On the uniqueness of quadrature surfaces

Michiaki Onodera

Kyushu University

KIAS Nonlinear PDE Seminar Korea Institute for Advanced Study October 4, 2013

1 Introduction

- "Potato Kugel" problem
- Another equivalent formulation
- Previous studies

2 Main results

- Geometric flow
- Theorems

3 Outline of proof

- Characterization of a family of QS
- Unique solvability of the geometric flow
- Summary

Introduction	"Potato Kugel" problem
Main results	
Outline of proof	

Introduction

"Potato Kugel" problem Another equivalent formulation Previous studies

"Potato Kugel" problem

Let P be a "potato" with volume |B(0,1)| which attracts each point outside it as if all its mass were concentrated at a single point.

"Potato Kugel" problem Another equivalent formulation Previous studies

"Potato Kugel" problem

Let P be a "potato" with volume |B(0,1)| which attracts each point outside it as if all its mass were concentrated at a single point.

Question: What is the shape of P?

"Potato Kugel" problem Another equivalent formulation Previous studies

"Potato Kugel" problem

Let P be a "potato" with volume |B(0,1)| which attracts each point outside it as if all its mass were concentrated at a single point.

Question: What is the shape of **P**?

Answer:
$$P = B(0,1)$$
.

Introduction Main results Outline of proof Previous studies

"Potato Kugel" problem

Let P be a "potato" with volume |B(0,1)| which attracts each point outside it as if all its mass were concentrated at a single point.

Question: What is the shape of **P**?

Answer:
$$P = B(0, 1)$$
.

• Need to show that P = B(0,1) produces the same gravitational potential as $|B(0,1)|\delta_0$ does:

$$\begin{split} E*|B(0,1)|\delta_0 &= E*\chi_{B(0,1)} \quad \text{outside } B(0,1).\\ \text{(point mass)} \qquad \text{(potato)} \end{split}$$

Introduction "Potat Main results Anothe Outline of proof Previo

"Potato Kugel" problem Another equivalent formulation Previous studies

"Potato Kugel" problem

Let P be a "potato" with volume |B(0,1)| which attracts each point outside it as if all its mass were concentrated at a single point.

Question: What is the shape of **P**?

Answer:
$$P = B(0,1)$$
.

• Need to show that P=B(0,1) produces the same gravitational potential as $|B(0,1)|\delta_0$ does:

$$\begin{split} E*|B(0,1)|\delta_0 &= E*\chi_{B(0,1)} \quad \text{outside } B(0,1).\\ \text{(point mass)} \quad \text{(potato)} \\ \left(\text{i.e.,} \quad \frac{|B(0,1)|}{|x|^{N-2}} = \int_{B(0,1)} \frac{dy}{|x-y|^{N-2}} \quad (x \notin B(0,1)). \right) \end{split}$$

"Potato Kugel" problem Another equivalent formulation Previous studies

"Potato Kugel" problem

Let P be a "potato" with volume |B(0,1)| which attracts each point outside it as if all its mass were concentrated at a single point.

Question: What is the shape of **P**?

Answer:
$$P = B(0, 1)$$
.

• Need to show that P=B(0,1) produces the same gravitational potential as $|B(0,1)|\delta_0$ does:

$$\begin{split} E*|B(0,1)|\delta_0 &= E*\chi_{B(0,1)} \quad \text{outside } B(0,1).\\ \text{(point mass)} \quad \text{(potato)} \\ \left(\text{i.e.,} \quad \frac{|B(0,1)|}{|x|^{N-2}} = \int_{B(0,1)} \frac{dy}{|x-y|^{N-2}} \quad (x \notin B(0,1)). \right) \end{split}$$

• This is a special case of the mean value formula

$$|B(0,1)|h(0) = \int_{B(0,1)} h \, dy$$
 (h : harmonic)

applied to $h(y) = rac{1}{|x-y|^{N-2}}.$

"Potato Kugel" problem Another equivalent formulation Previous studies

"Potato Kugel" problem

Let P be a "potato" with volume |B(0,1)| which attracts each point outside it as if all its mass were concentrated at a single point.

Question: What is the shape of **P**?

Answer:
$$P = B(0, 1)$$
.

• Need to show that P=B(0,1) produces the same gravitational potential as $|B(0,1)|\delta_0$ does:

$$\begin{split} E*|B(0,1)|\delta_0 &= E*\chi_{B(0,1)} \quad \text{outside } B(0,1).\\ \text{(point mass)} \quad \text{(potato)} \\ \left(\text{i.e.,} \quad \frac{|B(0,1)|}{|x|^{N-2}} = \int_{B(0,1)} \frac{dy}{|x-y|^{N-2}} \quad (x \notin B(0,1)). \right) \end{split}$$

- This is a special case of the mean value formula $|B(0,1)|h(0)=\int_{B(0,1)}h\,dy~(h:~{
 m harmonic})$
- Actually, the problem is UNIQUENESS!

Introduction Main results Outline of proof Previous stu

"Potato Kugel" problem Another equivalent formulatior Previous studies

"Potato Kugel" problem (continued)

• We are led to a natural question:

What domain Ω corresponds to a given measure $\mu?$

Introduction Main results Outline of proof Previous studies

"Potato Kugel" problem (continued)

• We are led to a natural question: What domain Ω corresponds to a given measure μ ?

Quadrature Domains

For a measure μ with compact support, specify a domain Ω such that

$$\int h\,d\mu = \int_\Omega h\,dy \quad (orall h\in H(\overline\Omega)).$$

"Potato Kugel" problem (continued)

• We are led to a natural question: What domain Ω corresponds to a given measure μ ?

Quadrature Domains

For a measure μ with compact support, specify a domain Ω such that

$$\int h\,d\mu = \int_\Omega h\,dy \quad (orall h\in H(\overline\Omega)).$$

i.e., both μ and χ_Ω produce the same gravitational forces.

Introduction Main results Outline of proof Main results Main results Main results Main results Main results Main results Main results

"Potato Kugel" problem (continued)

• We are led to a natural question: What domain Ω corresponds to a given measure μ ?

Quadrature Domains

For a measure μ with compact support, specify a domain Ω such that

$$\int h\,d\mu = \int_\Omega h\,dy \quad (orall h\in H(\overline\Omega)).$$

i.e., both μ and χ_Ω produce the same gravitational forces.

- Quadrature Surfaces

For a measure μ with compact support, specify a surface $\partial\Omega$ such that

$$\int h\,d\mu = \int_{\partial\Omega} h\,d\mathcal{H}^{N-1} \quad (orall h\in H(\overline{\Omega})).$$

Introduction Main results Outline of proof Main results Main results Main results Main results Main results Main results Main results

"Potato Kugel" problem (continued)

• We are led to a natural question: What domain Ω corresponds to a given measure μ ?

– Quadrature Domains

For a measure μ with compact support, specify a domain Ω such that

$$\int h\,d\mu = \int_\Omega h\,dy \quad (orall h\in H(\overline\Omega)).$$

i.e., both μ and χ_Ω produce the same gravitational forces.

- Quadrature Surfaces

For a measure μ with compact support, specify a surface $\partial \Omega$ such that

$$\int h\,d\mu = \int_{\partial\Omega} h\,d\mathcal{H}^{N-1} \quad (orall h\in H(\overline{\Omega})).$$

i.e., both μ and $\mathcal{H}^{N-1} \lfloor_{\partial\Omega}$ produce the same gravitational forces.

Another equivalent formulation

.

- Quadrature Surfaces

For a measure μ with compact support, specify a surface $\partial\Omega$ such that

$$\int h\,d\mu = \int_{\partial\Omega} h\,d\mathcal{H}^{N-1} \quad (orall h\in H(\overline{\Omega})).$$

Another equivalent formulation

- Quadrature Surfaces

For a measure μ with compact support, specify a surface $\partial \Omega$ such that

$$\int h \, d\mu = \int_{\partial\Omega} h \, d\mathcal{H}^{N-1} \quad (orall h \in H(\overline{\Omega})).$$

This problem is equivalent to the following overdetermined problem:

$$\begin{cases} -\Delta u = \mu & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega, \\ \frac{\partial u}{\partial n} = -1 & \text{on } \partial \Omega. \end{cases}$$

Another equivalent formulation

- Quadrature Surfaces

For a measure μ with compact support, specify a surface $\partial\Omega$ such that

$$\int h \, d\mu = \int_{\partial\Omega} h \, d\mathcal{H}^{N-1} \quad (orall h \in H(\overline{\Omega})).$$

This problem is equivalent to the following overdetermined problem:

$$\left(egin{array}{cc} -\Delta u = \mu & ext{in } \Omega, \ u = 0 & ext{on } \partial \Omega, \ rac{\partial u}{\partial n} = -1 & ext{on } \partial \Omega. \end{array}
ight.$$

Namely, this elliptic equation possesses a solution u in Ω if and only if $\partial \Omega$ is a quadrature surface of μ .

Another equivalent formulation

- Quadrature Surfaces

For a measure μ with compact support, specify a surface $\partial\Omega$ such that

$$\int h\,d\mu = \int_{\partial\Omega} h\,d\mathcal{H}^{N-1} \quad (orall h\in H(\overline{\Omega})).$$

This problem is equivalent to the following overdetermined problem:

$$\left(egin{array}{cc} -\Delta u = \mu & ext{in } \Omega, \ u = 0 & ext{on } \partial \Omega, \ rac{\partial u}{\partial n} = -1 & ext{on } \partial \Omega. \end{array}
ight.$$

.)

Namely, this elliptic equation possesses a solution u in Ω if and only if $\partial \Omega$ is a quadrature surface of μ . This fact follows from the representation formula

$$u(x) = \int E(x-y) \, d\mu(y) - \int_{\partial\Omega} E(x-y) \, d\mathcal{H}^{N-1}(y).$$

Another equivalent formulation

- Quadrature Surfaces

For a measure μ with compact support, specify a surface $\partial \Omega$ such that

$$\int h\,d\mu = \int_{\partial\Omega} h\,d\mathcal{H}^{N-1} \quad (orall h\in H(\overline{\Omega})).$$

This problem is equivalent to the following overdetermined problem:

$$\left(egin{array}{cc} -\Delta u = \mu & ext{in } \Omega, \ u = 0 & ext{on } \partial \Omega, \ rac{\partial u}{\partial n} = -1 & ext{on } \partial \Omega. \end{array}
ight.$$

.)

Namely, this elliptic equation possesses a solution u in Ω if and only if $\partial \Omega$ is a quadrature surface of μ . This fact follows from the representation formula

$$u(x) = \int E(x-y) \, d\mu(y) - \int_{\partial\Omega} E(x-y) \, d\mathcal{H}^{N-1}(y).$$

Remark The uniqueness of a quadrature surface $\partial \Omega$ holds in the case where $\mu = \omega_N \delta_0$ by the method of moving planes.

Previous studies

 A good sufficient condition for uniqueness of QD is known. However, uniqueness of QS does not hold even for simple two Dirac measures.

- A good sufficient condition for **uniqueness of QD** is known. However, **uniqueness of QS** does not hold even for simple two Dirac measures.
- Existence

Introduction	"Potato Kugel" problem
Main results	Another equivalent formulation
Outline of proof	Previous studies

• A good sufficient condition for **uniqueness of QD** is known. However, **uniqueness of QS** does not hold even for simple two Dirac measures.

• Existence

	Quadrature Domains	Quadrature Surfaces
Super/Subsolutions		Beurling (1957)
		Henrot (1994)
Variational method	Sakai (1983)	Alt & Caffarelli (1981)
	Gustafsson (1985)	Gustafsson & Shahgholian (1996)

Introduction	"Potato Kugel" problem
Main results	
Outline of proof	Previous studies

• A good sufficient condition for **uniqueness of QD** is known. However, **uniqueness of QS** does not hold even for simple two Dirac measures.

• Existence

	Quadrature Domains	Quadrature Surfaces
Super/Subsolutions		Beurling (1957)
		Henrot (1994)
Variational method	Sakai (1983)	Alt & Caffarelli (1981)
	Gustafsson (1985)	Gustafsson & Shahgholian (1996)

Super/Subsolutions ——

 $\Omega_1: \mbox{ sub \& } \Omega_2: \mbox{ super \& } \Omega_1 \subset \Omega_2 \ \Rightarrow \ \Omega_1 \subset \exists \Omega \subset \Omega_2.$

Introduction	"Potato Kugel" problem
Main results	
Outline of proof	Previous studies

 A good sufficient condition for uniqueness of QD is known. However, uniqueness of QS does not hold even for simple two Dirac measures.

• Existence

	Quadrature Domains	Quadrature Surfaces
Super/Subsolutions		Beurling (1957)
		Henrot (1994)
Variational method	Sakai (1983)	Alt & Caffarelli (1981)
	Gustafsson (1985)	Gustafsson & Shahgholian (1996)

Super/Subsolutions

 $\Omega_1: \mbox{ sub \& } \Omega_2: \mbox{ super \& } \Omega_1 \subset \Omega_2 \ \Rightarrow \ \Omega_1 \subset \exists \Omega \subset \Omega_2.$

- Variational method

 $\partial \Omega$ is characterized as the set $\partial \{u>0\}$, where u is a critical point of

$$J(u):=\int_{\mathbb{R}^N}\left(rac{1}{2}|
abla u|^2-\mu u+rac{1}{2}\chi_{\{u>0\}}
ight)\,dx.$$

Introduction	"Potato Kugel" problem
Main results	Another equivalent formulation
Outline of proof	Previous studies

• A good sufficient condition for **uniqueness of QD** is known. However, **uniqueness of QS** does not hold even for simple two Dirac measures.

• Existence

	Quadrature Domains	Quadrature Surfaces
Super/Subsolutions		Beurling (1957)
		Henrot (1994)
Variational method	Sakai (1983)	Alt & Caffarelli (1981)
	Gustafsson (1985)	Gustafsson & Shahgholian (1996)

Introduction	"Potato Kugel" problem
Main results	Another equivalent formulation
Outline of proof	Previous studies

- A good sufficient condition for uniqueness of QD is known. However, uniqueness of QS does not hold even for simple two Dirac measures.
- Existence
- Continuous family

	Quadrature Domains	Quadrature Surfaces
Super/Subsolutions		Beurling (1957)
		Henrot (1994)
Variational method	Sakai (1983)	Alt & Caffarelli (1981)
	Gustafsson (1985)	Gustafsson & Shahgholian (1996)

Introduction	"Potato Kugel" problem
Main results	Another equivalent formulation
Outline of proof	Previous studies

- A good sufficient condition for uniqueness of QD is known. However, uniqueness of QS does not hold even for simple two Dirac measures.
- Existence
- Continuous family

	Quadrature Domains	Quadrature Surfaces
Super/Subsolutions		Beurling (1957)
		Henrot (1994)
Variational method	Sakai (1983)	Alt & Caffarelli (1981)
	Gustafsson (1985)	Gustafsson & Shahgholian (1996)

- Evolution equation

$$\mu(t) := \chi_{\Omega(0)} + t\delta_0 \qquad \mapsto \quad \Omega(t)$$

Introduction	"Potato Kugel" problem
Main results	Another equivalent formulation
Outline of proof	Previous studies

- A good sufficient condition for uniqueness of QD is known. However, uniqueness of QS does not hold even for simple two Dirac measures.
- Existence
- Continuous family

	Quadrature Domains	Quadrature Surfaces
Super/Subsolutions		Beurling (1957)
		Henrot (1994)
Variational method	Sakai (1983)	Alt & Caffarelli (1981)
	Gustafsson (1985)	Gustafsson & Shahgholian (1996)
Evolution equation	many authors (1947–)	
	Richardson (1972)	

Evolution equation
$$\mu(t) := \chi_{\Omega(0)} + t\delta_0 \qquad \mapsto \quad \Omega(t) \qquad \mathsf{Hele-Shaw} \ \mathsf{flow}$$

Introduction	"Potato Kugel" problem
Main results	
Outline of proof	Previous studies

- A good sufficient condition for **uniqueness of QD** is known. However, **uniqueness of QS** does not hold even for simple two Dirac measures.
- Existence
- Continuous family

	Quadrature Domains	Quadrature Surfaces
Super/Subsolutions		Beurling (1957)
		Henrot (1994)
Variational method	Sakai (1983)	Alt & Caffarelli (1981)
	Gustafsson (1985)	Gustafsson & Shahgholian (1996)
Evolution equation	many authors (1947–)	
	Richardson (1972)	

$$\begin{array}{c|c} \hline \text{Evolution equation} \\ \mu(t) := \chi_{\Omega(0)} + t\delta_0 & \mapsto & \Omega(t) & \text{Hele-Shaw flow} \\ \mu(t) := \mathcal{H}^{N-1} \lfloor_{\partial \Omega(0)} + t\delta_0 & \mapsto & \partial \Omega(t) \end{array}$$

Introduction	"Potato Kugel" problem
Main results	
Outline of proof	Previous studies

- A good sufficient condition for **uniqueness of QD** is known. However, **uniqueness of QS** does not hold even for simple two Dirac measures.
- Existence
- Continuous family

	Quadrature Domains	Quadrature Surfaces
Super/Subsolutions		Beurling (1957)
		Henrot (1994)
Variational method	Sakai (1983)	Alt & Caffarelli (1981)
	Gustafsson (1985)	Gustafsson & Shahgholian (1996)
Evolution equation	many authors (1947–)	O. (2013)
	Richardson (1972)	

$$\begin{array}{c|c} \hline \textbf{Evolution equation} & & \\ \mu(t) := \chi_{\Omega(0)} + t\delta_0 & \mapsto & \Omega(t) & \textsf{Hele-Shaw flow} \\ \mu(t) := \mathcal{H}^{N-1} \lfloor_{\partial \Omega(0)} + t\delta_0 & \mapsto & \partial \Omega(t) & \textsf{Our geometric flow} \end{array}$$

Introduction	"Potato Kugel" problem
Main results	Another equivalent formulation
Outline of proof	Previous studies

- A good sufficient condition for uniqueness of QD is known. However, uniqueness of QS does not hold even for simple two Dirac measures.
- Existence
- Continuous family

	Quadrature Domains	Quadrature Surfaces
Super/Subsolutions		Beurling (1957)
		Henrot (1994)
Variational method	Sakai (1983)	Alt & Caffarelli (1981)
	Gustafsson (1985)	Gustafsson & Shahgholian (1996)
Evolution equation	many authors (1947–)	O. (2013)
	Richardson (1972)	

$$\begin{array}{c|c} \hline \textbf{Evolution equation} \\ \mu(t) := \chi_{\Omega(0)} + t\delta_0 & \mapsto & \Omega(t) & \textbf{Hele-Shaw flow} \\ \mu(t) := \mathcal{H}^{N-1} \lfloor_{\partial \Omega(0)} + t\delta_0 & \mapsto & \partial \Omega(t) & \textbf{Our geometric flow} \end{array}$$

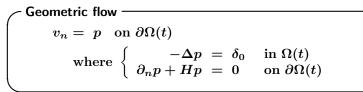
QD is unique for $\mu(t)$, but QS is not, in general. We will show that $\partial \Omega(t)$, continuously deformable from $\partial \Omega(0)$, is unique!

Geometric flow Theorems

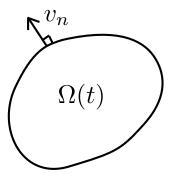
Main results

Geometric flow Theorems

Geometric flow

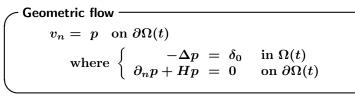


H: mean curvature of $\partial \Omega(t)$



Geometric flow Theorems

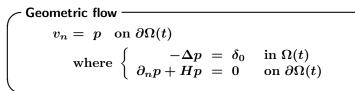
Geometric flow



H: mean curvature of $\partial \Omega(t)$

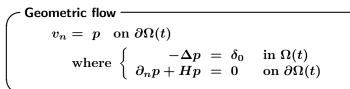
Comparison with Hele-Shaw flow $v_n = -\partial_n p \quad \text{on } \partial\Omega(t)$ where $\begin{cases} -\Delta p = \delta_0 & \text{in } \Omega(t) \\ p = 0 & \text{on } \partial\Omega(t) \end{cases}$

Geometric flow



• H > 0 ensures the unique solvability of the elliptic equation.

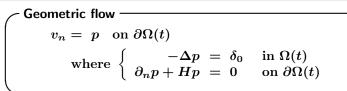
Geometric flow



- H > 0 ensures the unique solvability of the elliptic equation.
- $H \ge 0$ implies p > 0 on $\partial \Omega(t)$, by maximum principle.

Geometric flow Theorems

Geometric flow



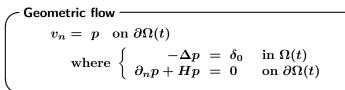
- H > 0 ensures the unique solvability of the elliptic equation.
- $H\geq 0$ implies p>0 on $\partial\Omega(t)$, by maximum principle.

$$\therefore \quad \text{If } p(x_0) = \min_{\partial \Omega(t)} p \le 0 \text{ for } x_0 \in \partial \Omega(t),$$

then $\partial_n p(x_0) < 0$, a contradiction.

Geometric flow Theorems

Geometric flow



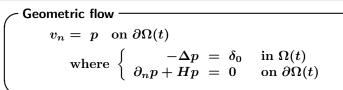
- H > 0 ensures the unique solvability of the elliptic equation.
- $H\geq 0$ implies p>0 on $\partial\Omega(t)$, by maximum principle.

$$\therefore$$
 If $p(x_0) = \min_{\partial \Omega(t)} p \leq 0$ for $x_0 \in \partial \Omega(t)$,
then $\partial_n p(x_0) < 0$, a contradiction.

• $\{\partial \Omega(t)\}_{0 \le t < T}$ is called a $C^{3+\alpha}$ family of surfaces if $\partial \Omega(t)$ is locally represented as the graph of a $C^{3+\alpha}$ function and its time derivative is of $C^{2+\alpha}$.

Geometric flow Theorems

Geometric flow



- H > 0 ensures the unique solvability of the elliptic equation.
- $H\geq 0$ implies p>0 on $\partial\Omega(t)$, by maximum principle.

$$\therefore$$
 If $p(x_0) = \min_{\partial \Omega(t)} p \leq 0$ for $x_0 \in \partial \Omega(t)$,
then $\partial_n p(x_0) < 0$, a contradiction.

• $\{\partial \Omega(t)\}_{0 \le t < T}$ is called a $C^{3+\alpha}$ family of surfaces if $\partial \Omega(t)$ is locally represented as the graph of a $C^{3+\alpha}$ function and its time derivative is of $C^{2+\alpha}$.

Why $C^{3+\alpha}$? Because $H \in C^{1+\alpha}$ is required to solve the elliptic equation, and hence $\partial \Omega(t) \in C^{3+\alpha}$. Then, $v_n = p \in C^{2+\alpha}$.

Geometric flow Theorems

Theorems

Theorem (Characterization of a family of QS)

Let $\{\partial \Omega(t)\}_{0 \le t < T}$ be a $C^{3+\alpha}$ family of surfaces with positive mean curvature. Then, the following are equivalent:

Geometric flow Theorems

Theorems

Theorem (Characterization of a family of QS)

Let $\{\partial \Omega(t)\}_{0 \le t < T}$ be a $C^{3+\alpha}$ family of surfaces with positive mean curvature. Then, the following are equivalent:

(i) $\{\partial \Omega(t)\}$ is a solution to the geometric flow;

Geometric flow Theorems

Theorems

Theorem (Characterization of a family of QS)

Let $\{\partial \Omega(t)\}_{0 \le t < T}$ be a $C^{3+\alpha}$ family of surfaces with positive mean curvature. Then, the following are equivalent:

(i) $\{\partial \Omega(t)\}$ is a solution to the geometric flow;

(ii) Each $\partial \Omega(t)$ is the desired quadrature surface, i.e.,

$$\int_{\partial\Omega(t)} h\,d\mathcal{H}^{N-1} = \int_{\partial\Omega(0)} h\,d\mathcal{H}^{N-1} + th(0) \quad \left(orall h\in H(\overline{\Omega(t)})
ight).$$

Geometric flow Theorems

Theorems

Theorem (Characterization of a family of QS)

Let $\{\partial \Omega(t)\}_{0 \le t < T}$ be a $C^{3+\alpha}$ family of surfaces with positive mean curvature. Then, the following are equivalent:

(i) $\{\partial \Omega(t)\}$ is a solution to the geometric flow;

(ii) Each $\partial \Omega(t)$ is the desired quadrature surface, i.e.,

$$\int_{\partial\Omega(t)} h \, d\mathcal{H}^{N-1} = \int_{\partial\Omega(0)} h \, d\mathcal{H}^{N-1} + th(0) \quad \left(\forall h \in H(\overline{\Omega(t)})\right).$$

Theorem (Unique solvability of the geometric flow)

Let $\partial \Omega(0)$ be an $h^{3+\alpha}$ closed surface with positive mean curvature. Then, there exists a unique $h^{3+\alpha}$ solution $\{\partial \Omega(t)\}_{0 \le t < T}$ to the geometric flow.

Here, $h^{3+lpha}:=\overline{C^{\infty}}^{C^{3+lpha}}\subset C^{3+lpha}$ is the little Hölder space.

Geometric flow Theorems

Theorems

Theorem (Characterization of a family of QS)

Let $\{\partial \Omega(t)\}_{0 \le t < T}$ be a $C^{3+\alpha}$ family of surfaces with positive mean curvature. Then, the following are equivalent:

(i) $\{\partial \Omega(t)\}$ is a solution to the geometric flow;

(ii) Each $\partial \Omega(t)$ is the desired quadrature surface, i.e.,

$$\int_{\partial\Omega(t)} h \, d\mathcal{H}^{N-1} = \int_{\partial\Omega(0)} h \, d\mathcal{H}^{N-1} + th(0) \quad \left(\forall h \in H(\overline{\Omega(t)})\right).$$

Theorem (Unique solvability of the geometric flow)

Let $\partial \Omega(0)$ be an $h^{3+\alpha}$ closed surface with positive mean curvature. Then, there exists a unique $h^{3+\alpha}$ solution $\{\partial \Omega(t)\}_{0 \le t < T}$ to the geometric flow.

Here, $h^{3+lpha}:=\overline{C^{\infty}}^{C^{3+lpha}}\subset C^{3+lpha}$ is the little Hölder space.

 Why h^{3+α}? Since the equation turns out to be fully-nonlinear, we need to use the maximal regularity of Da Prato and Grisvard, in which the phase space must be a continuous interpolation space.

Geometric flow Theorems

Theorems

Theorem (Characterization of a family of QS)

Let $\{\partial \Omega(t)\}_{0 \le t < T}$ be a $C^{3+\alpha}$ family of surfaces with positive mean curvature. Then, the following are equivalent:

(i) $\{\partial \Omega(t)\}$ is a solution to the geometric flow;

(ii) Each $\partial \Omega(t)$ is the desired quadrature surface, i.e.,

$$\int_{\partial\Omega(t)} h \, d\mathcal{H}^{N-1} = \int_{\partial\Omega(0)} h \, d\mathcal{H}^{N-1} + th(0) \quad \left(\forall h \in H(\overline{\Omega(t)})\right).$$

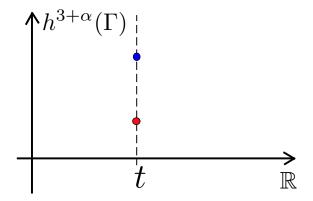
Theorem (Unique solvability of the geometric flow)

Let $\partial \Omega(0)$ be an $h^{3+\alpha}$ closed surface with positive mean curvature. Then, there exists a unique $h^{3+\alpha}$ solution $\{\partial \Omega(t)\}_{0 \le t < T}$ to the geometric flow.

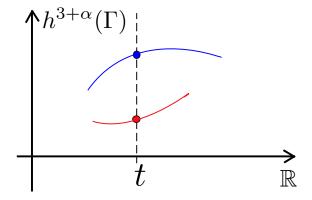
Corollary (Uniqueness of a family of QS)

Let $\{\Gamma(t)\}_{0 \leq t < T}$ be an $h^{3+\alpha}$ family of quadrature surfaces of $\{\mu(t)\}$. If each $\Gamma(t)$ has positive mean curvature, then $\Gamma(t) = \partial \Omega(t)$.

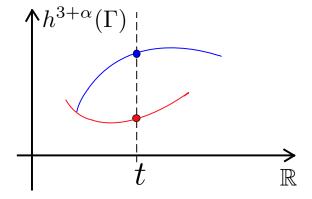
Geometric flow Theorems



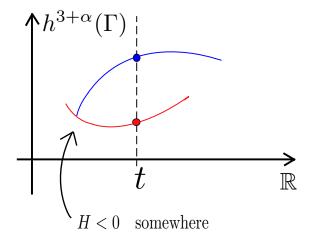
Geometric flow Theorems



Geometric flow Theorems



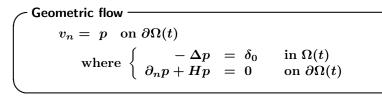
Geometric flow Theorems



Introduction	Characterization of a family of QS
Main results	Unique solvability of the geometric flow
Outline of proof	

Outline of proof

Characterization of a family of QS



(Proof of (GF) \Rightarrow (QS))

Characterization of a family of QS

Geometric flow

$$v_n = p \text{ on } \partial\Omega(t)$$

where $\begin{cases} -\Delta p = \delta_0 & \text{ in } \Omega(t) \\ \partial_n p + Hp = 0 & \text{ on } \partial\Omega(t) \end{cases}$

$$\int_{\partial\Omega(t)}h\,d\sigma$$

Characterization of a family of QS

Geometric flow

$$v_n = p \text{ on } \partial \Omega(t)$$

where $\begin{cases} -\Delta p = \delta_0 & \text{in } \Omega(t) \\ \partial_n p + Hp = 0 & \text{on } \partial \Omega(t) \end{cases}$

$$\frac{d}{dt} \left[\int_{\partial \Omega(t)} h \, d\sigma \right] = \int_{\partial \Omega(t)} h H \boldsymbol{v_n} \, d\sigma + \int_{\partial \Omega(t)} \partial_n h \boldsymbol{v_n} \, d\sigma$$

Characterization of a family of QS

$$\frac{d}{dt}\left[\int_{\partial\Omega(t)} h\,d\sigma\right] = \int_{\partial\Omega(t)} hH\,p\,d\sigma + \int_{\partial\Omega(t)} \partial_n h\,p\,d\sigma$$

Characterization of a family of QS

$$\begin{array}{c} \leftarrow \quad \text{Geometric flow} \\ \hline & \\ v_n = p \quad \text{on } \partial \Omega(t) \\ & \\ \text{where } \begin{cases} -\Delta p &= \delta_0 & \text{ in } \Omega(t) \\ \partial_n p + Hp &= 0 & \text{ on } \partial \Omega(t) \end{cases}$$

$$\frac{d}{dt} \left[\int_{\partial\Omega(t)} h \, d\sigma \right] = \int_{\partial\Omega(t)} hH \, p \, d\sigma + \int_{\partial\Omega(t)} \partial_n h \, p \, d\sigma$$
$$= \int_{\partial\Omega(t)} hHp \, d\sigma + \int_{\partial\Omega(t)} h\partial_n p \, d\sigma + \int_{\Omega(t)} (\Delta hp - h\Delta p) \, dx$$

Characterization of a family of QS

$$\begin{array}{c} \leftarrow \text{Geometric flow} \\ v_n = p \quad \text{on } \partial\Omega(t) \\ \text{where } \begin{cases} -\Delta p &= \delta_0 & \text{in } \Omega(t) \\ \partial_n p + Hp &= 0 & \text{on } \partial\Omega(t) \end{cases}$$

$$\frac{d}{dt} \left[\int_{\partial\Omega(t)} h \, d\sigma \right] = \int_{\partial\Omega(t)} hH \, p \, d\sigma + \int_{\partial\Omega(t)} \partial_n h \, p \, d\sigma$$
$$= \int_{\partial\Omega(t)} hHp \, d\sigma + \int_{\partial\Omega(t)} h\partial_n p \, d\sigma + \int_{\Omega(t)} \left(\Delta hp - h\Delta p\right) \, dx$$

Characterization of a family of QS

$$\begin{array}{c} \leftarrow \quad \text{Geometric flow} \\ v_n = p \quad \text{on } \partial \Omega(t) \\ \text{where } \begin{cases} -\Delta p &= \delta_0 & \text{ in } \Omega(t) \\ \partial_n p + Hp &= 0 & \text{ on } \partial \Omega(t) \end{cases} \end{array}$$

$$\frac{d}{dt} \left[\int_{\partial\Omega(t)} h \, d\sigma \right] = \int_{\partial\Omega(t)} hH \, p \, d\sigma + \int_{\partial\Omega(t)} \partial_n h \, p \, d\sigma$$
$$= \int_{\partial\Omega(t)} hHp \, d\sigma + \int_{\partial\Omega(t)} h\partial_n p \, d\sigma + \int_{\Omega(t)} (\Delta hp - h\Delta p) \, dx$$
$$= h(0).$$

Characterization of a family of QS

$$\begin{array}{c} \leftarrow \quad \text{Geometric flow} \\ v_n = p \quad \text{on } \partial \Omega(t) \\ \text{where } \begin{cases} -\Delta p &= \delta_0 & \text{ in } \Omega(t) \\ \partial_n p + Hp &= 0 & \text{ on } \partial \Omega(t) \end{cases} \end{array}$$

$$\frac{d}{dt} \left[\int_{\partial\Omega(t)} h \, d\sigma \right] = \int_{\partial\Omega(t)} hH \, p \, d\sigma + \int_{\partial\Omega(t)} \partial_n h \, p \, d\sigma$$
$$= \int_{\partial\Omega(t)} hHp \, d\sigma + \int_{\partial\Omega(t)} h\partial_n p \, d\sigma + \int_{\Omega(t)} \left(\Delta hp - h\Delta p\right) \, dx$$
$$= h(0).$$
$$\therefore \quad \int h \, d\sigma = \int h \, d\sigma + th(0).$$

$$\int_{\partial\Omega(t)}h\,d\sigma=\int_{\partial\Omega(0)}h\,d\sigma+th(0).$$

Characterization of a family of QS Unique solvability of the geometric flow Summary

Characterization of a family of QS (continued)

(Proof of (QS) \Rightarrow (GF))

It suffices to show that $v_n = p$.

It suffices to show that $v_n = p$.

Characterization of a family of QS (continued)

(Proof of (QS) \Rightarrow (GF)) Differentiating the identity yields

$$\int_{\partial\Omega(t)} hHv_n \, d\sigma + \int_{\partial\Omega(t)} \partial_n hv_n \, d\sigma = h(0).$$

$$\int_{\partial\Omega(t)} h \, d\sigma = \int_{\partial\Omega(0)} h \, d\sigma + th(0)$$

Introduction Main results Outline of proof Characterization of a family of QS Unique solvability of the geometric Summary

It suffices to show that $v_n = p$.

Characterization of a family of QS (continued)

(Proof of (QS) \Rightarrow (GF)) Differentiating the identity yields

$$\int_{\partial\Omega(t)} hHv_n \, d\sigma + \int_{\partial\Omega(t)} \partial_n hv_n \, d\sigma = h(0).$$

On the other hand, a solution p to the elliptic equation satisfies

$$h(0) = -\int_{\Omega(t)} h\Delta p\,dx$$

$$\begin{cases} -\Delta p = \delta_0 & \text{ in } \Omega(t), \\ \partial_n p + Hp = 0 & \text{ on } \partial \Omega(t) \end{cases}$$

It suffices to show that $v_n = p$.

Characterization of a family of QS (continued)

(Proof of (QS) \Rightarrow (GF)) Differentiating the identity yields

$$\int_{\partial\Omega(t)} hHv_n \, d\sigma + \int_{\partial\Omega(t)} \partial_n hv_n \, d\sigma = h(0).$$

On the other hand, a solution p to the elliptic equation satisfies

$$h(0) = -\int_{\Omega(t)} h \Delta p \, dx = -\int_{\partial \Omega(t)} h \partial_n p \, d\sigma + \int_{\partial \Omega(t)} \partial_n h p \, d\sigma$$

$$\begin{cases} -\Delta p = \delta_0 & \text{ in } \Omega(t), \\ \partial_n p + Hp = 0 & \text{ on } \partial \Omega(t) \end{cases}$$

Characterization of a family of QS (continued)

(Proof of (QS) \Rightarrow (GF)) Differentiating the identity yields

$$\int_{\partial\Omega(t)} hH v_n \, d\sigma + \int_{\partial\Omega(t)} \partial_n h v_n \, d\sigma = h(0).$$

On the other hand, a solution p to the elliptic equation satisfies

$$egin{aligned} h(0) &= -\int_{\Omega(t)} h\Delta p \, dx = -\int_{\partial\Omega(t)} h\partial_n p \, d\sigma + \int_{\partial\Omega(t)} \partial_n hp \, d\sigma \ &= \int_{\partial\Omega(t)} hHp \, d\sigma + \int_{\partial\Omega(t)} \partial_n hp \, d\sigma. \end{aligned}$$

$$\left\{ egin{array}{ll} -\Delta p &= \delta_0 & ext{ in } \Omega(t), \ \partial_n p + Hp &= 0 & ext{ on } \partial\Omega(t) \end{array}
ight.$$

It suffices to show that $v_n = p$.

Characterization of a family of QS (continued)

(Proof of (QS) \Rightarrow (GF)) Differentiating the identity yields

$$\int_{\partial\Omega(t)} hH v_n \, d\sigma + \int_{\partial\Omega(t)} \partial_n h v_n \, d\sigma = h(0).$$

On the other hand, a solution p to the elliptic equation satisfies

$$egin{aligned} h(0) &= -\int_{\Omega(t)} h\Delta p \, dx = -\int_{\partial\Omega(t)} h\partial_n p \, d\sigma + \int_{\partial\Omega(t)} \partial_n hp \, d\sigma \ &= \int_{\partial\Omega(t)} hHp \, d\sigma + \int_{\partial\Omega(t)} \partial_n hp \, d\sigma. \end{aligned}$$

By combining the above equalities,

n

$$\int_{\partial\Omega(t)} \left(hH + \partial_n h \right) \left(v_n - p \right) \, d\sigma = 0 \quad (\forall h: \text{ harmonic}).$$

It suffices to show that $v_n = p$.

It suffices to show that $v_n = p$.

14/16

Characterization of a family of QS (continued)

(Proof of (QS) \Rightarrow (GF)) Differentiating the identity yields

$$\int_{\partial\Omega(t)} hHv_n \, d\sigma + \int_{\partial\Omega(t)} \partial_n hv_n \, d\sigma = h(0).$$

On the other hand, a solution p to the elliptic equation satisfies

$$egin{aligned} h(0) &= -\int_{\Omega(t)} h\Delta p \, dx = -\int_{\partial\Omega(t)} h\partial_n p \, d\sigma + \int_{\partial\Omega(t)} \partial_n hp \, d\sigma \ &= \int_{\partial\Omega(t)} hHp \, d\sigma + \int_{\partial\Omega(t)} \partial_n hp \, d\sigma. \end{aligned}$$

By combining the above equalities,

$$\int_{\partial\Omega(t)} \left(hH + \partial_n h\right) \left(v_n - p\right) \, d\sigma = 0 \quad (\forall h: \text{ harmonic}).$$

Hence, $v_n = p$ follows from the solvability of the equation

$$\left\{ egin{array}{ll} -\Delta h &= 0 & ext{in a nb'd of } \overline{\Omega(t)}, \ hH + \partial_n h &= v_n - p & ext{on } \partial \Omega(t). \end{array}
ight.$$

Unique solvability of the geometric flow

Unique solvability of the geometric flow

Reformulation of problem into ODE in a fixed Banach space:

$$t\mapsto
ho(t)\in h^{3+lpha}(\Gamma) ext{ s.t. } \left\{ egin{array}{l} \partial_t
ho=F(
ho)=L
ho+G(
ho),\
ho(0)=
ho_0. \end{array}
ight.$$

Unique solvability of the geometric flow

Reformulation of problem into ODE in a fixed Banach space:

$$t\mapsto
ho(t)\in h^{3+lpha}(\Gamma) ext{ s.t. } \left\{ egin{array}{l} \partial_t
ho=F(
ho)=L
ho+G(
ho),\
ho(0)=
ho_0. \end{array}
ight.$$

2 Spectral analysis of the linearized operator L:

 $\begin{array}{ll} L: \; \text{sectorial} \; \Rightarrow \; \exists \{e^{tL}\}_{t \geq 0}: \; \text{analytic semigroup} \\ \\ \Rightarrow \; \rho(t) := e^{tL} \rho_0 \; \text{solves} \; \left\{ \begin{array}{l} \partial_t \rho = L \rho \\ \rho(0) = \rho_0 \end{array} \right. \end{array}$

Unique solvability of the geometric flow

Reformulation of problem into ODE in a fixed Banach space:

$$t\mapsto
ho(t)\in h^{3+lpha}(\Gamma) ext{ s.t. } \left\{ egin{array}{l} \partial_t
ho=F(
ho)=L
ho+G(
ho),\
ho(0)=
ho_0. \end{array}
ight.$$

Spectral analysis of the linearized operator *L*:

$$\begin{array}{lll} L: \mbox{ sectorial } \Rightarrow \ \exists \{e^{tL}\}_{t \ge 0}: \ \mbox{analytic semigroup} \\ \Rightarrow \ \rho(t) := e^{tL} \rho_0 \ \mbox{solves} \ \left\{ \begin{array}{l} \partial_t \rho = L \rho \\ \rho(0) = \rho_0 \end{array} \right. \end{array}$$

Theory of maximal regularity deduces the existence:

$$\begin{aligned} \exists \text{ a fixed point } \rho(\cdot) \in C([0,T);h^{3+\alpha}(\Gamma)) \text{ of} \\ \Phi(\rho) &:= e^{tL}\rho_0 + \int_0^t e^{(t-s)L}G(\rho(s)) \, ds. \end{aligned}$$

Unique solvability of the geometric flow

Spectral analysis of the linearized operator *L*:

L: sectorial $\Rightarrow \exists \{e^{tL}\}_{t\geq 0}:$ analytic semigroup

$$\Rightarrow \ \rho(t) := e^{tL} \rho_0 \text{ solves } \begin{cases} \ \partial_t \rho = L \rho \\ \rho(0) = \rho_0 \end{cases}$$

Unique solvability of the geometric flow

Spectral analysis of the linearized operator *L*:

 $L: \; {\rm sectorial} \; \Rightarrow \; \exists \{ e^{tL} \}_{t \geq 0} : \; {\rm analytic \; semigroup} \;$

$$\Rightarrow \ \rho(t) := e^{tL} \rho_0 \text{ solves } \begin{cases} \ \partial_t \rho = L\rho \\ \rho(0) = \rho_0 \end{cases}$$

 $L \sim -M_1 T_{\Gamma} M_2(-\Delta_{\Gamma}) \in \mathcal{L}(h^{3+lpha}(\Gamma), h^{2+lpha}(\Gamma)).$ Here, T_{Γ} is the Robin-to-Dirichlet operator defined by $T_{\Gamma} \varphi = v$, where

$$\left\{ egin{array}{ccc} -\Delta v &= 0 & ext{ in } \Omega, \ \partial_n v + H_\Gamma v &= arphi & ext{ on } \Gamma. \end{array}
ight.$$

Unique solvability of the geometric flow

2 Spectral analysis of the linearized operator L:

 $L: \; {\rm sectorial} \; \Rightarrow \; \exists \{ e^{tL} \}_{t \geq 0} : \; {\rm analytic \; semigroup} \;$

$$\Rightarrow \ \rho(t) := e^{tL} \rho_0 \text{ solves } \left\{ \begin{array}{l} \partial_t \rho = L \rho \\ \rho(0) = \rho_0 \end{array} \right.$$

$$L \sim -M_1 T_{\Gamma} M_2(-\Delta_{\Gamma}) \in \mathcal{L}(h^{3+lpha}(\Gamma), h^{2+lpha}(\Gamma)).$$

Here, T_{Γ} is the Robin-to-Dirichlet operator defined by $T_{\Gamma} \varphi = v$, where

$$\begin{cases} -\Delta v = 0 & \text{in } \Omega, \\ \partial_n v + H_{\Gamma} v = \varphi & \text{on } \Gamma. \end{cases}$$

To prove that L is sectorial,

- Step 1. Localize L near each point on Γ .
- Step 2. $L \sim$ a constant coefficient operator \mathcal{L}_0 on \mathbb{R}^{N-1} .
- Step 3. Show that \mathcal{L}_0 is a pseudo-differential operator of first order. In fact, the symbol is of monomial type of degree one, which implies \mathcal{L}_0 is sectorial.

 Introduction
 Characterization of a family of QS

 Main results
 Unique solvability of the geometric flow

 Outline of proof
 Summary

Summary

Q. Uniqueness of a family of QS

- Introduction of GF.
- Ocharacterization of continuous family of QS by GF.
- Unique solvability of GF.

A. TRUE under the geometric condition H>0

Summary

Q. Uniqueness of a family of QS

- Introduction of GF.
- Ocharacterization of continuous family of QS by GF.
- Unique solvability of GF.

A. TRUE under the geometric condition H>0

Thank you for your kind attention!