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Background

Potentials

Let UD denote the potential of a (bounded) domain D in Rn

UD(x) = cn

∫
D
|x − y |2−ndy (n ≥ 3)

and for n = 2 we have the logarithmic potential. Here cn is a
normalization factor. In general we shall consider smooth
densities f and the weighted potential

UD,f (x) = cn

∫
D

f(y)dy
|x − y |n−2 dy

but for simplicity of notation we shall always write U for the
potentials with density fχD .
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Background

Regularity of potentials

It is well known that a potential U satisfies (in the distributional
sense)

∆U = fχD .

In particular U has bounded Laplacian, and one obtains from
well-known classical Schauder theory that U ∈ C1,α for any
α < 1.
Note that U is not C2 across the boundary of D.
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Background

Regularity of potentials

Since we are interested in local regularity properties of U, we
shall always consider U around a given boundary point
x0
∈ ∂D, say in Br (x0).

For simplicity we assume x0 = 0, and r = 1. We thus
henceforth will denote by U a solution to

∆U = fχD in B1(0),

regardless of how it behaves outside B1.
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Regularity of potentials

Motivations

In elliptic (parabolic) pde one is in general interested in optimal
regularity of solutions to a given equation.

What is optimal regularity in general?
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Regularity of potentials

Motivations

In free boundaries, and the theory of quadrature domains
scaling is an effective tool. The scaling

Ur (x) =
U(rx) − U(0) − rx · ∇U(0)

r2

has ”invariant” Laplacian

∆Ur (x) = (∆U)(rx) = f(rx)χDr

where Dr is a scaled version of D. This is part of the technique
for local analysis of free boundaries.
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Regularity of potentials

Motivations

In particular one needs Ur to be bounded, that is

sup
B1

|Ur (x)| ≤ C

which amounts to

sup
Br

|U(x) − U(0) − x · ∇U(0)| ≤ Cr2.

In other words one would need C1,1-regularity at the origin.
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Regularity of potentials

Examples

Suppose ∂D is reasonably smooth to allow one-sided (C1,1)
solution to Cauchy problem

∆u = f in D ∩ B1 u = ∇u = 0 on ∂D ∩ B1.

Now the function w = U − u is h harmonic in B1 and hence C2.
Therefore U = w + u is C1,1.
A similar situation applies if ∂D allows a solution to Cauchy
problem from the exterior of D.
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Regularity of potentials

Examples

Next we consider the case of Dc being very thin at the origin
such that

|D2UDc
(0)| ≈

∫
Dc

dx
|x |n
≤ C < ∞.

In particular UDc
will be C1,1 at the origin.

Now w = UD + UDc
satisfy ∆w = f in B1 and hence it is C2.

Therefore UD = w − UDc
is C1,1 at the origin.

We thus raise the question of finding reasonable conditions that
make the potential UD to be C1,1 at the origin.
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Regularity of potentials

General cases

Suppose
U(x) = h(x) in Dc

∩ B1

for some harmonic function h in B1.

This would then imply that u = U − h satisfies a one-sided
Cauchy problem in D.

In case Dc is thick at the origin (a capacity density is enough)
then one can deduce that u, and hence U is C1,1 in B1/2.

Other variants of assumptions exists, e.g. if u ≥ 0 in B1 then
optimal smoothness follows easily.
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Regularity of potentials

General cases

Other examples are when

∇U = ∇h in Dc
∩ B1,

(h harmonic in B1) or even when |D2U| is bounded in Dc .

Probably the ultimate case would be when we have UD(x) is
C1,1 at the origin, from one side (say from Dc), and we ask
whether the same holds from the other side.

The answer to the first questions are given, but not to the last
one.
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Regularity of potentials

Results so far

Case ∇U = ∇h in Dc , with constant density for U, was settled
by Caffarelli-Karp-Sh 2000. Use of monotonicity formula and
blow-up techniques!

For Lipschitz densities, it was settled by Sh- 2003, use of
monotonicity formulas.

For the more general case D2U = 0 in Dc and with Dini density,
it was settled by Andersson-Lindgren-Sh CPAM-2013. Use of
Harmonic analysis technique.
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Regularity of potentials

Fully nonlinear cases

The nonlinear theory, i.e. replacing the Laplacian with F(D2u)
has also been done recently (Figalli-Sh.) as well as parabolic
versions of these.

The p-Laplacian operator, Monge-Ampere, and many other
operators, are yet not treated. One may also look at potentials
of fractional order.

Other variants that one may consider

L(up) = |up |
p

and what happens when p → 0.
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Regularity of potentials

Heuristics behind Harm-Anal technique

Let us assume D2U is uniformly bounded outside D. Since U is
W2,p(B1) (p > n) then it is C2 almost everywhere in B1.

We want to show D2U(x) is universally bounded in B1/2.
Fix any point z ∈ B1/2 and set

Ū := U(x) − U(z) − (x − z) · ∇U(z).

Sr = sup
Br (z)
|Ū(x)|/r2.

Need to show that for a universal C0

Sr ≤ C0 ∀r < 1/2.
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Regularity of potentials

Heuristics behind Harm-Anal technique

Define
λr = |B1(0) \ Dr |,

where Dr := 1
r (D − z).

Proposition: (J. Andersson) There is a universal constant M
such that for any 0 < r < 1 either of the following hold

Sr ≤ M, this is what we want
λr ≤

1
2λ2r , this says the complement is thin.
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Regularity of potentials

Heuristics behind Harm-Anal technique

The first observation is that

λr ≤
1
2
λ2r =⇒ λr / r ,

i.e.
|Dc
∩ Br | ≤ Crn+1.

We thus arrive at

D2UDc
(z) ≈

∫
Dc∩B1(z)

dy
|y − z|n

≤ C .

Let us see how we use this estimate.
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Regularity of potentials

Heuristics behind Harm-Anal technique

Set rk = 2−k , and consider now two cases:
lim infk Srk ≤ 3M,
lim infk Srk > 3M.

In the first case we obtain

|D2U(z)| = |D2U(0)| ≤ lim inf
k→∞

sup
B2−k (0)

2|U|
2−2k

≤ 2(C1 + 3M).

(Recall Ū := U(x) − U(z) − (x − z) · ∇U(z).)
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Regularity of potentials

Heuristics behind Harm-Anal technique

In the second case, there exists k0 such that:

Srk0
≤ 3M, and Srk > 3M, ∀k ≥ k0.

(That there is a k0, depends on S1 ≤ 3M.)

In particular by Andersson’s proposition one has

λr ≤ Cr ∀r ≤ 2−k0 .

Now set Urk0
(x) := 2−2k0Ū(2−k0x + z). Then∣∣∣∣Ūrk0

∣∣∣∣ (x) ≤ 3M in B1(0),
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Regularity of potentials

Heuristics behind Harm-Anal technique

We may write

Ūrk0
(x) = w(x) − Ū

Dc
rk0 (x),

where now ∆w = f(2−k0x + z), |w | ≤ C in B1, and f is Dini.

In particular |D2w(0)| ≤ C. From here we arrive at

D2U(z) = D2Ūrk0
(0) = D2w(0) + D2Ū

Dc
rk0 (0).

It remains to prove bound for the last term.
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Regularity of potentials

Heuristics behind Harm-Anal technique

The last term can be rewritten in terms of an integral, and we
have

|D2Ū
Dc

rk0 (0)| ≤

∫
Dc

rk0
∩B1

dx
|x |n
≤ C ,

where we used
λr ≤ Cr ∀r ≤ 2−k0 .

This gives the result.
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Regularity of potentials

John Andersson’s Dichotomy: Main idea

Proposition: There is a universal constant M such that either
of the following hold

Sr ≤ M
λr ≤

1
2λ2r .
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Regularity of potentials

John Andersson’s Proposition: Main idea

Set Ur (x) = U(rx)/r2, and let vr be such that

∆vr = −f(rx)χB1\Dr , vr = 0 on ∂B1.

Then Ur = wr + vr , with ∆wr = f(rx) and wr has the information
of supnorm of Ur on ∂B1. Also∫

B1/2

|D2vr |
2
≤ C |Dc

r ∩ B1| = Cλr .
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Regularity of potentials

John Andersson’s Proposition: Main idea

For clarity we assume D2U = 0 in Dc . Next

0 =

∫
Dc

r ∩B1/2

|D2Ur |
2 =

∫
Dc

r ∩B1/2

|D2wr + vr |
2.

In particular (by triangle ineq. and previous slide)∫
Dc

r ∩B1/2

|D2wr |
2
≤

∫
Dc

r ∩B1/2

|D2vr |
2
≤ Cλr .
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Regularity of potentials

John Andersson’s Proposition: Main idea

Let now w̃r = wr/Sr , then (for Sr ≥ M large) we have∫
Dc

r ∩B1/2

|D2w̃r |
2
≤

C
S2

r
λr ≤

C
M2λr ,

with w̃r solving ∆w̃r = f(rx)/Sr and supB1
|w̃r | = 1.

Now we need

C1λr/2 ≤

∫
Dc

r ∩B1/2

|D2w̃r |
2
≤

C
M2λr ,

which would give 2λr/2 ≤ λr , if M is large enough.
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Regularity of potentials

John Andersson’s Proposition: Main idea

This is another tricky part!

We need a kind of non-degeneracy for |D2w̃r |
2 on the set

Dc
r ∩ B1/2. Here is how we do it.

For the first inequality above we may now split w̃r into two parts:

w̃r = hr + gr

where hr is homogeneous harmonic polynomial of degree two
and gr satisfies

∆gr = f(rx)/Sr and gr = 0 on ∂B1.
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Regularity of potentials

John Andersson’s Proposition: Main idea

In this way we get rid of gr as it becomes uniformly C2, since f
is Dini (say).
For hr we have D2hr is a constant matrix, so we obtain the
volume

c0λr/2 =

∫
Dc

r ∩B1/2

|D2hr |
2
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Regularity of potentials

John Andersson’s Proposition: Main idea

All to all we have

c0λr/2 − c1λr/2/M =

∫
Dc

r ∩B1/2

|D2hr |
2
−

∫
Dc

r ∩B1/2

|D2gr |
2

≤

∫
Dc

r ∩B1/2

|D2w̃r |
2
≤

C
M2λr

For M large enough we have

2λr/2 ≤ λr .
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