Molecular Electronics and Charge Transfer on the Nanoscale

Molecular electronics

- definition, motivations, issues
- Charge transfer on the nanoscale
 - introduction, classical and quantum transports
 - electrode-molecule-electrode structure
 - SPM studies
 - other issues
- Miscellaneous
 - molecular vehicle, architecture, interconnection, fabrication

Molecular Electronics (ME)

Molecular Electronic Device (MED)

- Utilization of single or a few molecules for electronic device functions, such as diode, transistor, switch, and memory.
- Types of molecule
 - nano-structured materials: nanowire, nanotube, nanoparticle
 - small organic molecules: Tour wire, alkyl chain, ...
 - biomolecules: DNA, ferrocene, ...

Motivation – Moore's law

POWER CONSUMPTION OF MICROPROCESSOR

Scientific American June 2000, 86

• Size: we will eventually reach the molecular scale (~ nm), probably in this century.

- fabrication process: top-down, bottom-up, combined
- materials: Si, C, other materials
- device structure: nano-CMOS, SET, MRAM, PRAM, Qubit, spin-FET,
- Cost: as the feature size continues to scale down,

exponential increase of manufacturing cost is expected.

- \rightarrow cheaper and easier way of fabrication is required.
- Other factors
 - **speed**: good if fast enough (> 10 GHz).
 - power consumption: should be low enough for room temperature operation.
 - biological considerations: bio-compatible?

- Thermal limit: 2 eV ~ 4 x 10^{-19} J ~ 100 times of kT
- Quantum limit: $\Delta E \Delta t = \Delta E/f \sim 100 h$
- Dissipation limit: $p = EfnP < 100 \text{ W/cm}^2$

• device units

- two-terminal devices: diode, capacitor, resistor, capacitor, ...
- three-terminal devices: bipolar Tr., Field Effect Tr., Single-Electron Tr, ...
- memory: 1C1T
- interconnection: nanotube, nanowire, ...
- fabrication process: e-beam lithography, self assembly, nano imprint, ...
- software: defect-tolerant architecture, quantum cellular automata, ...

issues

- charge transfer inside the molecule: tunneling, hopping, ballistic, ...
- molecule-electrode junction: Schottky barrier, tunneling, thermionic emission, ...
- molecular conformation: oxidation and reduction, bending, twisting, vibration, ...
- theoretical models
- electric field, thermal stability, power consumption, power gain, gating, ...

Technology roadmap for DRAM

Year of first DRAM shipment	1997	1999	2001	2003	2006	2009	2012
Bits / chip - DRAM	256M	1G	-	4G	16G	64G	256G
Transistors / chip - MPU	11M	21M	40M	76M	200M	520M	1.4G
Minimum feature size DRAM (nm)	250	180	150	130	100	70	50
Minimum feature size MPU (nm)	200	140	120	100	70	50	35
Local clock (GHz)	0.75	1.25	1.5	2.1	3.5	6.0	10.0
Across chip clock (GHz)	0.75	1.2	1.4	1.6	2.0	2.5	3.0
Wafer size (mm)	200	300	300	300	300	450	450
No. levels of interconnect	6	6-7	7	7	7-8	8-9	9
Chip size - DRAM (mm²)	280	400	445	560	790	1120	1580
Chip size - MPU (mm²)	300	340	385	430	520	620	750
Power dissipation (W)	70	90	110	130	160	170	175
Power dissipation - hand- held / portable (W)	1.2	1.4	1.7	2	2.4	2.8	3.2
Cost / bit packaged DRAM (µcent)	120	60	30	15	5.3	1.9	0.66
"Afforable" cost/transistor MPU- packaged (µcent)	3000	1735	1000	580	255	110	50
Cost of fab	1.5B\$				>5B\$		

- Feature size: 30 nm or smaller
- Density: 10¹⁰/cm²
- Cost: less than 0.7 μcent/bit
- Frequency: 10 GHz operation
- Power: less than 170 W (1.4 billion Tr.)

SIA NTRS (1997)

Memory devices - comparison

Consumer	Military	Space	Attribute	SRAM	DRAM	RTD	SET	MRAM
~	~	~	Low power		~	~	~	~
~	~	~	Non-volatile					~
~	~	~	Fast write	~	~	~		
	~	~	Radiation hard	~				~
		~	Unlimited R/W	~	~	~	~	~
~	~	~	High density	~	~	~	~	~
~	~	~	Highly reliable	~	~	~		~
~	~	~	Random access	~	~	~	~	~
		~	Fast access	~	~	~	~	~
~	~	~	Fast read	~	~			~
~	~	~	Low write power	~	~			~
		~	Long term storage	~	~			~
~	~	~	Noise					
~	~	~	Testing	~	~			~
	~		High power					

Table 1.2:- Comparison of memory applications and technologies

Can we solve all (or most of) the problems related to the attributes cited above?

Charge transfer on the nanoscale: introduction

A simplified but general model of charge transfer: D-B-A model

1	molecule	solution	molecule	electrical/kinetics
2	molecule		electrode	kinetics
3	electrode	molecule	electrode	electrical (MED)
4	SPM tip	molecule	electrode	STS
5	nano particle	molecule	electrode	electrical/kinetics
6	nano particle		molecule	kinetics

Ingredients and issues

- tunnel barrier? quantum dot formation?

Ingredients of D-B-A systems: molecule

Molecule

- Two of the most thoroughly studied molecules:
 (1) Oligo (Phenylene-Ethynylene) (OPE) based molecules: conductors

 → "Tour Wires"
 (2) Alkyl chains : insulators

 Linear molecules
- Thiol-terminated:
 → "Molecular Alligator Clips"

Sigma and Pi bonds

σ bond

A molecular orbital that is symmetrical along the axis connecting two atomic nuclei is called a sigma bond. Sigma bonds formed from overlapping s and overlapping p orbitals are shown below:

π bond

Pi bonds are formed when p orbitals overlap side-by-side. The electron density is concentrated in regions above and below the bonding axis. A pi bond is shown below:

Electron delocalization in π bond

Molecules for ME components

- Wire: symmetric, highly conductive
- Switch: bistability (on-off)
- Rectifier: asymmetric
- Storage: charge storing site

Self assembly

Fig. 1. Examples of static self-assembly. (A) Crystal structure of a ribosome. (B) Self-assembled peptideamphiphile nanofibers. (C) An array of millimetersized polymeric plates assembled at a water/perfluorodecalin interface by capillary interactions. (D) Thin film of a nematic liguid crystal on an isotropic substrate. (E) Micrometersized metallic polyhedra folded from planar substrates. (F) A three-dimensional aggregate of micrometer plates assembled by capillary forces. [Image credits: (A) from (24); (B) from (25); (C) from (26); (D) from (27); (E) from (28); (F) from (29)]

Science 295, 2418 (2002)

Table 1. Examples of self-assembly (S, static, D, dynamic, T, templated, B, biological).

Self-Assembled Monolayer

Langmuir-Blodgett film

• Proposed mechanism (still controversial): oxidative addition of the S-H bond to the gold surface, followed by a reductive elimination of the hydrogen

 $R-S-H + Au^{\circ}_{n} \rightarrow R-S^{-}Au^{+}Au^{\circ}_{n} + 1/2H_{2}$

On the basis of the bond energies of RS-H, H-H, and RS-Au (87, 104, and 40 kcal/mol, respectively), the net energy for adsorption of alkanethiolates on gold would be ca. –5 kcal/mol, which is exothermic.

JACS **124**, 1132 (2002)

SAMs on Au(111): structure

- Sulfur atoms occupy 3-fold hollow sites of the Au(111) lattice
- *ab initio* calculations: a mixed σ and π -bonding character with a dominating contribution of the latter.

JACS 115, 9389 (1993)

- Grain boundary ~ a few tens of nms
- Substate defects:

vacancy, dislocation, terrace, ...

- Nomenclature
- octane : 8
- decane : 10
- dodecane : 12
- dodecanethiol : 12 carbon chain + thiol
- dodecanedithiol: thiol + 12 carbon chain + thiol

Ingredients of D-B-A systems: junction

Fermi-level alignment, Schottky barrier, classical transport in M-Sm systems, ...

- Fermi-level alignment
- Electric dipole formation in the M-Sm interface
- Energy barrier 'Schottky barrier' formation

Rectifying behavior

Conduction mechanisms with energy barrier

Conduction Mechanism	Characteristic Behavior	Temperature Dependence	Voltage Dependence	Schematic Band Diagram
Schottky Emission	$I \sim T^2 Exp(-q \frac{F - \sqrt{\frac{qV}{4\pi\varepsilon d}}}{kT})$	$\ln(\frac{I}{T^2}) \sim \frac{1}{T}$	$\ln(I) \sim V^{\frac{1}{2}}$	kT e
Frankel - Pool Conduction	$I \sim VT^2 Exp(-q \frac{F-2\sqrt{\frac{qV}{\pi\varepsilon d}}}{2kT})$	$\ln(\frac{I}{T^2}) \sim \frac{1}{T}$	$\ln(\frac{I}{V}) \sim V^{\frac{1}{2}}$	
Hopping Conduction	$I \sim VExp(-\frac{\Delta E}{kT})$	$\ln(\frac{I}{V}) \sim \frac{1}{T}$	$I \sim V$	
Fowler- Nordheim Tunneling	$I \sim V^2 Exp(-\frac{4d\sqrt{2m}}{3q\hbar V}(qF)^{1.5})$		$\ln(\frac{I}{V^2}) \sim \frac{1}{V}$	
Direct Tunneling	$I \sim VExp(-\frac{4\pi d}{h}\sqrt{2mF})$		$I \sim V$	

Tunnel diode

Field Effect Transistor (FET)

Pinched-off channel

Non-volatile memory

Comparison of the potential nanoscale memories

	Conventio	onal Memory	Quantum Dot Memory					
	DRAM	Flash	SET	Nano-flash		Yano-type		
				Multidot	Single dot			
device structure	remory SiOr	nemory gate SiO, node tunnel gate source drain	island gate Source drain	source drain	si channel	source poly si		
read time	~10 ns	~10 ns	l ns	~10 ns	~10ns	~20 µs		
write time	~10 ns	~l ms	l ns	~100 ns	<1 µs	~10 µs		
erase time	< 1 nm	~lms	< 1nm	~1 ms	<l ms<="" th=""><th>~10 µs</th></l>	~10 µs		
retention time	~l s	~10 years	~ls	~l week	~5 s	~l day		
endurance cycles	infinite	106	infinite	10°	10°	107		
operating voltage	3 V	15 V	1 V	5 V	10 V	15 V		
voltage for state inversion	0.2 V	~5 V	< 0.1 V	0.65 V	0.1 V	0.5 V		
electron number to write bit	105	10 ³	l (excluding no to change gate potential)	10 ³	l (excluding no to change gate potential)	2 (excluding no to change gate potential)		
cell size	~12 F ² /bit	~9F²/bit	9-12 F ² /bit	9F ² /bit	9F ² /bit	2F ² /bit		

Quantum transport on the nanoscale:

single-electron tunneling, Kondo resonance, ballistic transport, conductance quantization

Coulomb blockade of single-electron tunneling

Single-Electron Transistor (SET)

Ballistic transport (in carbon nanotube)

Van der Wiel

Charge transfer on the nanoscale: Electrode – Molecule – Electrode systems

"A prototype of molecular electronic device"

Key technology: to attach macroscopic electrodes to few-nanometer-sized molecules.
E-M-E systems

(c)

Break-junction method

Science **278**, 252 (1997)

38/91

Nanopore and molecular rectifying diode

APL 71, 611 (1997)

- Sample fabrication: nanopore (~30 nm) in SiN membrane
 (by EBL, plasma etching) → bottom Au evaporation
 - \rightarrow SAM formation \rightarrow top Au/Ti evaporation
- Bias direction: bottom Au: (+) / top Ti: (-)
- Au-thiol: chemisorbed, Ti-benzene ring: physiorbed
- Work function: Au > Ti (Schottky-type junction between Ti & SAM)

Rectification mechanism - pinning

Rectification mechanism - asymmetric potential drop

- Symmetric molecule and asymmetric junction
- \bullet Asymmetric voltage drop at the junctions \rightarrow rectification
- First principles nonequilibrium Green's function based package, TRANSIESTA.

Molecular Resonant Tunnel Diode (RTD)

Proceedings of the IEEE **88**, 386 (2000)

Oligo (Phenylene-Ethynylene) - based RTD

Memory effect on OPE

Proposed bi-stability of the OPE derivative

• Negative Differential Resistance (NDR) effect in OPE with NO₂:

Intrinsic or extrinsic to the molecule ? Junction effect ?

- NDR effect is intrinsic to single molecules containing an nitro moiety.

• Conductance switching and memory effect:

Conformation change ? Charge trap site ?

- The switching may be originating from tilting of the molecule.

By SPM study to be shown.

Charge transfer in alkyl chain

- Aliphatic insulator
- Resistance: exponential length dependence expected
- Temperature-independent *I-V* characteristics.

Conduction Mechanism	Characteristic Behavior	Temperature Dependence	Voltage Dependence	Schematic Band Diagram
Schottky Emission	$I \sim T^2 Exp(-q \frac{F - \sqrt{\frac{qV}{4\pi\varepsilon d}}}{kT})$	$\ln(\frac{I}{T^2}) \sim \frac{1}{T}$	$\ln(I) \sim V^{\frac{1}{2}}$	kT
Frankel - Pool Conduction	$I \sim VT^2 Exp(-q \frac{F - 2\sqrt{\frac{qV}{\pi\varepsilon d}}}{2kT})$	$\ln(\frac{I}{T^2}) \sim \frac{1}{T}$	$\ln(\frac{I}{V}) \sim V^{\frac{1}{2}}$	
Hopping Conduction	$I \sim VExp(-\frac{\Delta E}{kT})$	$\ln(\frac{I}{V}) \sim \frac{1}{T}$	$I \sim V$	
Fowler- Nordheim Tunneling	$I \sim V^2 Exp(-\frac{4d\sqrt{2m}}{3q\hbar V}(qF)^{1.5})$		$\ln(\frac{I}{V^2}) \sim \frac{1}{V}$	
Direct Tunneling	$I \sim VExp(-\frac{4\pi d}{h}\sqrt{2mF})$		$I \sim V$	

Comparison with theory

 $R \propto \exp(\beta L)$ $\beta, A^{-1} \qquad \beta, \text{ per C}$ $0.79 \qquad -1$ $0.27 \qquad 0.34$ $-\sqrt{2} = \sqrt{2} = 0.27$

ab-initio calculation

A critical question

Still, two-terminal devices (diode) only ! Is three-terminal device (transistor) probable ? Furthermore, power gain greater than 1 ? **SAMFET (Self-Assemble Monolayer Field Effect Transistor)**

Nature 413, 713 (2001)

No, in such structure or with such molecules !

- No field effect with small L.
- Design rule still holds in nano device !

Another approach: gating with molecule

Double angle evaporation and nano-gap by electromigration

55/91

Kondo resonance in MED - I

- Break-junction method (electro-migration)
- Molecule: (N,N'0,N" -trimethyl-1,4,7-triazacyclononane)₂-V₂(CN)₄(μ-C₄N₄)
- Bottom AIOx gate
- Kondo resonance observed: $T_K \sim 30 \text{ K}$

Nature 417, 725 (2003)

Kondo resonance in MED - II

Ď

5

-5

V (mV)

Ó

ŝ,

Gate dependence and I-V curve asymmetry

Single-electron tunneling behavior

59/91

Nano-gap electrodes and nanoparticle for MED

- Nano-gap(~ 50 nm) formation
- Au nanoparticle trapping by electrostatic method
- NDR observed for OPE

2

APL 80, 2761 (2002)

Conductance steps in MED

- Fabrication procedure:
 - quarz rod pulled to square tip of size 20-30 nm
 - angle evaporation with shadow mask
 - in-situ monitoring of the junction resistance
- Many steps in conductance curve were shown
- Mechanism:
 - Coulomb blockade: too small voltage period
 - Molecular vibration can be a probable explanation.

Mercury droplet method

Comparison of MEDs

——— Molecular Electronic Device ———>								
Quantity	Units	1,4-Dithiol Benzene	3-Ring Poly- phenylene Wire	Poly- phenylene RTD (5 rings)	Carbon Nanotube	Copper Wire		
Applied Voltage	Volts	1	1	1.4 (peak)	1	2 x 10 ⁻³ (10 cm wire)		
Current Measured in Experiment	Amperes	2 x 10 ⁻⁸	3.2 x 10 ⁻⁵	1.4 x 10 ⁻¹¹	1 x 10 ⁻⁷	1 (approx.)		
Current Inferred per Molecule	Amperes Electrons per Sec	2 x 10 ⁻⁸ 1.2 x 10 ¹¹	3.2 x 10 ⁻⁸ 2.0 x 10 ¹¹	1.4 x 10 ⁻¹⁴ 8.7 x 10 ⁴	1 x 10 ⁻⁷ 6.2 x 10 ¹¹	-		
Estimated Cross- Sectional Area per Molecule	nm ²	~0.05	~0.05	~0.05	~3.1 (Radius ≈ 1 nm)	~3.1 x 10 ¹² (Radius ≈ 1 mm)		
Current Density	Electrons per Sec-nm ²	~2 x 10 ¹²	~4 x 10 ¹²	~2 x 10 ⁶	~2 x 10 ¹¹	~2 x 10 ⁶		
Reference		[7]	[8]	[5,6]	[4]			

Proceedings of the IEEE 88, 386 (2000)

- A variety of electrode-molecule-electrode structures for MED were shown.
- Molecular electronic device components (rectifying diode, resonant tunneling diode, random access memory, and single electron transistor) were demonstrated.
- Current rectification can be realized by making an asymmetric electronic configuration with any molecule with a small energy gap.
- Resonant tunneling diode can be made in similar ways with rectifying diodes.
 Factors needed additionally are:
 - definite tunneling barriers and
 - more than two moieties with discrete electronic energy levels.
- Some OPE derivatives show interesting features like NDR (due to resonant tunneling) and conductivity switching (memory) effects.
- The mechanisms of NDR and memory effect have not been clearly understood yet.
- Molecular FET has still to be demonstrated.

Charge transfer on the nanoscale: Scanning Probe Microscope studies

"A powerful tool to study charge transfer on the nanoscale"

Key technology: to make electrical contact between SPM tip and the molecules.

- Scanning Tunneling Microscope (STM):
 - tunneling current between the sample & the tip
 - the morphology of the local electronic states
 - atomic resolution
 - conductive samples only
- Atomic Force Microscope (AFM):
 - deflection of the cantilever by vdW force
 - resolution lower than STM in general
 - more versatile
 - electron spectroscopy can be made possible using conductively coated cantilever and tip

- Conductance of single molecule?
 - Conducting molecule: how much conducting?
 - Insulating: inverse decay length $\boldsymbol{\beta}$
- Issues on OPE derivatives
 - Negative Differential Resistance effect in OPE with NO₂
 - Conductance switching and memory effect

Measurement of single alkanedithiol I-V

Science 294, 571 (2001)

- Sample fabracation: SAM of octanethiol on Au
 - \rightarrow partial replacement by octanedithiol
 - \rightarrow Au nanoparticle attachment
- Contact force dependence was negligible.

(For nonbonded contacts, the *I-V* characteristics

are dominated by the contact.)

Measurement of n-molecule resistance

- STM measurement on a solution contaning molecules.
- Current measured at fixed voltage values while retracting the tip.
- Molecules: 4,4' bipyridine, alkanedithioles.

1.0

-0.5

0.0

Vbias(V)

0.5

-1.0

• Proposed mechanisms for the NDR effect

- electric field-induced twist of the central ring (× no hysteresis observed)
- delocalized orbital of LUMO in the singly reduced state (localized LUMO in the neutral & doubly reduced state)
- resonant tunneling with the twisted central ring acting as a tunnel barrier

Conductance switching effect

- formation of metal nanofilaments through molecular SAM between electrodes
- the absence of well-defined chemical bond between the SAM and top electrode
- electric field-induced twist of the central ring

(accompanied by the reduction of the central moiety)

- change of the bonding angle between Au bottom electrode and molecular axis
- fluctuations in the Au-S linkage (between surface chemisorption sites)

"None of the mechanisms proposed has been accepted as being definitive."

Investigation of NDR effect in single OPE molecules

Sample preparation: dodecanethiol SAM on Au

- \rightarrow insertion of single OPEs (1, 2)
- \rightarrow attachment of Au-NPs (~ 2nm)

APL 81, 3043 (2002)

[A] red/blue: molecule 1, black: molecule 2 For molecule 1, NDR features are clearly seen.[B] Resistance distribution for molecule 1

- **[C]** Resistance distribution for molecule 2
- [D] NDR peak voltage distribution

- cAFM tip/Au nanoparticle/dithiolated molecule
- NDR peaks for molecule 1: NDR effect is intrinsic to single molecules with nitro moiety.
Origin of the conductance switching of OPE - I

NH₄OH 1', Z = S', 4,4'-di(ethynylphenyl)-1-benzenethiolate

NH₄OH **2**, Z = SCOCH₃ **2'**, Z = S^{*}, 4,4'-di(ethynylphenyl)-2'-nitro-1-benzenethiolate

NH₄OH **3**, Z = SCOCH₃ **3'**, Z = S^{*}, 2'-amino-4,4'-di(ethynylphenyl)-5'-nitro-1-benzenethiolate

Science 292, 2303 (2001)

• Sample preparation:

dodecanethiol SAM on Au

 \rightarrow insertion of single OPEs

(mainly in defect sites of SAM and Au step edges)

• Conductance switching observed for all three OPE derivatives

Origin of the conductance switching of OPE - II

Science **300**, 1413 (2003)

- Attaching Au-nanoparticle to the end of the molecule:
 - enhance reliability of molecule-tip contacts
 - switching off by "tilting burial" can be effectively prevented.
- Conductance switching occurred for all the molecules, including alkanedithiols.
- Conductance switching is not related to any intramolecular structure.

Molecular redox transistor (?)

another issues:

molecular conformation, electric field

Molecular conformation and electrical properties

Conductor-Insulator transition with the conformation change !!

Potential profile in molecule

- Large potential drop near the junctions.
- May depend on the conductance of molecule.

JCP 112, 6834 (2000)

Miscellaneous:

molecular vehicle, interconnection, fabrication, architecture

Molecular machine

- Macro molecules
- Two (or more) well-defined states.
- Movement of molecule accompanied by change of electrical properties.
- Slow operation

Acc. Chem. Res. 31, 405 (1998)

Rotaxane

Science 285, 391 (1999)

Catenane

MED with crossed wires

- 10 μm diameter metal wires crossed by Lorenz force.
- OPE molecule inserted between wires.
- Two types of junctions: diode and wire

open: positive bias solid: negative bias

PRL 89, 086802 (2002)

Interconnection with nanowire

Science **294**, 2442 (2001)

Pattern transfer by nano imprint

Nanoletters 3, 913 (2003)

Integrated circuit with MED

Molecular wires	Hysteresis	Retention time	On/Off ratio
(a) 	Yes	69 s	370 (-1 V)
	Yes	440 s	30 (-0.5 V)
(c)	Yes		260 (-1.2 V)
(d)	No		
(e)	No		

APL 82, 645 (2003)

- Reconfigurable architecture
- Look-up table (use memory for logic operation)
- 1. Build cheap and imperfect computer
- 2. Find the defects
- 3. Configure the resources with software
- 4. Compile the program
- 5. Run the computer

Solve hardware problems by software !

Science 280, 1716 (1998)

Electron tunneling

- gating speed limit: $2\pi kT$ (=300 K)/*h* = (25 fs)⁻¹ ~ 1 Thz
- crosstalk between neighboring devices should be avoided.

Energy dissipation

- ballistic junction can be a solution.
- current level up to μA with a few molecules was demonstrated.

Long-term degradation

- contamination, electrical shock, oxidation and reduction, ...
- Fabrication Yield: less than 1% at the present time
- FET and transistor with gain greater than 1 should be demonstrated.
- Ohmic contact: is it probable without seriously affecting molecule's electronic states?
- Electric field effect: field intensity in MED ~ 2x10⁹ V/m
 - the breakdown field in dry air: $3x \ 10^6 \text{ V/m}$, STM experiment: $5x \ 10^8 \text{ V/m}$
 - Stark effect: 107- 108 V/m

Thank you for your attention !