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Background

Energy minimizing maps

Let D ⊂ Rn, be a bounded domain, and consider the functional

E(u) :=

∫
D

(|∇u|2 + 2|u|) dx ,

gives rise to the singular Euler equations

∆u =
u
|u|
χ{|u|>0}, u = (u1, · · · ,um) .

This is standard and one can do it using first variation along
with standard Lp-theory.
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Background

Application

This is the equilibrium state of a cooperative reaction-diffusion
system

ut −∆u = −
u

√
u2 + v2

,

vt −∆v = −
v

√
u2 + v2

.

Considering the concentrations u and v of two species
(reactants), each species (reactant) slows down the extinction
(reaction) of the other species.
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Background

Scalar case

The above system may also be seen as one of the simplest
extensions of the classical obstacle problem to the
vector-valued case:
Solutions of the classical obstacle problem are minimisers of
the energy ∫

D
(
1
2
|∇u|2 + max(u,0)) dx ,

where u : Rn
⊃ D → R.
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Background

Two-phase scalar case

In the scalar case (m = 1), one recovers the two phase free
boundary problem

∆u = χ{u>0} − χ{u<0},

which is a well-studied problem.
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An example

Case m = 2

The real and imaginary parts of the function

S(z) = z2 log |z| (z = x + iy)

satisfy the unstable equation (up to a multiplicative constant)
and they have singularities at the origin:

∆ui =
−ui

|u|
, i = 1,2, ...

Hence optimal C1,1 regularity is lost for the unstable problem!
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Examples

One dimensional examples are the following class of solutions

1 ui = αiP(x), with P(x) ≥ 0, ∆P(x) = 1, and
∑m

i=1 α
2
i = 1,

2 ui = αi(x+
1 )2/2 + βi(x−1 )2/2, (two-phase)

∑m
i=1 α

2
i = 1,∑m

i=1 β
2
i = 1.

3 ui = αi(x+
1 )2/2, (one-phase case)

∑m
i=1 α

2
i = 1,
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Examples

We shall be interested in the class of solutions u that
asymptotically, near a free boundary point, behave like

max(x · ν,0)2

2
e

where ν is a unit vector in Rn and e is a unit vector in Rm.

Also denote byH the class of all these Half-space solutions.
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Properties of the solution

One can work out many properties of the solution u to our
problem:

Uniqueness: use first variation by φ := u − v, both having
the same boundary data.

Bounds:
supB3/4

|u|+ supB3/4
|∇u| ≤ C1(n,m)

(
‖u‖L1(B1;Rm) + 1

)
.

Stability: uk → u weakly in W1,2(D;Rm) then Rellich’s
theorem together with the fact that D2u = 0 a.e. in {u = 0},
implies that u is a solution, too.
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Further properties

Non-Degeneracy:

sup
Br (x0)

|u| ≥
1

2n
r2, ∀x0

∈ {|u| > 0}.

Use the fact that ∆|u| ≥ 1 in the set {|u| > 0}.

L1-closeness implies geometric closeness: If
‖u − h‖L1(B1;Rm) ≤ ε < 1, where h :=

max(xn ,0)2

2 e1. Then

B1/2(0) ∩ supp u ⊂
{
xn > −Cε

1
2n+2

}
with a constant C = C(n,m).
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A balanced energy functional

We define a new energy functional

M(v, x0, r) :=
1

rn+2

∫
Br (x0)

(|∇v|2 +2|v|)−
2

rn+3

∫
∂Br (x0)

|v|2 dHn−1,

which will be used to prove both the growth of u from the free
boundary and also the behavior of the free boundary at good
points.

For vr (x) := r−2v(rx + x0), we have

M(v, x0, r) = M(vr ,0,1) =: M(vr ),
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Important properties of M

Monotonicity

The balanced energy functional M is monotone in r :

dM(v, x0, r)

dr
≥ 0.

We also define

αn

2
:= M(

max(x · ν,0)2

2
e),

and one can show that αn = 2M(h) for all h ∈H.
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Important properties of M

Homogeneous global solutions, and energy level

M(u) ≥ αn
2 for all 2-homogeneous global solutions, and

with equality if and only if u ∈H.

In the L1(B1(0);Rm)- topology,H is isolated within the
class of homogeneous solutions of degree 2.
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The free boundary

Regular points

We define
Γ(u) := D ∩ ∂{x ∈ D : |u(x)| > 0},

x ∈ Γ0(u) := Γ(u) ∩ {x : ∇u(x) = 0}

A point x is a regular free boundary point for u if:

x ∈ Γ0(u) and lim
r→0

M(u, x , r) =
αn

2
.

We denote by Ru the set of all regular free boundary points of u
in B1.
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The free boundary

The set of Regular points are open in Γ0

From the upper semicontinuity of M(u, x , r) in u, and the
isolated property ofH we can conclude that the set of regular
free boundary points Ru is open relative to Γ0(u).
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Properties of u

Quadratic Grwoth

Any solution u to our system in B1(0) satisfies

|u(x)| ≤ Cdist2(x , Γ0(u))

and
|∇u(x)| ≤ Cdist(x , Γ0(u)) for every x ∈ B1/2(0),

where the constant C depends only on n and

E(u,0,1) =

∫
B1(0)

(|∇u|2 + 2|u|).
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Properties of u

Quadratic Grwoth

Using the monotonicity formula one can show (elementary)

2
rn+2

∫
Br

|u| ≤ E(u,0,1) +
2

rn+3

∫
∂Br

|u − p|2 dHn−1

≤ C0 + C1(p)|D2u|BMO(B1/2) ≤ C2

for each p = (p1, . . . ,pm) such that each component pj is a
homogeneous harmonic polynomial of second order.
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Regularity of the free boundary

Ru is locally in D a C1,β-surface.

One shows there exist β′ > 0, r0 > 0 and C < ∞:∫
∂B1(0)

∣∣∣∣∣∣u(x0 + rx)

r2 −
1
2

e(x0) max(x · ν(x0),0)2

∣∣∣∣∣∣ dHn−1
≤ C rβ

′

for every x0
∈ Ru and every r ≤ r0 .

Here ν(x0) depends on the blow-up of u at x0.
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A main technical tool

Epiperimetric inequality

There exists κ ∈ (0,1) and δ > 0 such that if c is a
homogeneous function of degree 2 satisfying
‖c − h‖W1,2(B1;Rm) + ‖c − h‖L∞(B1;Rm) ≤ δ for some h ∈H, then
there is a v ∈W1,2(B1;Rm) such that v = c on ∂B1 and

M(v) ≤ (1 − κ)M(c) + κ
αn

2
.
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