On the uniqueness of quadrature surfaces

Michiaki Onodera
Kyushu University
KIAS Nonlinear PDE Seminar
Korea Institute for Advanced Study

October 4, 2013
(1) Introduction

- "Potato Kugel" problem
- Another equivalent formulation
- Previous studies
(2) Main results
- Geometric flow
- Theorems
(3) Outline of proof
- Characterization of a family of QS
- Unique solvability of the geometric flow
- Summary

Introduction

"Potato Kugel" problem

Let \boldsymbol{P} be a "potato" with volume $|\boldsymbol{B}(\mathbf{0}, \mathbf{1})|$ which attracts each point outside it as if all its mass were concentrated at a single point.

"Potato Kugel" problem

Let \boldsymbol{P} be a "potato" with volume $|\boldsymbol{B}(\mathbf{0}, \mathbf{1})|$ which attracts each point outside it as if all its mass were concentrated at a single point.

Question: What is the shape of P ?

"Potato Kugel" problem

Let \boldsymbol{P} be a "potato" with volume $|\boldsymbol{B}(\mathbf{0}, \mathbf{1})|$ which attracts each point outside it as if all its mass were concentrated at a single point.

Question: What is the shape of \boldsymbol{P} ?

```
Answer. P=B(0,1).
```


"Potato Kugel" problem

Let \boldsymbol{P} be a "potato" with volume $|\boldsymbol{B}(\mathbf{0}, \mathbf{1})|$ which attracts each point outside it as if all its mass were concentrated at a single point.

Question: What is the shape of \boldsymbol{P} ?

```
Answer: P}=B(0,1)
```

- Need to show that $\boldsymbol{P}=\boldsymbol{B}(\mathbf{0}, \mathbf{1})$ produces the same gravitational potential as $|\boldsymbol{B}(\mathbf{0}, \mathbf{1})| \boldsymbol{\delta}_{\mathbf{0}}$ does:

$$
\begin{gathered}
E *|B(0,1)| \delta_{0}=E * \chi_{B(0,1)}^{E} \quad \text { outside } B(0,1) . \\
(\text { point mass) } \\
\text { (potato) }
\end{gathered}
$$

"Potato Kugel" problem

Let \boldsymbol{P} be a "potato" with volume $|\boldsymbol{B}(\mathbf{0}, \mathbf{1})|$ which attracts each point outside it as if all its mass were concentrated at a single point.

Question: What is the shape of \boldsymbol{P} ?

```
Answer: P}=B(0,1)
```

- Need to show that $\boldsymbol{P}=\boldsymbol{B}(\mathbf{0}, \mathbf{1})$ produces the same gravitational potential as $|\boldsymbol{B}(\mathbf{0}, \mathbf{1})| \boldsymbol{\delta}_{0}$ does:

$$
\begin{gathered}
E *|B(0,1)| \delta_{0}=E * \chi_{B(0,1)} \quad \text { outside } B(0,1) . \\
\left.\quad \begin{array}{l}
\text { (point mass) } \\
(\text { potato) } \\
\text { i.e., },
\end{array} \frac{|B(0,1)|}{|x|^{N-2}}=\int_{B(0,1)} \frac{d y}{|x-y|^{N-2}} \quad(x \notin B(0,1)) .\right)
\end{gathered}
$$

"Potato Kugel" problem

Let \boldsymbol{P} be a "potato" with volume $|\boldsymbol{B}(\mathbf{0}, \mathbf{1})|$ which attracts each point outside it as if all its mass were concentrated at a single point.

Question: What is the shape of \boldsymbol{P} ?

```
Answer: P=B(0,1).
```

- Need to show that $\boldsymbol{P}=\boldsymbol{B}(\mathbf{0}, \mathbf{1})$ produces the same gravitational potential as $|\boldsymbol{B}(\mathbf{0}, \mathbf{1})| \boldsymbol{\delta}_{\mathbf{0}}$ does:

$$
\begin{gathered}
E *|B(0,1)| \delta_{0}=E * \chi_{B(0,1)} \quad \text { outside } B(0,1) . \\
\quad \begin{array}{l}
\text { (point mass) } \\
(\text { potato) }
\end{array} \\
\text { i.e., } \left.\frac{|B(0,1)|}{|x|^{N-2}}=\int_{B(0,1)} \frac{d y}{|x-y|^{N-2}} \quad(x \notin B(0,1)) .\right)
\end{gathered}
$$

- This is a special case of the mean value formula

$$
|B(0,1)| h(0)=\int_{B(0,1)} h d y \quad(h: \text { harmonic })
$$

applied to $\boldsymbol{h}(\boldsymbol{y})=\frac{1}{|\boldsymbol{x}-\boldsymbol{y}|^{N-2}}$.

"Potato Kugel" problem

Let \boldsymbol{P} be a "potato" with volume $|\boldsymbol{B}(\mathbf{0}, \mathbf{1})|$ which attracts each point outside it as if all its mass were concentrated at a single point.

Question: What is the shape of \boldsymbol{P} ?

```
Answer: P=B(0,1).
```

- Need to show that $\boldsymbol{P}=\boldsymbol{B}(\mathbf{0}, \mathbf{1})$ produces the same gravitational potential as $|\boldsymbol{B}(\mathbf{0}, \mathbf{1})| \boldsymbol{\delta}_{\mathbf{0}}$ does:

$$
\begin{gathered}
E *|B(0,1)| \delta_{0}=E * \chi_{B(0,1)} \quad \text { outside } B(0,1) . \\
\quad \begin{array}{l}
\text { (point mass) } \\
(\text { potato) }
\end{array} \\
\text { i.e., } \left.\frac{|B(0,1)|}{|x|^{N-2}}=\int_{B(0,1)} \frac{d y}{|x-y|^{N-2}} \quad(x \notin B(0,1)) .\right)
\end{gathered}
$$

- This is a special case of the mean value formula

$$
|B(0,1)| h(0)=\int_{B(0,1)} h d y \quad(h: \text { harmonic })
$$

- Actually, the problem is UNIQUENESS!

"Potato Kugel" problem (continued)

- We are led to a natural question: What domain $\boldsymbol{\Omega}$ corresponds to a given measure $\boldsymbol{\mu}$?

"Potato Kugel" problem (continued)

- We are led to a natural question:

What domain Ω corresponds to a given measure μ ?
Quadrature Domains
For a measure μ with compact support, specify a domain Ω such that

$$
\int h d \mu=\int_{\Omega} h d y \quad(\forall h \in H(\bar{\Omega}))
$$

"Potato Kugel" problem (continued)

- We are led to a natural question:

What domain $\boldsymbol{\Omega}$ corresponds to a given measure $\boldsymbol{\mu}$?
Quadrature Domains
For a measure μ with compact support, specify a domain Ω such that

$$
\int h d \mu=\int_{\Omega} h d y \quad(\forall h \in H(\bar{\Omega}))
$$

i.e., both μ and χ_{Ω} produce the same gravitational forces.

"Potato Kugel" problem (continued)

- We are led to a natural question:

What domain Ω corresponds to a given measure μ ?
Quadrature Domains
For a measure $\boldsymbol{\mu}$ with compact support, specify a domain Ω such that

$$
\int h d \mu=\int_{\Omega} h d y \quad(\forall h \in H(\bar{\Omega}))
$$

i.e., both μ and χ_{Ω} produce the same gravitational forces.

Quadrature Surfaces
For a measure $\boldsymbol{\mu}$ with compact support, specify a surface $\partial \Omega$ such that

$$
\int h d \mu=\int_{\partial \Omega} h d \mathcal{H}^{N-1} \quad(\forall h \in H(\bar{\Omega}))
$$

"Potato Kugel" problem (continued)

- We are led to a natural question:

What domain Ω corresponds to a given measure μ ?
Quadrature Domains
For a measure $\boldsymbol{\mu}$ with compact support, specify a domain Ω such that

$$
\int h d \mu=\int_{\Omega} h d y \quad(\forall h \in H(\bar{\Omega}))
$$

i.e., both μ and χ_{Ω} produce the same gravitational forces.

Quadrature Surfaces

For a measure $\boldsymbol{\mu}$ with compact support, specify a surface $\partial \Omega$ such that

$$
\int h d \mu=\int_{\partial \Omega} h d \mathcal{H}^{N-1} \quad(\forall h \in H(\bar{\Omega}))
$$

i.e., both μ and $\mathcal{H}^{N-1}\left\lfloor_{\partial \Omega}\right.$ produce the same gravitational forces.

Another equivalent formulation

Quadrature Surfaces

For a measure μ with compact support, specify a surface $\partial \Omega$ such that

$$
\int h d \mu=\int_{\partial \Omega} h d \mathcal{H}^{N-1} \quad(\forall h \in H(\bar{\Omega}))
$$

Another equivalent formulation

Quadrature Surfaces

For a measure μ with compact support, specify a surface $\partial \Omega$ such that

$$
\int h d \mu=\int_{\partial \Omega} h d \mathcal{H}^{N-1} \quad(\forall h \in H(\bar{\Omega}))
$$

This problem is equivalent to the following overdetermined problem:

$$
\left\{\begin{aligned}
-\Delta u=\mu & \text { in } \Omega \\
u=0 & \text { on } \partial \Omega \\
\frac{\partial u}{\partial n}=-1 & \text { on } \partial \Omega
\end{aligned}\right.
$$

Another equivalent formulation

Quadrature Surfaces

For a measure μ with compact support, specify a surface $\partial \Omega$ such that

$$
\int h d \mu=\int_{\partial \Omega} h d \mathcal{H}^{N-1} \quad(\forall h \in H(\bar{\Omega}))
$$

This problem is equivalent to the following overdetermined problem:

$$
\left\{\begin{aligned}
-\Delta u=\mu & \text { in } \Omega \\
u=0 & \text { on } \partial \Omega \\
\frac{\partial u}{\partial n}=-1 & \text { on } \partial \Omega
\end{aligned}\right.
$$

Namely, this elliptic equation possesses a solution \boldsymbol{u} in Ω if and only if $\partial \Omega$ is a quadrature surface of μ.

Another equivalent formulation

Quadrature Surfaces

For a measure μ with compact support, specify a surface $\partial \Omega$ such that

$$
\int h d \mu=\int_{\partial \Omega} h d \mathcal{H}^{N-1} \quad(\forall h \in H(\bar{\Omega}))
$$

This problem is equivalent to the following overdetermined problem:

$$
\left\{\begin{aligned}
-\Delta u=\mu & \text { in } \Omega \\
u=0 & \text { on } \partial \Omega \\
\frac{\partial u}{\partial n}=-1 & \text { on } \partial \Omega
\end{aligned}\right.
$$

Namely, this elliptic equation possesses a solution \boldsymbol{u} in Ω if and only if $\partial \Omega$ is a quadrature surface of μ. This fact follows from the representation formula

$$
u(x)=\int E(x-y) d \mu(y)-\int_{\partial \Omega} E(x-y) d \mathcal{H}^{N-1}(y)
$$

Another equivalent formulation

Quadrature Surfaces

For a measure μ with compact support, specify a surface $\partial \Omega$ such that

$$
\int h d \mu=\int_{\partial \Omega} h d \mathcal{H}^{N-1} \quad(\forall h \in H(\bar{\Omega}))
$$

This problem is equivalent to the following overdetermined problem:

$$
\left\{\begin{aligned}
-\Delta u=\mu & \text { in } \Omega \\
u=0 & \text { on } \partial \Omega \\
\frac{\partial u}{\partial n}=-1 & \text { on } \partial \Omega
\end{aligned}\right.
$$

Namely, this elliptic equation possesses a solution \boldsymbol{u} in Ω if and only if $\partial \Omega$ is a quadrature surface of μ. This fact follows from the representation formula

$$
u(x)=\int E(x-y) d \mu(y)-\int_{\partial \Omega} E(x-y) d \mathcal{H}^{N-1}(y)
$$

Remark The uniqueness of a quadrature surface $\boldsymbol{\partial \Omega}$ holds in the case where $\mu=\omega_{N} \delta_{0}$ by the method of moving planes.

Previous studies

- A good sufficient condition for uniqueness of QD is known. However, uniqueness of QS does not hold even for simple two Dirac measures.

Previous studies

- A good sufficient condition for uniqueness of QD is known. However, uniqueness of QS does not hold even for simple two Dirac measures.
- Existence

Previous studies

- A good sufficient condition for uniqueness of QD is known. However, uniqueness of QS does not hold even for simple two Dirac measures.
- Existence

	Quadrature Domains	Quadrature Surfaces
Super/Subsolutions		Beurling (1957) Henrot (1994)
Variational method	Sakai (1983) Gustafsson (1985)	Alt \& Caffarelli (1981) Gustafsson \& Shahgholian (1996)

Previous studies

- A good sufficient condition for uniqueness of QD is known. However, uniqueness of QS does not hold even for simple two Dirac measures.
- Existence

	Quadrature Domains	Quadrature Surfaces
Super/Subsolutions		Beurling (1957) Henrot (1994)
Variational method	Sakai (1983) Gustafsson (1985)	Alt \& Caffarelli (1981) Gustafsson \& Shahgholian (1996)

Super/Subsolutions

$\boldsymbol{\Omega}_{1}:$ sub $\& \boldsymbol{\Omega}_{2}:$ super $\& \boldsymbol{\Omega}_{1} \subset \boldsymbol{\Omega}_{2} \Rightarrow \boldsymbol{\Omega}_{\mathbf{1}} \subset \exists \boldsymbol{\Omega} \subset \boldsymbol{\Omega}_{\mathbf{2}}$.

Previous studies

- A good sufficient condition for uniqueness of QD is known. However, uniqueness of QS does not hold even for simple two Dirac measures.
- Existence

	Quadrature Domains	Quadrature Surfaces
Super/Subsolutions		Beurling (1957) Henrot (1994)
Variational method	Sakai (1983) Gustafsson (1985)	Alt \& Caffarelli (1981) Gustafsson \& Shahgholian (1996)

Super/Subsolutions

$\boldsymbol{\Omega}_{1}:$ sub \& $\boldsymbol{\Omega}_{2}:$ super $\& \boldsymbol{\Omega}_{1} \subset \boldsymbol{\Omega}_{2} \Rightarrow \boldsymbol{\Omega}_{\mathbf{1}} \subset \exists \boldsymbol{\Omega} \subset \boldsymbol{\Omega}_{\mathbf{2}}$.
Variational method
$\partial \Omega$ is characterized as the set $\partial\{u>0\}$, where \boldsymbol{u} is a critical point of

$$
J(u):=\int_{\mathbb{R}^{N}}\left(\frac{1}{2}|\nabla u|^{2}-\mu u+\frac{1}{2} \chi_{\{u>0\}}\right) d x
$$

Previous studies

- A good sufficient condition for uniqueness of QD is known. However, uniqueness of QS does not hold even for simple two Dirac measures.
- Existence

	Quadrature Domains	Quadrature Surfaces
Super/Subsolutions		Beurling (1957) Henrot (1994)
Variational method	Sakai (1983) Gustafsson (1985)	Alt \& Caffarelli (1981) Gustafsson \& Shahgholian (1996)

Previous studies

- A good sufficient condition for uniqueness of QD is known. However, uniqueness of QS does not hold even for simple two Dirac measures.
- Existence
- Continuous family

	Quadrature Domains	Quadrature Surfaces
Super/Subsolutions		Beurling (1957) Henrot (1994)
Variational method	Sakai (1983) Gustafsson (1985)	Alt \& Caffarelli (1981) Gustafsson \& Shahgholian (1996)

Previous studies

- A good sufficient condition for uniqueness of QD is known. However, uniqueness of QS does not hold even for simple two Dirac measures.
- Existence
- Continuous family

	Quadrature Domains	Quadrature Surfaces
Super/Subsolutions		Beurling (1957) Henrot (1994)
Variational method	Sakai (1983) Gustafsson (1985)	Alt \& Caffarelli (1981) Gustafsson \& Shahgholian (1996)

Evolution equation

$$
\mu(t):=\chi_{\Omega(0)}+t \delta_{0} \quad \mapsto \quad \Omega(t)
$$

Previous studies

- A good sufficient condition for uniqueness of QD is known. However, uniqueness of QS does not hold even for simple two Dirac measures.
- Existence
- Continuous family

	Quadrature Domains	Quadrature Surfaces
Super/Subsolutions		Beurling (1957) Henrot (1994)
Variational method	Sakai (1983) Gustafsson (1985)	Alt \& Caffarelli (1981) Gustafsson \& Shahgholian (1996)
Evolution equation	many authors (1947-) Richardson (1972)	

Evolution equation

$$
\mu(t):=\chi_{\Omega(0)}+t \delta_{0} \quad \mapsto \quad \Omega(t) \quad \text { Hele-Shaw flow }
$$

Previous studies

- A good sufficient condition for uniqueness of QD is known. However, uniqueness of QS does not hold even for simple two Dirac measures.
- Existence
- Continuous family

	Quadrature Domains	Quadrature Surfaces
Super/Subsolutions		Beurling (1957) Henrot (1994)
Variational method	Sakai (1983) Gustafsson (1985)	Alt \& Caffarelli (1981) Gustafsson \& Shahgholian (1996)
Evolution equation	many authors (1947-) Richardson (1972)	

Evolution equation

$$
\begin{array}{llll}
\mu(t):=\chi_{\Omega(0)}+t \delta_{0} & \mapsto & \boldsymbol{\Omega}(t) & \text { Hele-Shaw flow } \\
\mu(t):=\mathcal{H}^{N-1} \operatorname{La\Omega (0)}^{\boldsymbol{N}}+\boldsymbol{t \delta _ { 0 }} & \mapsto & \partial \boldsymbol{\Omega}(t) &
\end{array}
$$

Previous studies

- A good sufficient condition for uniqueness of QD is known. However, uniqueness of QS does not hold even for simple two Dirac measures.
- Existence
- Continuous family

	Quadrature Domains	Quadrature Surfaces
Super/Subsolutions		Beurling (1957) Henrot (1994)
Variational method	Sakai (1983) Gustafsson (1985)	Alt \& Caffarelli (1981) Gustafsson \& Shahgholian (1996)
Evolution equation	many authors (1947-) Richardson (1972)	O. (2013)

Evolution equation

$$
\begin{array}{llll}
\mu(t):=\chi_{\Omega(0)}+t \delta_{0} & \mapsto & \boldsymbol{\Omega}(t) & \text { Hele-Shaw flow } \\
\mu(t):=\mathcal{H}^{N-1} \operatorname{La\Omega (0)}^{N}+t \delta_{0} & \mapsto & \partial \boldsymbol{\Omega}(t) & \text { Our geometric flow }
\end{array}
$$

Previous studies

- A good sufficient condition for uniqueness of QD is known. However, uniqueness of QS does not hold even for simple two Dirac measures.
- Existence
- Continuous family

	Quadrature Domains	Quadrature Surfaces
Super/Subsolutions	Beurling (1957) Henrot (1994)	
Variational method	Sakai (1983) Gustafsson (1985)	Alt \& Caffarelli (1981) Gustafsson \& Shahgholian (1996)
Evolution equation	many authors (1947-) Richardson (1972)	O. (2013)

Evolution equation

$$
\begin{array}{llll}
\mu(t):=\chi_{\Omega(0)}+t \delta_{0} & \mapsto & \boldsymbol{\Omega}(t) & \text { Hele-Shaw flow } \\
\mu(t):=\mathcal{H}^{N-1} \operatorname{La\Omega (0)}^{N}+t \delta_{0} & \mapsto & \partial \boldsymbol{\Omega}(t) & \text { Our geometric flow }
\end{array}
$$

$Q D$ is unique for $\mu(t)$, but $Q S$ is not, in general. We will show that $\partial \Omega(t)$, continuously deformable from $\partial \Omega(0)$, is unique!

Main results

Geometric flow

Geometric flow

$$
\begin{aligned}
& v_{n}=p \quad \text { on } \partial \Omega(t) \\
& \text { where }\left\{\begin{aligned}
-\Delta p & =\delta_{0} & & \text { in } \Omega(t) \\
\partial_{n} p+H p & =0 & & \text { on } \partial \Omega(t)
\end{aligned}\right.
\end{aligned}
$$

\boldsymbol{H} : mean curvature of $\partial \Omega(t)$

Geometric flow

Geometric flow

$$
\begin{aligned}
v_{n}=p \text { on } \partial \Omega(t) \\
\text { where }\left\{\begin{array}{rll}
-\Delta p & =\delta_{0} & \text { in } \Omega(t) \\
\partial_{n} p+H p & =0 & \text { on } \partial \Omega(t)
\end{array}\right.
\end{aligned}
$$

H : mean curvature of $\boldsymbol{\partial \Omega}(t)$

Comparison with Hele-Shaw flow

$$
\begin{aligned}
& v_{n}=-\partial_{n} p \text { on } \partial \Omega(t) \\
& \quad \text { where }\left\{\begin{aligned}
-\Delta p=\delta_{0} & \text { in } \Omega(t) \\
p=0 & \text { on } \partial \Omega(t)
\end{aligned}\right.
\end{aligned}
$$

Geometric flow

Geometric flow

$$
\begin{aligned}
& v_{n}=p \text { on } \partial \Omega(t) \\
& \quad \text { where }\left\{\begin{aligned}
-\Delta p=\delta_{0} & \text { in } \Omega(t) \\
\partial_{n} p+H p=0 & \text { on } \partial \Omega(t)
\end{aligned}\right.
\end{aligned}
$$

- $\boldsymbol{H}>\mathbf{0}$ ensures the unique solvability of the elliptic equation.

Geometric flow

Geometric flow

$$
\begin{aligned}
& v_{n}=p \text { on } \partial \Omega(t) \\
& \quad \text { where }\left\{\begin{array}{rll}
-\Delta p & =\delta_{0} & \text { in } \Omega(t) \\
\partial_{n} p+H p & =0 & \text { on } \partial \Omega(t)
\end{array}\right.
\end{aligned}
$$

- $\boldsymbol{H}>\mathbf{0}$ ensures the unique solvability of the elliptic equation.
- $\boldsymbol{H} \geq \mathbf{0}$ implies $\boldsymbol{p}>\mathbf{0}$ on $\boldsymbol{\partial \Omega}(\boldsymbol{t})$, by maximum principle.

Geometric flow

Geometric flow

$$
\begin{aligned}
& v_{n}=p \text { on } \partial \Omega(t) \\
& \quad \text { where }\left\{\begin{array}{rll}
-\Delta p & =\delta_{0} & \text { in } \Omega(t) \\
\partial_{n} p+H p & =0 & \text { on } \partial \Omega(t)
\end{array}\right.
\end{aligned}
$$

- $\boldsymbol{H}>\mathbf{0}$ ensures the unique solvability of the elliptic equation.
- $\boldsymbol{H} \geq \mathbf{0}$ implies $\boldsymbol{p}>\mathbf{0}$ on $\partial \Omega(\boldsymbol{t})$, by maximum principle.
\because If $p\left(x_{0}\right)=\min _{\partial \Omega(t)} p \leq 0$ for $x_{0} \in \partial \Omega(t)$, then $\partial_{\boldsymbol{n}} \boldsymbol{p}\left(\boldsymbol{x}_{\mathbf{0}}\right)<0$, a contradiction.

Geometric flow

Geometric flow

$$
\begin{aligned}
& v_{n}=p \text { on } \partial \Omega(t) \\
& \quad \text { where }\left\{\begin{array}{rll}
-\Delta p & =\delta_{0} & \text { in } \Omega(t) \\
\partial_{n} p+H p & =0 & \text { on } \partial \Omega(t)
\end{array}\right.
\end{aligned}
$$

- $\boldsymbol{H}>\mathbf{0}$ ensures the unique solvability of the elliptic equation.
- $\boldsymbol{H} \geq \mathbf{0}$ implies $\boldsymbol{p}>\mathbf{0}$ on $\partial \Omega(t)$, by maximum principle.
$\because \quad$ If $p\left(x_{0}\right)=\min _{\partial \Omega(t)} p \leq 0$ for $x_{0} \in \partial \Omega(t)$, then $\partial_{\boldsymbol{n}} \boldsymbol{p}\left(\boldsymbol{x}_{\mathbf{0}}\right)<\mathbf{0}$, a contradiction.
- $\{\partial \Omega(t)\}_{0 \leq t<T}$ is called a $C^{3+\alpha}$ family of surfaces if $\partial \Omega(t)$ is locally represented as the graph of a $C^{3+\alpha}$ function and its time derivative is of $C^{2+\alpha}$.

Geometric flow

Geometric flow

$$
\begin{aligned}
& v_{n}=p \quad \text { on } \partial \Omega(t) \\
& \quad \text { where }\left\{\begin{aligned}
-\Delta p=\delta_{0} & \text { in } \Omega(t) \\
\partial_{n} p+H p=0 & \text { on } \partial \Omega(t)
\end{aligned}\right.
\end{aligned}
$$

- $\boldsymbol{H}>\mathbf{0}$ ensures the unique solvability of the elliptic equation.
- $\boldsymbol{H} \geq \mathbf{0}$ implies $\boldsymbol{p}>\mathbf{0}$ on $\partial \Omega(\boldsymbol{t})$, by maximum principle.
$\because \quad$ If $p\left(x_{0}\right)=\min _{\partial \Omega(t)} p \leq 0$ for $x_{0} \in \partial \Omega(t)$, then $\partial_{\boldsymbol{n}} \boldsymbol{p}\left(\boldsymbol{x}_{\mathbf{0}}\right)<\mathbf{0}$, a contradiction.
- $\{\partial \Omega(t)\}_{0 \leq t<T}$ is called a $C^{3+\alpha}$ family of surfaces if $\partial \Omega(t)$ is locally represented as the graph of a $C^{3+\alpha}$ function and its time derivative is of $C^{2+\alpha}$.

Why $C^{3+\alpha}$? Because $\boldsymbol{H} \in C^{1+\alpha}$ is required to solve the elliptic equation, and hence $\partial \Omega(t) \in C^{3+\alpha}$. Then, $v_{n}=p \in C^{2+\alpha}$.

Theorems

Theorem (Characterization of a family of QS)

Let $\{\partial \Omega(t)\}_{0 \leq t<T}$ be a $C^{3+\alpha}$ family of surfaces with positive mean curvature. Then, the following are equivalent:

Theorems

Theorem (Characterization of a family of QS)

Let $\{\partial \Omega(t)\}_{0 \leq t<T}$ be a $C^{3+\alpha}$ family of surfaces with positive mean curvature. Then, the following are equivalent:
(i) $\{\partial \Omega(t)\}$ is a solution to the geometric flow;

Theorems

Theorem (Characterization of a family of QS)

Let $\{\partial \Omega(t)\}_{0 \leq t<T}$ be a $C^{3+\alpha}$ family of surfaces with positive mean curvature. Then, the following are equivalent:
(i) $\{\partial \Omega(t)\}$ is a solution to the geometric flow;
(ii) Each $\boldsymbol{\partial \Omega}(\boldsymbol{t})$ is the desired quadrature surface, i.e.,

$$
\int_{\partial \Omega(t)} h d \mathcal{H}^{N-1}=\int_{\partial \Omega(0)} h d \mathcal{H}^{N-1}+t h(0) \quad(\forall h \in H(\overline{\Omega(t)}))
$$

Theorems

Theorem (Characterization of a family of QS)

Let $\{\partial \Omega(t)\}_{0 \leq t<T}$ be a $C^{3+\alpha}$ family of surfaces with positive mean curvature. Then, the following are equivalent:
(i) $\{\partial \Omega(t)\}$ is a solution to the geometric flow;
(ii) Each $\boldsymbol{\partial \Omega}(\boldsymbol{t})$ is the desired quadrature surface, i.e.,

$$
\int_{\partial \Omega(t)} h d \mathcal{H}^{N-1}=\int_{\partial \Omega(0)} h d \mathcal{H}^{N-1}+t h(0) \quad(\forall h \in H(\overline{\Omega(t)}))
$$

Theorem (Unique solvability of the geometric flow)
Let $\partial \boldsymbol{\Omega}(\mathbf{0})$ be an $h^{3+\alpha}$ closed surface with positive mean curvature. Then, there exists a unique $h^{3+\alpha}$ solution $\{\partial \Omega(t)\}_{0 \leq t<T}$ to the geometric flow.

Here, $h^{3+\alpha}:=\bar{C}^{C^{C+\alpha}} \subset C^{3+\alpha}$ is the little Hölder space.

Theorems

Theorem (Characterization of a family of QS)

Let $\{\partial \Omega(t)\}_{0 \leq t<T}$ be a $C^{3+\alpha}$ family of surfaces with positive mean curvature. Then, the following are equivalent:
(i) $\{\partial \Omega(t)\}$ is a solution to the geometric flow;
(ii) Each $\boldsymbol{\partial \Omega}(\boldsymbol{t})$ is the desired quadrature surface, i.e.,

$$
\int_{\partial \Omega(t)} h d \mathcal{H}^{N-1}=\int_{\partial \Omega(0)} h d \mathcal{H}^{N-1}+t h(0) \quad(\forall h \in H(\overline{\Omega(t)}))
$$

Theorem (Unique solvability of the geometric flow)

Let $\partial \boldsymbol{\Omega}(\mathbf{0})$ be an $h^{3+\alpha}$ closed surface with positive mean curvature. Then, there exists a unique $h^{3+\alpha}$ solution $\{\partial \Omega(t)\}_{0 \leq t<T}$ to the geometric flow.

Here, $h^{3+\alpha}:=\bar{C}^{C^{3+\alpha}} \subset C^{3+\alpha}$ is the little Hölder space.

- Why $h^{3+\alpha}$? Since the equation turns out to be fully-nonlinear, we need to use the maximal regularity of Da Prato and Grisvard, in which the phase space must be a continuous interpolation space.

Theorems

Theorem (Characterization of a family of QS)

Let $\{\partial \Omega(t)\}_{0 \leq t<T}$ be a $C^{3+\alpha}$ family of surfaces with positive mean curvature. Then, the following are equivalent:
(i) $\{\partial \Omega(t)\}$ is a solution to the geometric flow;
(ii) Each $\boldsymbol{\partial \Omega}(\boldsymbol{t})$ is the desired quadrature surface, i.e.,

$$
\int_{\partial \Omega(t)} h d \mathcal{H}^{N-1}=\int_{\partial \Omega(0)} h d \mathcal{H}^{N-1}+t h(0) \quad(\forall h \in H(\overline{\Omega(t)}))
$$

Theorem (Unique solvability of the geometric flow)
Let $\partial \boldsymbol{\Omega}(\mathbf{0})$ be an $h^{3+\alpha}$ closed surface with positive mean curvature. Then, there exists a unique $h^{3+\alpha}$ solution $\{\partial \Omega(t)\}_{0 \leq t<T}$ to the geometric flow.

Corollary (Uniqueness of a family of QS)

Let $\{\Gamma(t)\}_{0 \leq t<\boldsymbol{T}}$ be an $h^{3+\alpha}$ family of quadrature surfaces of $\{\mu(t)\}$. If each $\Gamma(t)$ has positive mean curvature, then $\Gamma(t)=\partial \Omega(t)$.

Theorems

Theorems

Theorems

Theorems

Outline of proof

Characterization of a family of QS

Geometric flow

$$
\begin{aligned}
& v_{n}=p \text { on } \partial \Omega(t) \\
& \quad \text { where }\left\{\begin{array}{rll}
-\Delta p & =\delta_{0} & \text { in } \Omega(t) \\
\partial_{n} p+H p & =0 & \text { on } \partial \Omega(t)
\end{array}\right.
\end{aligned}
$$

(Proof of (GF) \Rightarrow (QS))

Characterization of a family of QS

Geometric flow

$$
\begin{aligned}
& v_{n}=p \text { on } \partial \Omega(t) \\
& \quad \text { where }\left\{\begin{array}{rll}
-\Delta p & =\delta_{0} & \text { in } \Omega(t) \\
\partial_{n} p+H p & =0 & \text { on } \partial \Omega(t)
\end{array}\right.
\end{aligned}
$$

(Proof of (GF) $\Rightarrow(\mathrm{QS})$) For any harmonic function h,

$$
\int_{\partial \Omega(t)} h d \sigma
$$

Characterization of a family of QS

Geometric flow

$$
\begin{aligned}
& v_{n}=p \text { on } \partial \Omega(t) \\
& \quad \text { where }\left\{\begin{array}{rll}
-\Delta p & =\delta_{0} & \text { in } \Omega(t) \\
\partial_{n} p+H p & =0 & \text { on } \partial \Omega(t)
\end{array}\right.
\end{aligned}
$$

(Proof of (GF) $\Rightarrow(\mathrm{QS})$) For any harmonic function h,

$$
\frac{d}{d t}\left[\int_{\partial \Omega(t)} h d \sigma\right]=\int_{\partial \Omega(t)} h H v_{n} d \sigma+\int_{\partial \Omega(t)} \partial_{n} h v_{n} d \sigma
$$

Characterization of a family of QS

Geometric flow

$$
\begin{aligned}
& v_{n}=p \text { on } \partial \Omega(t) \\
& \quad \text { where }\left\{\begin{array}{rll}
-\Delta p & =\delta_{0} & \text { in } \Omega(t) \\
\partial_{n} p+H p & =0 & \text { on } \partial \Omega(t)
\end{array}\right.
\end{aligned}
$$

(Proof of (GF) $\Rightarrow(\mathrm{QS})$) For any harmonic function h,

$$
\frac{d}{d t}\left[\int_{\partial \Omega(t)} h d \sigma\right]=\int_{\partial \Omega(t)} h H p d \sigma+\int_{\partial \Omega(t)} \partial_{n} h p d \sigma
$$

Characterization of a family of QS

Geometric flow

$$
\begin{aligned}
& v_{n}=p \text { on } \partial \Omega(t) \\
& \quad \text { where }\left\{\begin{array}{rll}
-\Delta p & =\delta_{0} & \text { in } \Omega(t) \\
\partial_{n} p+H p & =0 & \text { on } \partial \Omega(t)
\end{array}\right.
\end{aligned}
$$

(Proof of (GF) $\Rightarrow(\mathrm{QS})$) For any harmonic function h,

$$
\begin{aligned}
& \frac{d}{d t}\left[\int_{\partial \Omega(t)} h d \sigma\right]=\int_{\partial \Omega(t)} h \boldsymbol{H} p d \sigma+\int_{\partial \Omega(t)} \partial_{n} h p d \sigma \\
= & \int_{\partial \Omega(t)} h H p d \sigma+\int_{\partial \Omega(t)} h \partial_{n} p d \sigma+\int_{\Omega(t)}(\Delta h p-h \Delta p) d x
\end{aligned}
$$

Characterization of a family of QS

Geometric flow

$$
\begin{aligned}
& v_{n}=p \text { on } \partial \Omega(t) \\
& \quad \text { where }\left\{\begin{array}{rll}
-\Delta p & =\delta_{0} & \text { in } \Omega(t) \\
\partial_{n} p+H p & =0 & \text { on } \partial \Omega(t)
\end{array}\right.
\end{aligned}
$$

(Proof of (GF) $\Rightarrow(\mathrm{QS})$) For any harmonic function h,

$$
\begin{aligned}
& \frac{d}{d t}\left[\int_{\partial \Omega(t)} h d \sigma\right]=\int_{\partial \Omega(t)} h H p d \sigma+\int_{\partial \Omega(t)} \partial_{n} h p d \sigma \\
= & \int_{\partial \Omega(t)} h H p d \sigma+\int_{\partial \Omega(t)} h \partial_{n} p d \sigma+\int_{\Omega(t)}(\Delta h p-h \Delta p) d x
\end{aligned}
$$

Characterization of a family of QS

Geometric flow

$$
\begin{aligned}
& v_{n}=p \text { on } \partial \Omega(t) \\
& \quad \text { where }\left\{\begin{array}{rll}
-\Delta p & =\delta_{0} & \text { in } \Omega(t) \\
\partial_{n} p+H p & =0 & \text { on } \partial \Omega(t)
\end{array}\right.
\end{aligned}
$$

(Proof of (GF) $\Rightarrow(\mathrm{QS})$) For any harmonic function h,

$$
\begin{aligned}
& \frac{d}{d t}\left[\int_{\partial \Omega(t)} h d \sigma\right]=\int_{\partial \Omega(t)} h H p d \sigma+\int_{\partial \Omega(t)} \partial_{n} h p d \sigma \\
&= \int_{\partial \Omega(t)} h H p d \sigma+\int_{\partial \Omega(t)} h \partial_{n} p d \sigma+\int_{\Omega(t)}(\Delta h p-h \Delta p) d x \\
&=h(0)
\end{aligned}
$$

Characterization of a family of QS

Geometric flow

$$
\begin{aligned}
& v_{n}=p \text { on } \partial \Omega(t) \\
& \quad \text { where }\left\{\begin{array}{rll}
-\Delta p & =\delta_{0} & \text { in } \Omega(t) \\
\partial_{n} p+H p & =0 & \text { on } \partial \Omega(t)
\end{array}\right.
\end{aligned}
$$

(Proof of (GF) $\Rightarrow(\mathrm{QS})$) For any harmonic function h,

$$
\begin{array}{r}
\frac{d}{d t}\left[\int_{\partial \Omega(t)} h d \sigma\right]=\int_{\partial \Omega(t)} h H p d \sigma+\int_{\partial \Omega(t)} \partial_{n} h p d \sigma \\
=\int_{\partial \Omega(t)} h H p d \sigma+\int_{\partial \Omega(t)} h \partial_{n} p d \sigma+\int_{\Omega(t)}(\Delta h p-h \Delta p) d x \\
=h(0)
\end{array}
$$

$\therefore \quad \int_{\partial \Omega(t)} h d \sigma=\int_{\partial \Omega(0)} h d \sigma+t h(0)$.

Characterization of a family of QS (continued)

(Proof of (QS) \Rightarrow (GF))
It suffices to show that $v_{n}=p$.

Characterization of a family of QS (continued)

(Proof of (QS) \Rightarrow (GF))
It suffices to show that $v_{n}=p$.
Differentiating the identity yields

$$
\int_{\partial \Omega(t)} h H v_{n} d \sigma+\int_{\partial \Omega(t)} \partial_{n} h v_{n} d \sigma=h(0)
$$

$$
\int_{\partial \Omega(t)} h d \sigma=\int_{\partial \Omega(0)} h d \sigma+t h(0)
$$

Characterization of a family of QS (continued)

(Proof of (QS) \Rightarrow (GF))
It suffices to show that $v_{n}=p$.
Differentiating the identity yields

$$
\int_{\partial \Omega(t)} h H v_{n} d \sigma+\int_{\partial \Omega(t)} \partial_{n} h v_{n} d \sigma=h(0)
$$

On the other hand, a solution \boldsymbol{p} to the elliptic equation satisfies

$$
h(0)=-\int_{\Omega(t)} h \Delta p d x
$$

$$
\left\{\begin{aligned}
-\Delta p & =\delta_{0} \\
& \text { in } \Omega(t), \\
\partial_{n} p+H p & =0
\end{aligned} \quad \text { on } \partial \Omega(t)\right.
$$

Characterization of a family of QS (continued)

(Proof of (QS) \Rightarrow (GF))
It suffices to show that $v_{n}=p$.
Differentiating the identity yields

$$
\int_{\partial \Omega(t)} h H v_{n} d \sigma+\int_{\partial \Omega(t)} \partial_{n} h v_{n} d \sigma=h(0)
$$

On the other hand, a solution \boldsymbol{p} to the elliptic equation satisfies

$$
h(0)=-\int_{\Omega(t)} h \Delta p d x=-\int_{\partial \Omega(t)} h \partial_{n} p d \sigma+\int_{\partial \Omega(t)} \partial_{n} h p d \sigma
$$

$$
\left\{\begin{aligned}
-\Delta p & =\delta_{0} \\
\partial_{n} p+H p & \text { in } \Omega(t), \\
0 & \text { on } \partial \Omega(t)
\end{aligned}\right.
$$

Characterization of a family of QS (continued)

(Proof of (QS) \Rightarrow (GF))
It suffices to show that $v_{n}=p$.
Differentiating the identity yields

$$
\int_{\partial \Omega(t)} h H v_{n} d \sigma+\int_{\partial \Omega(t)} \partial_{n} h v_{n} d \sigma=h(0)
$$

On the other hand, a solution \boldsymbol{p} to the elliptic equation satisfies

$$
\begin{aligned}
h(0) & =-\int_{\Omega(t)} h \Delta p d x=-\int_{\partial \Omega(t)} h \partial_{n} p d \sigma+\int_{\partial \Omega(t)} \partial_{n} h p d \sigma \\
& =\int_{\partial \Omega(t)} h H p d \sigma+\int_{\partial \Omega(t)} \partial_{n} h p d \sigma .
\end{aligned}
$$

$$
\left\{\begin{aligned}
-\Delta p=\delta_{0} & \text { in } \Omega(t), \\
\partial_{n} p+H p=0 & \text { on } \partial \Omega(t)
\end{aligned}\right.
$$

Characterization of a family of QS (continued)

(Proof of (QS) \Rightarrow (GF))
It suffices to show that $v_{n}=p$.
Differentiating the identity yields

$$
\int_{\partial \Omega(t)} h H v_{n} d \sigma+\int_{\partial \Omega(t)} \partial_{n} h v_{n} d \sigma=h(0)
$$

On the other hand, a solution \boldsymbol{p} to the elliptic equation satisfies

$$
\begin{aligned}
h(0) & =-\int_{\Omega(t)} h \Delta p d x=-\int_{\partial \Omega(t)} h \partial_{n} p d \sigma+\int_{\partial \Omega(t)} \partial_{n} h p d \sigma \\
& =\int_{\partial \Omega(t)} h H p d \sigma+\int_{\partial \Omega(t)} \partial_{n} h p d \sigma .
\end{aligned}
$$

By combining the above equalities,

$$
\int_{\partial \Omega(t)}\left(h H+\partial_{n} h\right)\left(v_{n}-p\right) d \sigma=0 \quad(\forall h: \text { harmonic }) .
$$

Characterization of a family of QS (continued)

(Proof of (QS) \Rightarrow (GF))
It suffices to show that $v_{n}=p$.
Differentiating the identity yields

$$
\int_{\partial \Omega(t)} h H v_{n} d \sigma+\int_{\partial \Omega(t)} \partial_{n} h v_{n} d \sigma=h(0)
$$

On the other hand, a solution \boldsymbol{p} to the elliptic equation satisfies

$$
\begin{aligned}
h(0) & =-\int_{\Omega(t)} h \Delta p d x=-\int_{\partial \Omega(t)} h \partial_{n} p d \sigma+\int_{\partial \Omega(t)} \partial_{n} h p d \sigma \\
& =\int_{\partial \Omega(t)} h H p d \sigma+\int_{\partial \Omega(t)} \partial_{n} h p d \sigma .
\end{aligned}
$$

By combining the above equalities,

$$
\int_{\partial \Omega(t)}\left(h H+\partial_{n} h\right)\left(v_{n}-p\right) d \sigma=0 \quad(\forall h: \text { harmonic }) .
$$

Hence, $\boldsymbol{v}_{\boldsymbol{n}}=\boldsymbol{p}$ follows from the solvability of the equation

$$
\left\{\begin{aligned}
-\Delta h & =0 & & \text { in a nb'd of } \overline{\Omega(t)} \\
h H+\partial_{n} h & =v_{n}-p & & \text { on } \partial \Omega(t)
\end{aligned}\right.
$$

Unique solvability of the geometric flow

Unique solvability of the geometric flow

(1) Reformulation of problem into ODE in a fixed Banach space:

$$
t \mapsto \rho(t) \in h^{3+\alpha}(\Gamma) \text { s.t. }\left\{\begin{array}{l}
\partial_{t} \rho=F(\rho)=L \rho+G(\rho), \\
\rho(0)=\rho_{0}
\end{array}\right.
$$

Unique solvability of the geometric flow

(1) Reformulation of problem into ODE in a fixed Banach space:

$$
t \mapsto \rho(t) \in h^{3+\alpha}(\Gamma) \text { s.t. }\left\{\begin{array}{l}
\partial_{t} \rho=F(\rho)=L \rho+G(\rho), \\
\rho(0)=\rho_{0} .
\end{array}\right.
$$

(2) Spectral analysis of the linearized operator \boldsymbol{L} :
L : sectorial $\Rightarrow \exists\left\{e^{t L}\right\}_{t \geq 0}$: analytic semigroup

$$
\Rightarrow \rho(t):=e^{t L} \rho_{0} \text { solves }\left\{\begin{array}{l}
\partial_{t} \rho=L \rho \\
\rho(0)=\rho_{0}
\end{array}\right.
$$

Unique solvability of the geometric flow

(1) Reformulation of problem into ODE in a fixed Banach space:

$$
t \mapsto \rho(t) \in h^{3+\alpha}(\Gamma) \text { s.t. }\left\{\begin{array}{l}
\partial_{t} \rho=F(\rho)=L \rho+G(\rho), \\
\rho(0)=\rho_{0} .
\end{array}\right.
$$

(2) Spectral analysis of the linearized operator \boldsymbol{L} :
L : sectorial $\Rightarrow \exists\left\{e^{t L}\right\}_{t \geq 0}$: analytic semigroup

$$
\Rightarrow \rho(t):=e^{t L} \rho_{0} \text { solves }\left\{\begin{array}{l}
\partial_{t} \rho=L \rho \\
\rho(0)=\rho_{0}
\end{array}\right.
$$

(3) Theory of maximal regularity deduces the existence:

$$
\begin{aligned}
& \exists \text { a fixed point } \rho(\cdot) \in C\left([0, T) ; h^{3+\alpha}(\Gamma)\right) \text { of } \\
& \Phi(\rho):=e^{t L} \rho_{0}+\int_{0}^{t} e^{(t-s) L} G(\rho(s)) d s
\end{aligned}
$$

Unique solvability of the geometric flow

(2) Spectral analysis of the linearized operator \boldsymbol{L} :
L : sectorial $\Rightarrow \exists\left\{e^{t L}\right\}_{t \geq 0}$: analytic semigroup

$$
\Rightarrow \rho(t):=e^{t L} \rho_{0} \text { solves }\left\{\begin{array}{l}
\partial_{t} \rho=L \rho \\
\rho(0)=\rho_{0}
\end{array}\right.
$$

Unique solvability of the geometric flow

(2) Spectral analysis of the linearized operator \boldsymbol{L} :

$$
\begin{aligned}
L: \text { sectorial } & \Rightarrow \exists\left\{e^{t L}\right\}_{t \geq 0}: \text { analytic semigroup } \\
& \Rightarrow \rho(t):=e^{t L} \rho_{0} \text { solves }\left\{\begin{array}{l}
\partial_{t} \rho=L \rho \\
\rho(0)=\rho_{0}
\end{array}\right.
\end{aligned}
$$

$L \sim-M_{1} T_{\Gamma} M_{2}\left(-\Delta_{\Gamma}\right) \in \mathcal{L}\left(h^{3+\alpha}(\Gamma), h^{2+\alpha}(\Gamma)\right)$.
Here, $\boldsymbol{T}_{\boldsymbol{\Gamma}}$ is the Robin-to-Dirichlet operator defined by $\boldsymbol{T}_{\boldsymbol{\Gamma}} \boldsymbol{\varphi}=\boldsymbol{v}$, where

$$
\left\{\begin{array}{rll}
-\Delta v & =0 & \text { in } \Omega \\
\partial_{n} v+H_{\Gamma} v & =\varphi & \text { on } \Gamma
\end{array}\right.
$$

Unique solvability of the geometric flow

(2) Spectral analysis of the linearized operator \boldsymbol{L} :

$$
\begin{aligned}
L: \text { sectorial } & \Rightarrow \exists\left\{e^{t L}\right\}_{t \geq 0}: \text { analytic semigroup } \\
& \Rightarrow \rho(t):=e^{t L} \rho_{0} \text { solves }\left\{\begin{array}{l}
\partial_{t} \rho=L \rho \\
\rho(0)=\rho_{0}
\end{array}\right.
\end{aligned}
$$

$L \sim-M_{1} T_{\Gamma} M_{2}\left(-\Delta_{\Gamma}\right) \in \mathcal{L}\left(h^{3+\alpha}(\Gamma), h^{2+\alpha}(\Gamma)\right)$.
Here, $\boldsymbol{T}_{\boldsymbol{\Gamma}}$ is the Robin-to-Dirichlet operator defined by $\boldsymbol{T}_{\boldsymbol{\Gamma}} \boldsymbol{\varphi}=\boldsymbol{v}$, where

$$
\left\{\begin{aligned}
-\Delta v & =0 & \text { in } \Omega \\
\partial_{n} v+H_{\Gamma} v & =\varphi & \text { on } \Gamma
\end{aligned}\right.
$$

To prove that \boldsymbol{L} is sectorial,
Step 1. Localize \boldsymbol{L} near each point on $\boldsymbol{\Gamma}$.
Step 2. $L \sim$ a constant coefficient operator \mathcal{L}_{0} on $\mathbb{R}^{\boldsymbol{N - 1}}$.
Step 3. Show that \mathcal{L}_{0} is a pseudo-differential operator of first order. In fact, the symbol is of monomial type of degree one, which implies \mathcal{L}_{0} is sectorial.

Summary

Q. Uniqueness of a family of QS
(1) Introduction of GF.
(2) Characterization of continuous family of QS by GF.

- Unique solvability of GF.
A. TRUE under the geometric condition $\boldsymbol{H}>\mathbf{0}$

Summary

Q. Uniqueness of a family of QS

(1) Introduction of GF.
(2) Characterization of continuous family of QS by GF.

- Unique solvability of GF.
A. TRUE under the geometric condition $\boldsymbol{H}>\mathbf{0}$

Thank you for your kind attention!

