A DISCONTINUOUS CAPACITY

KAI ZEHMISCH AND FABIAN ZILTENER

ABSTRACT. We introduce the spherical capacity and show that it is not continuous on a smoothly bounded smooth family of open sets in dimension four.

1. Introduction

In [2] K. Cieliebak, H. Hofer, J. Latschev, and F. Schlenk asked the following question:

Question ([2, Problem 7]). Are capacities continuous on all smooth families of domains bounded by smooth hypersurfaces? Here a family of domains is called **smooth** if their boundaries fit in a smooth isotopy of embeddings.

The answer is *no* in dimension 4. Below we define a capacity, which we call the *spherical capacity* and prove the following theorem.

Theorem 1.1. There is a smooth family U_{ε} , $\varepsilon \in (0,1)$, of ellipsoidal shells in \mathbb{R}^4 such that for the spherical capacity s the function

$$\varepsilon \longmapsto s(U_{\varepsilon})$$

is not continuous.

The proof involves a non-embedding result for ellipsoids by F. Schlenk [11] and and the symplectic 4-ball theorem by M. Gromov [6]. We begin with the definition of the spherical capacity:

Definition 1.2. For symplectic manifolds (V, ω) of dimension ≥ 4 we call

$$s(V,\omega) := \sup \{\pi r^2 > 0 \mid \exists \text{ symplectic embedding } S_r^{2n-1} \hookrightarrow (V,\omega) \}$$

the spherical capacity. By a symplectic embedding of the sphere S_r^{2n-1} we mean a symplectic embedding of a neighbourhood of $S_r^{2n-1} \subset \mathbb{R}^{2n}$.

In [6] Gromov proved the non-squeezing theorem which says that the open ball $B_r = B_r^{2n}$ of radius r > 0 embeds symplectically into the symplectic cylinder $Z_R = B_R^2 \times \mathbb{R}^{2n-2}$ if and only if $r \leq R$. It is natural to ask whether a similar result holds for symplectic embeddings of the sphere $S_r^{2n-1} = \partial B_r$ into Z_R , i.e. embeddings of neighbourhoods of $S_r^{2n-1} \subset \mathbb{R}^{2n}$. If the dimension $2n \geq 4$ a positive answer was given in [12, 5], where it was shown, that such an embedding exists precisely if r < R. As Gromov's non-squeezing leads to a symplectic capacity

$$w(V,\omega) = \sup \{\pi r^2 > 0 \mid \exists \text{ symplectic embedding } B_r \hookrightarrow (V,\omega) \}$$

the Gromov width, the spherical non-squeezing theorem from [12, 5] is related to the spherical capacity. That this is a normalized symplectic capacity in dimension ≥ 4 follows from [12, 5]. Recall that this means the following.

2010 Mathematics Subject Classification. 53D35.

Definition 1.3. A normalized symplectic capacity is an assignment of a real number $c(V, \omega) \in [0, \infty]$ to a symplectic manifold (V, ω) of fixed dimension satisfying the following conditions:

Monotonicity: If there exists a symplectic embedding $(V, \omega) \hookrightarrow (V', \omega')$, then $c(V, \omega) < c(V', \omega')$.

Conformality: For any a > 0 we have $c(V, a\omega) = a c(V, \omega)$.

Normalization: $c(B_1) = \pi = c(Z_1)$.

Given a symplectic manifold (V, ω) an **extrinsic capacity** on subsets $U \subset V$ is a real number $c(U, \omega) \in [0, \infty]$ satisfying the above conditions with monotonicity replaced by:

Relative monotonicity: If there exists a symplectomorphism of (V, ω) which maps U_1 into U_2 , then $c(U_1, \omega) \leq c(U_2, \omega)$.

We suppress the standard symplectic structure $d\mathbf{x} \wedge d\mathbf{y}$ on \mathbb{R}^{2n} in the notation.

2. MOTIVATION

The spherical capacity is a variant of the regular coisotropic capacity of hypersurfaces introduced in [12]. Consider a hypersurfaces M in a symplectic manifold (V,ω) such that the characteristics are all closed, form a smooth fibration over the leaf space with fibre S^1 , and are contractible in V. Let $\inf(M)$ denote the least positive symplectic area a smooth disc in V with boundary on a closed characteristic of M can have and set

$$a(V, \omega) := \sup\{\inf(M) \mid M \subset (V, \omega)\},\$$

where the supremum runs over all hypersurfaces as described. This defines a normalized capacity on all symplectically aspherical symplectic manifolds, see [12], the **regular coisotropic hypersurface capacity**. The restriction to spheres is denoted by a_S and we get

$$w \le s \le a_S \le a$$
.

The contact type embedding capacity

$$c(V,\omega) := \sup\{\inf(\alpha) \mid \exists \text{ contact type embedding } (M,\alpha) \hookrightarrow (V,\omega)\},\$$

see [4, 5], yields a second approach to the spherical capacity. Here the supremum is taken over all closed contact manifolds (M, α) of dimension (2n-1), where $\inf(\alpha)$ is the infimum of all positive periods of closed Reeb orbits w.r.t. the contact from α . By a contact type embedding $j \colon (M, \alpha) \hookrightarrow (V, \omega)$ we mean that there is a Liouville vector field Y for ω defined near j(M) such that $j^*(i_Y\omega) = \alpha$. If one restricts in the definition of c to contact manifolds diffeomorphic to the (2n-1)-sphere, one obtains a normalized capacity c_S as well. These capacities yield a second proof of the spherical non-squeezing theorem and we have

$$w \le s \le c_S \le c$$
.

Definition 2.1. For symplectic manifolds (V, ω) of dimension ≥ 4 we call

$$e(V,\omega) := \sup \{\pi r_1^2 > 0 \mid \exists \text{ symplectic embedding } \partial E \hookrightarrow (V,\omega) \}.$$

the **ellipsoidal capacity**. By a symplectic embedding of the boundary of E we mean a symplectic embedding of a neighbourhood of

$$\partial E := \left\{ \frac{x_1^2 + y_1^2}{r_1^2} + \ldots + \frac{x_n^2 + y_n^2}{r_n^2} = 1 \right\} \subset \mathbb{R}^{2n}$$

with positive symplectic half axes $r_1 \leq \ldots \leq r_n$.

Notice that

$$s < e < c_S$$
.

The question which now appears is whether the two capacities s and e coincide.

Theorem 2.2. The boundary of each 4-dimensional ellipsoid with different symplectic main axes has a tubular neighbourhood U, such that s(U) < e(U).

Remark 2.3. Both quantities s and c_S do not define capacities in dimension 2. Because they satisfy the monotonicity axiom, they would otherwise measure the area of the annuli $B_{1+\varepsilon} \setminus \overline{B}_{1-\varepsilon}$ in \mathbb{R}^2 , see [7]. Alternatively, for the first observe that $(r,\theta) \mapsto (\sqrt{r^2 + a}, \theta)$ maps $S^1 = \partial B$ symplectically to the circle of radius $\sqrt{1+a}$ for all $a \in (-1,\infty)$. For the second, consider the contact form $\frac{1}{2}(r^2 + a)d\theta$ on S^1 . Its smallest action equals $(1+a)\pi$.

In contrary, if one measures the largest minimal action an embedding of restricted contact type (with image in a certain open subset) has, this results in a extrinsic normalized capacities also in dimension 2, cf. [4]. In this case the monotonicity axiom is only valid in the weaker sense requiring all symplectomorphisms defined on the ambient space, cf. [9, p. 375].

3. The Boundary Gromov width

For open subsets U of a symplectic manifold (V, ω) there is version of the Gromov width which interpolates between w and s. Consider symplectic embeddings of the closed ball \overline{B}_r into (V, ω) which map the boundary sphere ∂B_r into U. The **boundary Gromov width** $w_{\partial}(U)$ is then defined to be the supremum of $\pi r^2 > 0$ taken over all such embeddings and is a normalized extrinsic capacity.

As a first step in the proofs of Theorems 1.1 and 2.2 we estimate $w_{\partial}(U_{\varepsilon})$ for open subsets U_{ε} of \mathbb{R}^{2n} . For that we consider an ellipsoid

$$E := E(r_1, \dots, r_n) = \left\{ \frac{x_1^2 + y_1^2}{r_1^2} + \dots + \frac{x_n^2 + y_n^2}{r_n^2} < 1 \right\}$$

with positive symplectic half axes $r_1 \leq \ldots \leq r_n$. We define an ellipsoidal shell via

$$U_{\varepsilon} := (1 + \varepsilon)E \setminus \overline{(1 - \varepsilon)E}$$

provided $\varepsilon > 0$ is sufficiently small.

Lemma 3.1. If two of the symplectic radii of E are different we have

$$w_{\partial}(U_{\varepsilon}) \longrightarrow 0$$

as ε tends to 0.

Proof. We consider a symplectic embedding φ of \overline{B}_r into \mathbb{R}^{2n} such that $\varphi(S_r^{2n-1})$ is contained in U_{ε} . Then there are two cases which we need to consider: either $\varphi(B_r)$ is contained in U_{ε} or not. The latter implies that the bounded component of the complement of $\varphi(S_r^{2n-1})$ contains $(1-\varepsilon)\partial E$ and, hence, $(1-\varepsilon)E\subset \varphi(B_r)$. We claim that for $\varepsilon>0$ small enough the second case can not appear, so that necessarily $\varphi(B_r)\subset U_{\varepsilon}$. The lemma follows then by comparing the volume.

Assume now that $\varphi(B_r) \not\subset U_{\varepsilon}$ for some $\varepsilon > 0$. Then $(1 - \varepsilon)E \subset \varphi(B_r)$, as we remarked above. Again comparing the volume we get a lower bound

$$(1-\varepsilon)^n r_1 \cdot \ldots \cdot r_n < r^n$$
.

For an upper bound observe that $\varphi(\overline{B}_r) \subset (1+\varepsilon)Z_{r_1}$. Invoking Gromov's non-squeezing theorem we get

$$r < (1+\varepsilon)r_1$$
.

Combining both inequalities yields

$$\left(\frac{1-\varepsilon}{1+\varepsilon}\right)^n < \frac{r_1^n}{r_1 \cdot \ldots \cdot r_n}.$$

Because the r_j are not all the same the right hand side is < 1. Therefore, there exists a positive number ε_0 , which only depends on the r_j , such that $\varepsilon > \varepsilon_0$. The lemma follows now by taking $\varepsilon \le \varepsilon_0$ which excludes the second case.

On the other hand:

Lemma 3.2. We have $e(U_{\varepsilon}) \longrightarrow \pi r_1^2$ and $c(U_{\varepsilon}) \longrightarrow \pi r_1^2$ as ε tends to 0.

Proof. Indeed,

$$\pi r_1^2 = \inf(\lambda_{\rm st}|_{T\partial E}) \le e(U_{\varepsilon}) \le e((1+\varepsilon)E) = (1+\varepsilon)^2 \pi r_1^2,$$

where $\lambda_{\rm st}$ denotes the radial Liouville form $\frac{1}{2}(\mathbf{x}d\mathbf{y} - \mathbf{y}d\mathbf{x})$ on \mathbb{R}^{2n} . For c the argument is the same.

4. Discontinuity

A refinement of the proof of Lemma 3.1 shows that the boundary Gromov width w_{∂} is discontinuous. We consider the ellipsoid E with radii $r_1 = \ldots = r_{n-1} = 1$ and $r_n = R$ for a real number $R \in (1, \sqrt[2n]{2})$. The corresponding ellipsoidal shell is again denoted by U_{ε} .

Proposition 4.1. For $U_{\varepsilon} \subset \mathbb{R}^{2n}$, $n \geq 2$, as described above the function

$$\varepsilon \longmapsto w_{\partial}(U_{\varepsilon})$$

is not continuous.

Proof. We will show that the function jumps at

$$\varepsilon_0 := \frac{R-1}{R+1}.$$

For this we consider two cases.

We claim that for all $\varepsilon \in (0, \varepsilon_0]$ we have $w_{\partial}(U_{\varepsilon}) = w(U_{\varepsilon})$. For this we need to exclude symplectic embeddings φ of B_r into \mathbb{R}^{2n} , such that $(1 - \varepsilon)E \subset \varphi(B_r)$, similarly to Lemma 3.1. We use a result of F. Schlenk [11, Theorem 1], which is based on the Ekeland-Hofer capacities [3]. By this result, since $R \in (1, \sqrt[2n]{2})$, there exists a symplectic embedding of $(1 - \varepsilon)E$ into B_r only if $(1 - \varepsilon)R \leq r$. Moreover, Gromov's non-squeezing yields the inequality $r < (1 + \varepsilon)$. Combining both we get

$$\frac{1-\varepsilon}{1+\varepsilon} < \frac{1}{R},$$

so that the symplectic embeddings under considerations can be excluded by our choice of ε_0 . Hence $w_{\partial}(U_{\varepsilon}) = w(U_{\varepsilon})$. Because the Gromov width of U_{ε} is bounded in terms of its volume from above, we obtain

$$w_{\partial}(U_{\varepsilon}) < \sqrt[n]{(1+\varepsilon)^{2n} - (1-\varepsilon)^{2n}} \pi R^2.$$

On the other hand, for $\varepsilon > \varepsilon_0$, where the spheres

$$S^{2n-1}_{\frac{2R}{R+1}} \subset \overline{U}_{\varepsilon_0}$$

start to appear, we have the lower bound

$$\frac{4\pi R^2}{(R+1)^2} \le w_{\partial}(U_{\varepsilon}).$$

Consequently, we get for all $R \in (1, \sqrt[2n]{2})$ and for all $\varepsilon > \varepsilon_0$ the following estimate:

$$w_{\partial}(U_{\varepsilon_0}) < \sqrt[n]{R^{2n} - 1} \frac{4\pi R^2}{(R+1)^2} < w_{\partial}(U_{\varepsilon}).$$

In other words the function $\varepsilon \mapsto w_{\partial}(U_{\varepsilon})$ is not continuous at ε_0 .

5. Proof of the Theorems

The second ingredient of the proofs of Theorems 1.1 and 2.2 are the following considerations:

Proposition 5.1. The capacities w and s coincide on closed minimal symplectic 4-manifolds.

Proof. As the Gromov width is the smallest capacity we get $w \leq s$ on all symplectic manifolds. For the converse consider a symplectic embedding of S_r^3 into a closed minimal symplectic 4-manifold (V, ω) . By [1] or [5, Proposition 4.10] its image S_r separates, so that S_r cuts out a strong symplectic filling (W, ω) . Since (W, ω) is minimal it is symplectomorphic to the standard 4-ball \overline{B}_r by a theorem of Gromov [6, p. 311], c.f. [4, Remark 2.3] or [10, Theorem 9.4.2]. Hence, $s \leq w$.

Notice that the minimality assumption is essential. The volume (and hence the Gromov width) of the symplectic blow up of $\mathbb{C}P^2$ obtained by cutting out a ball of radius $1 - \varepsilon$ in $B_1 \subset \mathbb{C}P^2$ can be made arbitrary small. In contrast, the spherical capacity stays $\geq \pi$.

Proposition 5.2. For all open subsets U in \mathbb{R}^4 we have $s(U) = w_{\partial}(U)$.

Proof. The argument is almost the one from Proposition 5.1. Just observe that any Liouville vector field defined near and determined by the symplectic embedding S_r of S_r^3 points out of the interior of S_r . Otherwise, we could use a sufficiently large ball to cut out a connected symplectic manifold with convex boundary consisting of two standard spheres. This would violate [8, Theorem 1.2] or [5, Theorem 3.4]. \square

Question 5.3. The proceeding proposition is valid in greater generality, e.g. for all subcritical Stein surfaces, see [5, Theorem 3.4]. The critical case seems to be not known. Therefore, we ask:

Does the Liouville vector field defined by a closed hypersurface of contact type (M, α) in a critical Stein manifold of dimension ≥ 4 point out of the interior of M, if (M, α) is not of restricted contact type?

Proof of Theorem 2.2. By choosing $\varepsilon > 0$ small enough we can make $e(U_{\varepsilon})$ as close to πr_1^2 and $w_{\partial}(U_{\varepsilon})$ as small as we wish, see Lemmata 3.1 and 3.2. Moreover, by the proceeding proposition $s(U_{\varepsilon})$ and $w_{\partial}(U_{\varepsilon})$ are equal.

Proof of Theorem 1.1. By Proposition 5.2 w_{∂} equals the spherical capacity on \mathbb{R}^4 - defines there an intrinsic capacity. The claim follows from Proposition 4.1. \square

Acknowledgement. We thank Janko Latschev, Leonid Polterovich, and Jan Swoboda for showing their interest in this work. The research in this article was carried out during the conference *From conservative dynamics to symplectic and contact topology* from 30 Jul. 2012 through 3 Aug. 2012 at the Lorentz Center in Leiden. We would like to thank the organizers Hansjörg Geiges, Viktor Ginzburg, Federica Pasquotto, Bob Rink, and Robert Vandervorst for many stimulating discussions.

References

- [1] P. Albers, B. Bramham, C. Wendl, On nonseparating contact hypersurfaces in symplectic 4-manifolds, *Algebr. Geom. Topol.*, **10** (2010), 697–737.
- [2] K. CIELIEBAK, H. HOFER, J. LATSCHEV, F. SCHLENK, Quantitative symplectic geometry, In: Dynamics, ergodic theory, and geometry, Math. Sci. Res. Inst. Publ., 54, 1–44, Cambridge Univ. Press (2007).
- [3] I. EKELAND, H. HOFER, Symplectic topology and Hamiltonian dynamics. II, Math. Z., 203 (1990), 553-567.
- [4] H. GEIGES, K. ZEHMISCH, How to recognise a 4-ball when you see one, (2011), preprint, arXiv:1104.1543
- [5] H. GEIGES, K. ZEHMISCH, Symplectic cobordisms and the strong Weinstein conjecture, Math. Proc. Cambridge Philos. Soc. (2012), to appear.
- [6] M. Gromov, Pseudoholomorphic curves in symplectic manifolds, *Invent. Math.* 82 (1985), 307–347.
- [7] H. HOFER, E. ZEHNDER, Symplectic invariants and Hamiltonian dynamics, Birkhäuser Verlag, Basel, (1994).
- [8] D. McDuff, Symplectic manifolds with contact type boundaries, *Invent. Math.* 103 (1991), 651–671.
- [9] D. McDuff, D. Salamon, *Introduction to symplectic topology*, 2nd edition, Oxford Mathematical Monographs, The Clarendon Press Oxford University Press, New York, (1998).
- [10] D. McDuff, D. Salamon, J-holomorphic Curves and Symplectic Topology, Amer. Math. Soc. Colloq. Publ. 52, American Mathematical Society, Providence, RI (2004).
- [11] F. SCHLENK, Symplectic embeddings of ellipsoids, Israel J. Math., 138 (2003), 215–252.
- [12] J. SWOBODA, F. ZILTENER, Coisotropic displacement and small subsets of a symplectic manifold, Math. Z. 271 (2012), 415–445.

Mathematisches Institut, Universität zu Köln, Weyertal 86–90, 50931 Köln, Germany

E-mail address: kai.zehmisch@math.uni-koeln.de

KOREA INSTITUTE FOR ADVANCED STUDY, HOEGIRO 87 (207-43 CHEONGNYANGNI-DONG),

Dongdaemungu, Seoul 130-722, Republic of Korea

E-mail address: fabian@kias.re.kr