Shot Noise and Orbital Entanglement in Mesoscopic Structures

Markus Büttiker University of Geneva

Peter Samuelsson University of Geneva \Rightarrow University of Lund

> Eugene V. Sukhorukov University of Geneva

Recent developments

Orbital entanglement

Samuelsson, Sukhorukov, Buttiker, PRL 91, 157002 (2003)

Zero-frequency measurement (Bell Inequality)

X. Maitre, W. D. Oliver, Y. Yamamoto, Physica E6, 301 (2000)N.M. Chtchelkatchev et al., Phys. Rev. B 66, 161320 (2002)P. Samuelsson, E.V. Sukhorukov and M. Buttiker, PRL 91, 157002 (2003)

Normal components

- C.W.J. Beenakker et al, PRL 91, 147901 (2003);
- P. Samuelsson, E.V. Sukhorukov and M. Buttiker, PRL 92, 026805 (2004).

Controllable geometries

P. Samuelsson, E.V. Sukhorukov and M. Buttiker, PRL 92, 026805 (2004)

Orbital entanglement

Spin entanglement proposals

Recher, Sukhorukov, Loss, PRB 63, 165314 (2001); Burkard, Sukhorukov, Loss, PRB 61, 16303 (2000).

Combined system:

Samulesson, Sukhorukov, Buttiker, PRB 73, 115330 (2004).

Advantages: long spin coherence times Disadvantages: read-out, single spin manipulation

Lesovik, Martin, Blatter, EPJP 24, 287 (2001); Chtchekaltchev et al, PRB 66, 161320 (2002).

Orbital entanglers

Two particle injection from two contacts

Electron-hole injection from a barrier

Dynamic generation of orbtial entanglement

Source of orbital two-particle entanglement

Superconducting-normal hybrid structures

Bogoliubov-de Gennes picture

Pair-tunneling picture

5

Samuelsson, Sukhorukov and Buttiker, PRL 91, 157002 (2003)

Normal-conductors

Electron picture of tunneling

Electron-hole picture

Beenakker et al , PRL 91, 147901 (2003)

Shot noise

Classical shot noise:

W. Schottky, Ann. Phys. (Leipzig) 57, 541 (1918)

$$\langle (\Delta I)^2 \rangle_{\nu} = 2e \langle I \rangle$$

Quantum Shot Noise:

Khlus (1987), Lesovik (1989), Yurke and Kochanski (1989), Buttiker (1990), Beenakker (1991)

Scattering Theory

Central object: scattering matrix

Conductance

$$G = \frac{e^2}{h}Tr(t^{\dagger}t) = \frac{e^2}{h}\sum_n T_n$$

Shot noise

$$S = 2e\frac{e^2}{h}|eV|Tr(r^{\dagger}rt^{\dagger}t) = 2e\frac{e^2}{h}|eV|\sum_n T_n(1-T_n)$$

Buttiker, 1990

HBT-Intensity Interferometer

Hanbury Brown and Twiss, Nature 177, 27 (1956)

Interference not of amplitudes but of intensities Optics: classical interpretation possible Quantum mechanical explanation: Purcell, Nature 178, 1449 (1956) Indistinguishable particles:

Statistics, exchange amplitudes

$$\int d\tau \langle \Delta I_A(t) \Delta I_B(t+\tau) \rangle = f\left(\frac{d\theta}{\lambda}\right)$$

Scattering theory of mesoscopic transport Buttiker, PRL 65, 2901 (1990)

9

Mesoscopic conductor with N contacts

$$S_{\alpha\beta} = 2 \int dt \langle \Delta \hat{I}_{\alpha}(t) \Delta \hat{I}_{\beta}(0) \rangle$$

At kT = 0, M contacts with $f_{\gamma} = f$, N-M contacts at $f_{\delta} = f_0$

$$S_{\alpha\beta} = 2\frac{e^2}{h} \int dE \operatorname{Tr} \left[B_{\alpha\beta}^{\dagger} B_{\beta\alpha} \right], \qquad B_{\alpha\beta} = \sum_{\gamma=1}^{M} s_{\alpha\gamma} s_{\beta\gamma}^{\dagger} (f_{\gamma} - f_{0})$$

M=1, partition noise

M > 1, relative phase of scattering matrix elements becomes important Exchange interference effects: Buttiker, PRL 68, 843 (1992)

Optical and Electrical Mach-Zehnder-Interferometer 10

One particle Aharonov-Bohm effect

-1

$$s_{31} = \frac{1}{2} \left[e^{i(\phi_A - \chi_1)} + e^{i(\phi_B - \chi_2)} \right] \qquad \chi_2 - \chi_1 = 2\pi \Phi / \Phi_0$$
$$G_{31} = \frac{e^2}{2h} \left[1 + \cos(\phi_A - \phi_B - 2\pi \Phi / \Phi_0) \right]$$

Electrical HBT Interferometer Samuelsson, Sukhorukov, Buttiker, PRL 92, 026805 (2004)

$$s_{52} = T_A^{1/2} e^{i(\phi_1 + \chi_1)} T_C^{1/2}$$
$$G_{52} = -\frac{e^2}{h} T_A T_C$$

All elements of the conductance matrix are independent of AB-flux

Two-particle Aharonov-Bohm Effect

Samuelsson, Sukhorukov, Buttiker, PRL 92, 026805 (2004)

Fourth-order interference: Current-current correlation

$$S_{58} = -2\frac{e^2}{h}\int dE |s_{52}^*s_{82} + s_{53}^*s_{83}|^2 (f - f_0)^2$$

For $T_A = T_B = T_C = T_D = 1/2$;

$$S_{58} = -\frac{e^2}{4h} |eV| \left[1 + \cos\left(\phi_1 + \phi_2 - \phi_3 - \phi_4 + 2\pi \frac{\Phi}{\Phi_0}\right) \right]$$

.

Two-particle entanglement

Samuelsson, Sukhorukov, Buttiker, PRL 92, 026805 (2004)

14

Bell Inequality

Comparison of a classical local theory with quantum mechanical predictions Here: entanglement test

Bell Inequality: Clauser et al., PRL 23, 880 (1969)

$$S_{B} = |E(\theta_{A}, \theta_{B}) - E(\theta_{A}', \theta_{B}) + E(\theta_{A}, \theta_{B}') + E(\theta_{A}', \theta_{B}')| \leq 2$$

$$E(\theta_{A}, \theta_{B}) = P_{++} + P_{--} - P_{+-} - P_{-+} = \frac{\langle (I_{A+} - I_{A-})(I_{B+} - I_{B-}) \rangle}{\langle (I_{A+} + I_{A-})(I_{B+} + I_{B-}) \rangle}$$

$$P_{\alpha\beta}(\theta_{A}, \theta_{B}) = (1 + \alpha\beta \cos[2(\theta_{A} - \theta_{B})])/4$$

$$P_{\alpha\beta} \propto \langle b_{\beta}^{\dagger}(t)b_{\alpha}^{\dagger}(t+\tau)b_{\alpha}(t+\tau)b_{\beta}(t) \rangle \qquad (\tau \Delta \omega \leq 1)$$

spin

 $\alpha = \uparrow, \downarrow, \qquad \qquad \theta_A, \theta_B \qquad \text{angles of spin filters, polarizers}$ orbital

 $\alpha = U, D, \qquad \qquad \theta_A, \theta_B \qquad \text{rotation angles: splitter}$

Entanglement test: Bell Inequality

Noise correlators

$$S_{58} = S_{67} = -S_0 P_{++}, \quad S_{57} = S_{68} = -S_0 P_{+-}, \quad S_0 = -(4e^2/h)|eV|R$$

In the tunneling limit $R_C = T_D = R \ll 1$; $\tau_C = \hbar/eV$; $\tau = e/I = \hbar/eVR$, measuring the noise cross-correlation is equivalent to coincidence detection in a long time interval: Only two particles within a pair are correlated with each other.

Dephasing (tunneling limit)

Spatially seprated sources: qubit protectet against relaxation:

 $|\rho\rangle = |UU\rangle\langle UU| + |DD\rangle\langle DD| + \gamma(|UU\rangle\langle DD| + |DD\rangle\langle UU|)/2$

$$S_{58} = -\frac{e^2}{4h} |eV| \left[1 + \gamma^2 \cos(\phi_0) \right]$$

 $S_B^{max} = 2\sqrt{1 + \gamma^2 \cos^2 \phi_0}, \quad \phi_0 = \phi_1 + \phi_2 - \phi_3 - \phi_4 + 2\pi \Phi/\Phi_0$

Electron-electron entanglement trough postselection

Symmetric interferometer $T, R \approx 1/2$

Electron-hole picture not appropriate

Incident electron state is a product state: no intrinsic entanglement

Two-particle effects nevertheless persists

A Bell Inequality can be violated

Explanation: Entanglement through ``postselection" (measurement)

Joint detection probability

$$P_{\alpha\beta} \propto \langle b_{\beta}^{\dagger}(t) b_{\alpha}^{\dagger}(t) b_{\alpha}(t) b_{\beta}(t) \rangle = (h^2/e^2) [(1/2\tau_c) S_{\alpha\beta} + I_{\alpha} I_{\beta}]$$
$$= |s_{\alpha3} s_{\beta2} - s_{\alpha2} s_{\beta3}|^2$$
$$\langle I_{\alpha} \rangle = \frac{e^2}{h} V(|s_{\alpha2}|^2 + |s_{\alpha3}|^2), \qquad \tau_c = \hbar/eV$$

Bell parameter (Bell Inequality):

$$S_B^{max} = 2\sqrt{1 + \cos^2\phi_0}, \ \phi_0 = \phi_1 + \phi_2 - \phi_3 - \phi_4 + 2\pi\Phi/\Phi_0$$

Short time statistics: Pauli principle leads to injection of at most one electron in a short time interval: only two-particle transmission probability enters

Thermal photon sources

Sources: black body Energy window: narrow band filters $\Delta \omega = 2\pi/\tau_C$

$$P_{lphaeta}\propto \langle b^{\dagger}_{eta}(t)b^{\dagger}_{lpha}(t)b_{lpha}(t)b_{eta}(t)
angle \propto \left[(1/2 au_c)S_{lphaeta}\!+\!I_{lpha}I_{eta}
ight] \; ,$$

 $S_B^{max} = (2/3)\sqrt{1 + \cos^2 \phi_0}$,

No violation: In contrast to electron injection through a single quantum channel where in each time-slot only one particle is injected, in the bosonic case, many particles can be injected.

Dynamic orbital entanglement generation

Samuelsson, Buttiker, cond-mat/041010581

small amplitude limit: only one side-band $V_{C/D}(t) = V_{C/D} + \delta V_{C/D} \cos(\omega t + \phi_{C/D})$

 $t_D^0 \equiv t_D(E, E) , \delta t_D^+ \equiv t_D(E_1, E)$

Electron-hole processes

$$(|CC\rangle + |DD\rangle) \otimes |\bar{\Psi}\rangle$$

orbitally entangled electron-hole state

The quantum state

Entanglement test/Bell Inequality

 $\begin{pmatrix} b_1 \\ b_2 \end{pmatrix} = \begin{pmatrix} \cos \theta_A & \sin \theta_A \\ -\sin \theta_A & \cos \theta_A \end{pmatrix} \begin{pmatrix} b_{AC} \\ b_{AD} \end{pmatrix}$ similarly at B with θ_B current noise spectrum $S_{ij}(t) = 2e \int dt' \langle \Delta I_i(t+t'/2) \Delta I_j(t-t'/2) \rangle$ equal scatterers at C and D

optimal angles $\implies 2\sqrt{1+\gamma^2} < 2$ • $P_{ij}(t,t) \propto S_{ij}^{dc}$ BI

A B +¢a ^{\$}b D

Principle of orbital entanglement interferometers dc-interferometers

NS: e-e-emission

Normal conductor: e-h-emission two-particle Aharonov-Bohm effect violation of Bell-Inequality: zero-frequency noise measurements controllable geometry

ac-interferometers

motivation: time-controlled entanglement generation and detection

3

Summary