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“Potato Kugel” problem

Let P be a “potato” with volume |B(0, 1)| which attracts each point
outside it as if all its mass were concentrated at a single point.

Question: What is the shape of P ? Answer: P = B(0, 1).

Need to show that P = B(0, 1) produces the same gravitational
potential as |B(0, 1)|δ0 does:

E ∗ |B(0, 1)|δ0 = E ∗ χB(0,1) outside B(0, 1).

(point mass) (potato)
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(point mass) (potato)(
i.e.,

|B(0, 1)|
|x|N−2

=
∫

B(0,1)

dy

|x − y|N−2
(x /∈ B(0, 1)).

)

This is a special case of the mean value formula

|B(0, 1)|h(0) =
∫

B(0,1)

h dy (h : harmonic)

Actually, the problem is UNIQUENESS!
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“Potato Kugel” problem (continued)

We are led to a natural question:
What domain Ω corresponds to a given measure µ?

Quadrature Domains� �
For a measure µ with compact support, specify a domain Ω such that

Z

h dµ =

Z

Ω

h dy (∀h ∈ H(Ω)).� �
i.e., both µ and χΩ produce the same gravitational forces.

i.e., both µ and HN −1b∂Ω produce the same gravitational forces.
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Another equivalent formulation

Quadrature Surfaces� �
For a measure µ with compact support, specify a surface ∂Ω such that

Z

h dµ =

Z

∂Ω

h dHN −1 (∀h ∈ H(Ω)).� �

This problem is equivalent to the following overdetermined problem:
8

>

>

<

>

>

:

−∆u = µ in Ω,

u = 0 on ∂Ω,
∂u

∂n
= −1 on ∂Ω.

Namely, this elliptic equation possesses a solution u in Ω if and only if ∂Ω is a
quadrature surface of µ. This fact follows from the representation formula

u(x) =

Z

E(x − y) dµ(y) −
Z

∂Ω

E(x − y) dHN −1(y).

Remark The uniqueness of a quadrature surface ∂Ω holds in the case where
µ = ωN δ0 by the method of moving planes.
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Previous studies

A good sufficient condition for uniqueness of QD is known. However,
uniqueness of QS does not hold even for simple two Dirac measures.

QD is unique for µ(t), but QS is not, in general.
We will show that ∂Ω(t), continuously deformable from ∂Ω(0), is unique!
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Variational method� �

∂Ω is characterized as the set ∂{u > 0}, where u is a critical point of

J(u) :=

Z

RN

„

1

2
|∇u|2 − µu +

1

2
χ{u>0}

«

dx.� �
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vn = p on ∂Ω(t)

where
{

−∆p = δ0 in Ω(t)
∂np + Hp = 0 on ∂Ω(t)� �

H: mean curvature of ∂Ω(t)

Comparison with Hele-Shaw flow� �
vn = −∂np on ∂Ω(t)

where
{

−∆p = δ0 in Ω(t)
p = 0 on ∂Ω(t)� �

9 / 16



Introduction
Main results

Outline of proof

Geometric flow
Theorems

.

.

Geometric flow

Geometric flow� �
vn = p on ∂Ω(t)

where
{

−∆p = δ0 in Ω(t)
∂np + Hp = 0 on ∂Ω(t)� �

H > 0 ensures the unique solvability of the elliptic equation.

H ≥ 0 implies p > 0 on ∂Ω(t), by maximum principle.

∵ If p(x0) = min
∂Ω(t)

p ≤ 0 for x0 ∈ ∂Ω(t),

then ∂np(x0) < 0, a contradiction.

{∂Ω(t)}0≤t<T is called a C3+α family of surfaces if ∂Ω(t) is
locally represented as the graph of a C3+α function and its time
derivative is of C2+α.

Why C3+α? Because H ∈ C1+α is required to solve the elliptic
equation, and hence ∂Ω(t) ∈ C3+α. Then, vn = p ∈ C2+α.
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Let {∂Ω(t)}0≤t<T be a C3+α family of surfaces with positive mean
curvature. Then, the following are equivalent:

(i) {∂Ω(t)} is a solution to the geometric flow;
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Let ∂Ω(0) be an h3+α closed surface with positive mean curvature. Then,
there exists a unique h3+α solution {∂Ω(t)}0≤t<T to the geometric flow.
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⊂ C3+α is the little Hölder space.
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there exists a unique h3+α solution {∂Ω(t)}0≤t<T to the geometric flow.

Here, h3+α := C∞ C3+α

⊂ C3+α is the little Hölder space.

Why h3+α? Since the equation turns out to be fully-nonlinear,
we need to use the maximal regularity of Da Prato and Grisvard,
in which the phase space must be a continuous interpolation space.
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Characterization of a family of QS

Geometric flow� �
vn = p on ∂Ω(t)

where
{

− ∆p = δ0 in Ω(t)
∂np + Hp = 0 on ∂Ω(t)� �

(Proof of (GF) ⇒ (QS))

For any harmonic function h,

d

dt

[

∫
∂Ω(t)

h dσ

]
=
∫

∂Ω(t)

hHvn dσ +
∫

∂Ω(t)

∂nhvn dσ

= h(0).

∴
∫

∂Ω(t)

h dσ =
∫

∂Ω(0)

h dσ + th(0).
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Characterization of a family of QS (continued)

(Proof of (QS) ⇒ (GF)) It suffices to show that vn = p.

Differentiating the identity yields∫
∂Ω(t)

hHvn dσ +
∫

∂Ω(t)

∂nhvn dσ = h(0).

On the other hand, a solution p to the elliptic equation satisfies

h(0) = −
∫
Ω(t)

h∆p dx

= −
∫

∂Ω(t)

h∂np dσ +
∫

∂Ω(t)

∂nhp dσ

=
∫

∂Ω(t)

hHp dσ +
∫

∂Ω(t)

∂nhp dσ.

By combining the above equalities,∫
∂Ω(t)

(hH + ∂nh) (vn − p) dσ = 0 (∀h: harmonic).
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Characterization of a family of QS (continued)
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Characterization of a family of QS (continued)
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Characterization of a family of QS (continued)

(Proof of (QS) ⇒ (GF)) It suffices to show that vn = p.
Differentiating the identity yields∫
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hHvn dσ +
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By combining the above equalities,∫
∂Ω(t)

(hH + ∂nh) (vn − p) dσ = 0 (∀h: harmonic).

Hence, vn = p follows from the solvability of the equation{
−∆h = 0 in a nb′d of Ω(t),

hH + ∂nh = vn − p on ∂Ω(t). 14 / 16
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3 Theory of maximal regularity deduces the existence:

∃ a fixed point ρ(·) ∈ C([0, T ); h3+α(Γ)) of

Φ(ρ) := etLρ0 +
∫ t

0

e(t−s)LG(ρ(s)) ds.
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