA, from two particular generators, while in [12] an account

is given closely following the original description of T in [11]. Here instead we shall give

an explicit construction of T directly as a subgroup of the alternating group on twelve

symbols. This will have the advantage of making it possible for the reader to make an

elementary check of our claims.

We start with the dihedral group D of order eight, realised as the subgroup of the

permutation group on the set {0, 1, 2, 3} generated by ϕ = (0 1 2 3) and ρ = (1 3). We

also name the elements σ = ϕρ = (0 1)(2 3), κ = ϕ2 = (0 2)(1 3) and the identity ι,

noting that κ is central.

We then consider, in the group of permutations on the twelve symbols 0, 1, · · · , 11, the
subgroup L comprising those permutations that preserve the congruence classes modulo

3 and, on each class, act in the obvious way as a member of D; for example, κ acts on

the class of symbols congruent to 1 modulo 3 as (1 7)(4 10). We denote by (θ0, θ1, θ2)

the element of L that acts as θi ∈ D on the class of symbols congruent to i modulo 3.

Then the elements a = (κ, ι, ι), b = (ι, κ, ι) and c = (ι, ι, κ) generate a subgroup K of

L of exponent 2 and order 8 that, together with its cosets determined by d = (ρ, ϕ, σ),

e = (σ, ρ, ϕ) and f = (ϕ, σ, ρ), forms a group H of order 32: it suffices to observe that,

since κ is central in D, each of a, b and c commutes with d, e and f ; that d2 = b, e2 = c,

f2 = a and that, since σϕρ = ι and ρϕσ = κ, def is the identity and fed = abc, which
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element we shall denote by z. Then the finite set H = K ∪Kd ∪Ke ∪Kf can be seen

to be closed under composition and so be a subgroup of L.

We now introduce the element s = (0 1 2)(3 4 5)(6 7 8)(9 10 11) that cycles the three

conjugacy classes modulo 3. Since ds := sds−1 = e, es = f and a = f2 etc., it follows that

H is a subgroup of the group T = ⟨d, s⟩ generated by d and s. Indeed, since Hs = H, H

is normal in T and so T is the union H ∪Hs∪Hs2 and has order 96. Note that, although

K is central in H, only the element z, and of course the identity, remains central in T .

In order to identify suitable Gassmann equivalent subgroups of T , we need to know

certain of its conjugacy classes. First note that H, being normal in T , must be a union

of conjugacy classes. The elements of order 2 are all in K and form the classes {a, b, c},
{bc, ca, ab} and {z}. The remaining elements ofH are all of order 4 and, from the relations

stated above, we find de = f−1abce−1 = zd and so (cd)e = cde = z(cd). These identities,

together with their cyclically permuted versions and their inverses, give us the following

four conjugacy classes in T of elements of order 4:

d, e, f, zd, ze, zf ;

bd, ce, af, zbd, zce, zaf ;

cd, ae, bf, zcd, zae, zbf ;

ad, be, cf, zad, zbe, zcf.

From these results it is clear that the groups U1 = ⟨c, d⟩ and U2 = ⟨b, e⟩ are Gassmann

equivalent subgroups of T of order 8, each the direct product of cyclic groups of order 2

and order 4. They are not conjugate since both c and d, and hence all elements of U1,

fix 0 and 6, whereas b and e have no common fixed point.

To produce surfaces of genus 2, and so Euler characteristic −2, from our chosen quad-

rangular domain D and this Sunada triple of index 12, we choose generators of order 3

with a product of order 6 since 12(1/3 + 1/3 + 1/6 − 1) = −2. In fact, T = ⟨s, ds⟩ and

(ds)3 = dsds2s2ds = def = id and (sds)3 = sds2ds2ds = edf = z of order 2. In the re-

sulting surfaces, the vertex stabilisers under the action of T are generated by conjugates

of non-trivial powers of s, ds and sds. All these are of orders 3 or 6 and so not in U1 or

U2, except possibly for (sds)3 = z. However, this last is central and so not conjugate to

any element of U1 or U2. Hence the Gassmann equivalent subgroups Ui act freely on M

as required for Sunada’s theorem, and so the resulting surfaces Mi will be isospectral.

As explained in Section 2, when given the metrics induced from a bumpy metric on the

surface that they both cover, they will not be isometric.

Since Sunada’s result is that bumpy metrics are dense with respect to the C∞-topology

on the space of all metrics, we easily obtain results such as the following.

Theorem 4·1. There is an infinite sequence of pairs of Riemannian metrics (g1,k, g2,k),

k = 1, 2, · · · , on the topological surface N of genus two, such that no two distinct surfaces

(N, gi,k) and (N, gj,l) are isometric and no two are isospectral except that, for each k,

(N, g1,k) and (N, g2,k) are isospectral. Each sequence gi,k, k = 1, 2, · · · , converges with

respect to the C∞-topology to the hyperbolic metric g.

Proof. The surface N is that denoted M1 or M2 above and the hyperbolic metric g

on N arises from that on D or, except at its singular vertices, its quotient M0. Since

N has genus two, with the hyperbolic metric it has area 4π. Then, with the conformal

metric (1+1/k)g, it would have area 4(1+1/k)π. So we choose the metrics g1,k and g2,k
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to be those induced from a bumpy metric on M0 sufficiently close to (1 + 1/k)g for the

sequence Ak = area(N, g1,k) = area(N, g2,k) to be strictly decreasing as k → ∞. Then,

by the construction, (N, g1,k) and (N, g2,k) are, for each k, isospectral but not isometric.

However, since the area is a spectral invariant, no other pair can be isospectral.

Remark. As we shall see in Section 5, the surfaces constructed in this subsection are

isometric whenever they are endowed with the hyperbolic metric. While this thwarts our

aim for non-isometric Riemann surfaces, it will allow us to construct pairs of distinct

isospectral potentials on the resulting unique Riemann surface.

4·2. Isospectral surfaces of genus three

Isospectral non-isometric surfaces of genus three have been constructed by Brooks and

Tse [6] using the group SL(3,Z/2Z). Here we present further examples using the group

T := GL(2,Z/4Z), which has order 96. Define subgroups

U1 := {x ∈ T |xe1 = e1},
U2 := {xτ |x ∈ U1},

where e1 =

(
1

0

)
and write xτ for the transposed matrix of x. Then, to fix e1, the

first column of each matrix in U1 must be e1, so that, writing the elements of Z/4Z as

0,±1, 2,

U1 =

{
x =

(
1 n

0 m

) ∣∣∣m = ±1, n ∈ Z/4Z
}

= ⟨u,w⟩ and U2 = ⟨uτ , w⟩

where

u =

(
1 1

0 1

)
, w =

(
1 0

0 −1

)
.

Since u and uτ are of order 4 while, writing uw for the conjugate wuw−1 of u, uw = u−1

and (uτ )w = (uτ )−1, it follows that both U1 and U2 are dihedral groups of order 8 and

so index 12 in T .

We shall see that U1 and U2 are Gassmann equivalent but non-conjugate and obtain

generators a, b of T , both of order 4 and with product of order 6. Then, using the

quadrangular domain D again, we shall obtain isospectral surfaces that, granted they are

non-singular, have Euler characteristic 12(1/4+ 1/4+ 1/6− 1) = −4 and so are of genus

3 as required. Let

a :=

(
1 2

1 1

)
, b :=

(
1 −1

2 −1

)
, c := ab =

(
1 1

−1 2

)
,

s :=

(
0 1

1 0

)
, v :=

(
2 1

1 0

)
.

Then us = uτ , (wu)v = (wu)τ , (wu2)c = (wu2)τ and (wu3)v = (wu3)τ show directly

that U1 and U2 are Gassmann equivalent. In order to see that they are not conjugate,

one may observe that the elements of U1 have a common eigenvector corresponding to

the eigenvalue 1, whereas members of U2 have no common eigenvector. Non-conjugacy

may also be seen from the representation, which will be seen to be faithful, of T as
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permutations of the right cosets of U2 that we shall use to show that the actions of U1

and U2 on the surfaces that we shall construct are free.

Note that b2 is the central element

(
−1 0

0 −1

)
and c has order 6. Then, writing

−x for b2x, the elements ±ck, k = 0, 1, ..., 5, form a group of order 12 isomorphic with

C6 ×C2. None of these elements, other than the identity, lie in U1 or U2, so we may use

them as coset representatives.

Denoting the coset U2c
k by k and −U2c

k by k, the permutation representation ρx of

x ∈ T on these cosets is defined by U2c
kx = U2c

ρx(k). Note that each element of U2c
k

has its first row equal to that of ck. So U2c
ka is determined by the right action of a on

the first row of ck. The first rows of ck, k = 0, ..., 5, are

(1 0), (1 1), (0 −1), (1 2), (−1 1), (2 1),

respectively. Hence the permutation representations of a and b on the cosets of U2 are,

respectively

ρa = (0 3 0 3)(1 5 4 2)(1 5 4 2)

ρb = (0 4 0 4)(1 3 1 3)(2 5 2 5),

confirming that that of c = ab is

ρc = ρb ◦ ρa = (0 1 2 3 4 5)(0 1 2 3 4 5).

By the definition of the right action on the cosets, it is immediate that every element of

U2 must fix the identity coset, 0, and hence also 0. Then every element of U1, since it

is conjugate to some element of U2, must also have fixed points. Recall that, using the

quadrangular domain D of Figure 1 and the generators a, b of T to construct a surfaceM

on which T acts, the only possible non-trivial stabilisers of points ofM will be conjugates

of non-trivial powers of a, b or c. However, by the above, none of these have fixed points so

cannot lie in U1 or U2. Thus the subgroups U1 and U2 will act freely on M and Sunada’s

theorem will ensure that the resulting quotient surfaces Mi are isospectral. Once again,

since U1 and U2 are not conjugate, when given the metrics induced from bumpy metrics

on the surface M0 that they both cover, the surfaces Mi will not be isometric.

The resulting metrics on Mi will not quite be bumpy since all the |T |/|Ui| points of

a fibre over a non-singular point in M0 will have isometric neighbourhoods. In our case

above these are sets of 12 points. In the Brooks-Tse example there are 7 points in each

set with isometric neighbourhoods, so their surfaces cannot be isometric with ours.

Once again we have sequences of pairs of Riemannian metrics (g1,k, g2,k) on the topo-

logical surface of genus three with properties analogous to those of the metrics in Theorem

4·1.

5. Isospectral potentials on surfaces of genus two

We would have liked our surfaces in the previous section to be Riemann surfaces. Indeed

we can make them so: however, then they are isometric. For the genus two case, we take

our fundamental quadrangle to be hyperbolic with θP = θQ = 2π/3 and θR + θS = π/3.

Such a quadrangle is easily shown to exist with θR = θS = π/6. To check whether

the resulting Riemann surfaces are isometric we look at the Cayley-Schreier diagrams

for the action of our generators s and ds on the cosets of U1 and U2. We can take

coset representatives for both subgroups to be the twelve distinct elements frst. The
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(b) The action on cosets of U2

Fig. 2. The action of ds on cosets of U1 and U2

calculations are then straightforward: using the relations in Section 4.1, extract and

replace d, respectively e, from the subgroups as appropriate. For example, sd = es,

de = f−1, fe = zef and z = abc give

(U1s)ds = U1es
2 = U1des

2 = U1f
3s2;

and (U2fs)ds = U2fes
2 = U2zefs

2 = U2abcfs
2 = U2f

3s2,

which are as long as any calculation required in either case. We obtain the diagrams (a)

and (b) in Figure 2 where the arrows indicate the action of ds on the various cosets: the

action of s, which is not shown, cycles each column vertically down for the cosets of U1

and vertically up for the cosets of U2. The top row is repeated at the bottom in each

case for clarity.

Note that there is a “colour preserving”, orientation reversing isomorphism between

the two Cayley-Schreier diagrams, that is, a bijection between the cosets of U1 and those

of U2 under which the actions of s and ds on the former correspond to those of s−1

and (ds)−1 on the latter. Since there is also an, orientation reversing, isometry of our

fundamental domain interchanging the edges α and β with α and β respectively, it follows

that, if M1 and M2 are given the hyperbolic metrics inherited from D, then there is an

orientation reserving isometry between them.

Two smooth functions ϕ1 and ϕ2 on a smooth manifold M are said to be isospectral

potentials if the spectrum of ∆+ϕ1 is identical to that of ∆+ϕ2. Guillemin and Kazdan

[14] showed that for compact, negatively curved 2-manifolds with simple length spec-

trum, the spectrum of ∆ + ϕ uniquely determines the potential ϕ and later Croke and

Sharafutdinov [10] showed that this is also true for such manifolds of any dimension.

But it was pointed out by Brooks [4] that for a metric of constant negative curvature,

the length spectrum is not necessarily simple and so the spectral rigidity of the potential

does not necessarily hold for Riemann surfaces. Indeed, Brooks constructed isospectral

potentials on a surface of genus three and we do the same for our surface of genus two.

Let, then, M1 and M2 be our Riemann surfaces of genus two and ψ : M1 −→ M2 be

the orientation reversing isometry between them. If M0 = T\M and π1 : M1 −→ M0,

π2 : M2 −→ M0 are the natural projections, let ϕ be a function on M0 such that for
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ϕ1 = ϕ ◦ π1 and ϕ2 = ϕ ◦ π2, we have ϕ1 ̸= ϕ2 ◦ ψ. Clearly, uncountably many such

functions exist. As proved by Brooks [3], Sunada’s result may be extended to show that

∆+ϕ1 onM1 and ∆+ϕ2 onM2 are isospectral; thus ϕ1 and ϕ2◦ψ are distinct isospectral

potentials on M1:

Theorem 5·1. There is a Riemann surface of genus two carrying uncountably many

pairs of distinct isospectral potentials.

6. Isospectral orbifolds of genus two

If we relax our requirement for isospectral non-isometric Riemann surfaces to their

being Riemannian orbifolds, then we can achieve examples of genus two. See [18] for

relevant details of orbifolds and, for the extension of Sunada’s result to this context

see, for example, [1] and [2]. The Sunada triple below was first used for isospectral

constructions by Sunada in [17] and next by Buser in [7].

We take the group T of order 32 which is the semi-direct product of the additive group

of the ring Z/8Z with its multiplicative group of units. Writing the elements of T as

(m,n) where m ∈ {1, 3, 5, 7} is a unit and n ∈ {0, 1, 2, 3, 4, 5, 6, 7} is an arbitrary element

in Z/8Z, we note that T has a convenient representation as the group of 2 × 2 upper

triangular matrices of the form

(
1 n

0 m

)
. From the general conjugacy relation

(m,n)(p,q) = (m, p(n+ q(m− 1))),

it may be checked that

U1 = {(1, 0), (3, 0), (5, 0), (7, 0)}
and U2 = {(1, 0), (3, 4), (5, 4), (7, 0)}

are Gassmann equivalent non-conjugate subgroups of T so that (T,U1, U2) is a Sunada

triple of index 8: (3, 0)(p,q) = (3, 4) if and only if q is 2 or 6 whereas (5, 0)(p,q) = (5, 4) if

and only if q is odd.

The product formula (m,n)(p, q) = (mp, np+ q) shows that a = (3, 2), b = (7, 1) and

c = (7, 2) are each of order 2 with product abc = (3, 3) of order 4. Since d := bc = (1, 1)

generates the normal subgroup isomorphic with Z/8Z and (1, 1)b = (1, 7) = (1, 1)−1, the

group ⟨b, c⟩ is dihedral of order 16 and, as it does not contain (3, 2), ⟨a, b, c⟩ is the entire

group T . Thus we have the required data for the construction of isospectral surfaces

except that, if we impose a hyperbolic metric, we shall have singular vertices.

The appropriate domain is a hexagon with successive edges α, α, β, β, γ, γ where, since

these edges will correspond to generators of order 2, the vertex angles between α, α,

and β, β, and γ, γ must be π. Thus in effect we have an arbitrary hyperbolic triangle

as in Figure 3 with additional vertices P,Q,R at the centre of each edge that will,

potentially, give rise to singular vertices. In order to exclude further singular vertices,

since, analogously to the case for the quadrangular domain, the remaining isotropy groups

are generated by powers of conjugates of abc, which has order 4, we require the vertex

angles of the hyperbolic triangle to sum to π/2. Note however that, since a hyperbolic

triangle is determined by its angles, this gives us a continuous two-parameter family of

examples.

Since no power of d, other than (1, 0), lies in U1 or U2, we may take these powers as

coset representatives. Then, for each generator x, writing Uid
kx = Uid

xi(k), we note that
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.Q

P
α

δ

γ

γ

β

β
α

R

Fig. 3. The fundamental hyperbolic domain D

for x = (m,n), if (m, pi) is the unique element of Ui with m as its first coordinate, then

pi ∈ {0, 4} and xi(k) = km+ n− pi. Then the permutations xi are:

a1 = (0 2)(1 5)(4 6)(3)(7)

a2 = (0 6)(1)(2 4)(3 7)(5)

b1 = b2 = (0 1)(2 7)(3 6)(4 5)

c1 = c2 = (0 2)(1)(3 7)(4 6)(5).

Identifying the eight copies Dk of our fundamental domain accordingly we obtain the

60 7
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v v

vw w

w w

w
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γ
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γ
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β

β
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α α

γ

γ
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α α

α α

α α

α α

α α

β

β
β
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γ
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1M

(a) The orbisurface arising from U1

2M

1
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2
7 3 6 4 5

v v

v vww

w

w

w w

γ

γ

α α
β

β
β

β

α α

γ

γ
γ

γ

α α

α α

α α

α α

α α
β

β
β

β

α α

γ

γ

(b) The orbisurface arising from U2

Fig. 4. Isospectral non-isometric orbisurfaces of genus 2

orbifolds illustrated in Figure 4, where the hyperbolic domain Dk is mis-represented by

a flat equilateral triangle and labelled simply k, with certain of the identifications of the

edges having already been carried out. The remaining identifications are of two types:

the dotted arrows indicate two pairs of edges from two different domains that should

be identified; whereas each of the solid arrows indicates two edges from a single domain

that should be identified, giving rise to a singularity of order two. Each of M1 and M2

has four such singularities, but the pair of singularities on the boundary of (the quotient

of) D1 in M2, as well as those on the boundary of D5, are closer together than any pair

in M1. If δ is the geodesic in D joining P to R, as illustrated in Figure 3, the distance



Isospectral surfaces 11

between the singularities formed in M2 from the identifications on the boundary of D1

will be l(δ), the length of δ. Similarly the pair formed by identifications on the boundary

of D5 will also be l(δ) apart.

To see that the singularities in M1 are further apart than this, note that the identi-

fications lead to just two quotient vertices, other than the singular ones, in each of M1

and M2 and these are indicated by v and w in the diagrams. In M2 all four singularities

are adjacent to w, while in M1 two are adjacent to v and two to w. In the latter surface,

the two singularities p1 and p2 adjacent to v are joined by geodesics of length 2l(δ) and

2l(α). The former is the obvious one internal to the diagram. For the latter we note that,

when the copy of α in D6 is identified with the copy of α in D4, since the sum of the

interior angles of D is π/2 and one of each occurs both in passing from α in D7 to α in

D6 and from α in D4 to α in D3, α in D7 followed by α in D3 form an unbroken geodesic

from p1 to p2 of the stated length.

The singularities adjacent to w similarly have geodesics of length 2l(δ) and 2l(γ) be-

tween them. It is clear from the diagram that there is no shorter geodesic joining the

singularities adjacent to the same vertex and that those joining members of different

pairs are longer still, as v and w are 2min{l(α), l(γ)} apart. Thus M1 and M2 cannot be

isometric, certainly provided l(δ) < 2min{l(α), l(γ)}.
Since Mi, which are topological surfaces of genus one, as can be seen from Figure 4,

have four singularities of order two, the orbisurface Euler characteristic of each is

χ(Mi) = 0−
4∑

i=1

(1− 1

2
) = −2

so that they are, as claimed, orbisurfaces of genus two. Note also that, since the area of

the fundamental domain is π − π/2, the area of each orbifold is 4π, in accord with the

Gauss-Bonnet theorem for orbifolds ([18]).

Theorem 6·1. There exists a two real parameter family of pairs of isospectral non-

isometric hyperbolic orbisurfaces of genus two which are topological tori, each with four

cone points of order 2.
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