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Introduction

The results mentioned in this article are extracted from:
S. Fujimori, W. Rossman, M. Umehara, K. Yamada, and S.-D. Yang, Spacelike

mean curvature one surfaces in de Sitter 3-space, preprint.
Fujimori studied spacelike constant mean curvature one (CMC-1) surfaces in

de Sitter 3-space S3
1 when the surfaces have no singularities except within some

compact subset and are of finite total curvature on the complement of this compact
subset. However, there are many CMC-1 surfaces whose singular sets are not
compact. In fact, such examples have already appeared in the construction of
trinoids given by Lee and Yang via hypergeometric functions.

So, we develop a fundamental framework that allows the singular set to be non-
compact. The following two theorems are the main results.

Theorem A. A complete end of a weakly complete CMC-1 face of finite topology
in S3

1 is never hyperbolic, so must be either elliptic or parabolic. Moreover, the total
curvature over a neighborhood of such an end is finite.

Theorem B. Suppose a CMC-1 face f : M2 → S3
1 is complete. Then there exist a

compact Riemann surface M
2

and a finite number of points p1, . . . , pn ∈ M
2

such
that M2 is biholomorphic to M

2\{p1, . . . , pn}, and 2 deg(G) ≥ −χ(M
2
)+2n, where

G is the hyperbolic Gauss map of f and χ(M
2
) is the Euler characteristic of M

2
.

Furthermore, the equality holds if and only if each end is regular and embedded.

1. Preliminaries

The representation formula. We identify X = (x0, x1, x2, x3) ∈ R4
1 with

X =
(

x0 + x3 x1 + ix2

x1 − ix2 x0 − x3

)
∈ Herm(2) := {X ∈ M2(C) : X∗ = X}.

Hyperbolic 3-space and De Sitter 3-space are

H3 = {(x0, x1, x2, x3) ∈ R4
1 ; −x2

0 + x2
1 + x2

2 + x2
3 = −1, x0 > 0}

= {X ∈ Herm(2); detX = 1,TrX > 0} = {FF ∗ ; F ∈ SL2 C},
S3

1 = {(x0, x1, x2, x3) ∈ R4
1 ; −x2

0 + x2
1 + x2

2 + x2
3 = 1}

= {X ∈ Herm(2); detX = −1} = {F
(

1 0
0 −1

)
F ∗ ; F ∈ SL2 C}.
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An immersion into S3
1 is called spacelike if the induced metric on the immersed

surface is positive definite. There is only one, up to congruency, complete spacelike
CMC-1 immersion, which we call an S3

1 -horosphere.
A CMC-1 face is a C∞-map f from an oriented 2-manifold M2 into S3

1 such that

(1) for some open dense subset W ⊂ M2, f |W is a spacelike CMC-1 immersion,
(2) for any singular point p ∈ M2 (i.e., where the induced metric degenerates),

there is a C1-differentiable function λ : U∩W → (0,∞), where U ⊂ M2 is a
neighborhood of p, so that λ ds2 extends to a C1-differentiable Riemannian
metric on U , and

(3) df(p) 6= 0 for any p ∈ M2.

Theorem 1.1 (Fujimori). Let M2 be a Riemann surface. Let g be a meromorphic
function and ω a holomorphic 1-form on the universal cover M̃2 such that

(1.1) dŝ2 = (1 + |g|2)2ωω̄

is a Riemannian metric on M̃2 and |g| is not identically 1. Take a holomorphic

immersion F = (Fjk) : M̃2 → SL2 C satisfying F−1dF =
(

g −g2

1 −g

)
ω. Then

f : M̃2 → S3
1 defined by f := F

(
1 0
0 −1

)
F ∗ is a CMC-1 face which is conformal

away from its singularities. The induced metric ds2 on M2, the second fundamental
form h, and the Hopf differential Q of f are given as follows:

(1.2) ds2 = (1− |g|2)2ωω̄, h = Q + Q + ds2, Q = ω dg.

The singularities of the CMC-1 face occur at points where |g| = 1.
The converse also holds.

Remark 1.2. g is called a secondary Gauss map of f . The pair (g, ω) is called
Weierstrass data of f , and F is called a holomorphic null lift of f .

The holomorphic 2-differential Q as in (1.2) is called the Hopf differential of f .
G := dF11

dF21
is called the hyperbolic Gauss map.

Remark 1.3. Let Kds2 be the Gaussian curvature of ds2 on the set of regular points
of f . Then dσ2 := Kds2 ds2 = 4 dg dḡ

(1−|g|2)2 is a pseudometric of constant curvature −1,
which degenerates at isolated umbilic points.

Completeness. We say a CMC-1 face f : M2 → S3
1 is complete if there exists a

symmetric 2-tensor field T which vanishes outside a compact subset C ⊂ M2 such
that the sum T + ds2 is a complete Riemannian metric on M2.

We say that f is weakly complete if it is congruent to a S3
1 -horosphere or if the

lift metric (1.1) is a complete Riemannian metric on M2.
f is of finite type if there exists a compact set C of M2 such that the first

fundamental form ds2 is positive definite and has finite total (absolute) curvature
on M2 \ C.

Conjugacy classes of SU1,1. For any real number t, we set

Λe(t) :=
(

eit 0
0 e−it

)
, Λp(t) :=

(
1 + it −it

it 1− it

)
, Λh(t) :=

(
cosh t sinh t
sinh t cosh t

)
.
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A matrix in SU1,1 := {S ∈ SL(2,C);S
(

1 0
0 −1

)
S∗ =

(
1 0
0 −1

)
} is called elliptic,

parabolic or hyperbolic if it is conjugate in SU1,1 to one of Λe(t) for −π < t ≤ π,
±Λp(±1) or ±Λh(t) for t > 0, respectively. Any matrix in SU1,1 is of one of these
three types.

Monodromy of ends of CMC-1 faces. Let f : M2 → S3
1 be a CMC-1 face

of a Riemann surface M2 and take a deck transformation τ ∈ π1(M2) in the
universal cover M̃2. There exists a ρ̃(τ) ∈ SU1,1 such that F ◦ τ = F ρ̃(τ). The
representation ρ̃ : π1(M2) → SU1,1 is called the monodromy representation, which
induces a PSU1,1-representation ρ : π1(M2) → PSU1,1 satisfying g ◦ τ−1 = ρ(τ) ? g.

Let f : M2 → S3
1 be a weakly complete CMC-1 face of finite topology, where M2

is diffeomorphic to a compact Riemann surface M
2

with finitely many punctures
{p1, . . . , pn}. Any puncture pj , or occasionally a small neighborhood Uj of pj , is
called an end of f .

An end is called elliptic, parabolic or hyperbolic when the monodromy matrix
ρ̃(τ) ∈ SU1,1 is elliptic, parabolic or hyperbolic, respectively, where τ ∈ π1(M2) is
the deck transformation corresponding the counterclockwise loop about pj .

The Schwarzian derivative. The Schwarzian derivative of h is

Sz(h) :=
(

h′′

h′

)′

− 1
2

(
h′′

h′

)2 (
′ =

d

dz

)
.

Let f : M2 → S3
1 be a CMC-1 face with the hyperbolic Gauss map G, a secondary

Gauss map g and the Hopf differential Q. Then S(g)− S(G) = 2Q.

2. Monodromy of punctured hyperbolic metrics

Lifts of PSU1,1-projective connections on a punctured disk. Let P = p(z)dz2

be a holomorphic 2-differential on ∆∗ = {z ∈ C ; 0 < |z| < 1}. Then there exists
a holomorphic developing map gP : ∆̃∗ → C ∪ {∞} such that S(gP ) = P , where
∆̃∗ is the universal cover of ∆∗. For any other holomorphic function h such that
S(h) = P , there exists an A ∈ SL2 C so that A ? gP = h. Thus there exists a
matrix T ∈ PSL2 C such that g ◦ τ−1 = T ? g, where τ is the generator of π1(∆∗)
corresponding to a counterclockwise loop about the origin. We call T the mon-
odromy matrix of g. If T ∈ PSU1,1, P is called a PSU1,1-projective connection on
∆∗ and gP is called a PSU1,1-lift of P . A PSU1,1-projective connection on ∆∗ has
a removable singularity, a pole or an essential singularity at 0, and is said to have a
regular singularity at 0 if it has at most a pole of order 2 at 0. When T ∈ PSU1,1,
it is conjugate to one of the matrices in (1). The PSU1,1-projective connection P
is then called elliptic, parabolic or hyperbolic when T is elliptic, parabolic or hyper-
bolic, respectively. Note that a PSU1,1-lift g has the PSU1,1 ambiguity g 7→ A ? g
for A ∈ PSU1,1. The property that |g| > 1 (resp. |g| < 1) is independent of this
ambiguity.

Proposition 2.1. Let g : ∆̃∗ → C ∪ {∞} be a PSU1,1-lift of a PSU1,1-projective

connection P on ∆∗. Then the following assertions hold, where R := 1
2

(
1 1
i −i

)
:

(1) Suppose that P is elliptic. Then, (i) there exists an A ∈ SU1,1 and µ ∈ R
such that

h(z) := z−µA ? g(z)
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is a single-valued meromorphic function on ∆∗. Moreover, (ii) P has a removable
singularity or a regular singularity at z = 0 if and only if h(z) has at most a pole
at z = 0.

(2) Suppose that P is parabolic and that s ∈ R+ is arbitrary. Then (i) there
exists an A ∈ SU1,1 such that

h(z) := (RA) ? g(z) +
t

πi
log z

is a single-valued meromorphic function on ∆∗, where t = s or t = −s as specified
in the proof. The sign of t does not depend on the PSU1,1-ambiguity of g. Moreover,
(ii) h(z) has at most a pole at z = 0 if and only if P has a pole of order 2 at z = 0,
and (iii) h(z) is holomorphic at z = 0 if and only if P − 1

2z2 dz2 has at most a pole
of order 1. (iv) When h is holomorphic, |g| > 1 (resp. |g| < 1) on a neighborhood
of 0 if and only if t > 0 (resp. t < 0).

(3) Suppose that P is hyperbolic. Then (i) there exist an A ∈ SU1,1 and µ ∈
R \ {0} such that

h(z) := z−iµ(RA) ? g(z)
is a single-valued meromorphic function on ∆∗. Moreover, (ii) h(z) has at most a
pole at z = 0 if and only if P has a pole of order 2 at z = 0.

In particular, P has a pole of order exactly 2 at z = 0 if P is either parabolic or
hyperbolic and 0 is a regular singularity of P .

Monodromy of punctured hyperbolic metrics.

Definition 2.2. We say that a hyperbolic punctured metric dσ2 has a regular sin-
gularity at the origin if S(dσ2) has at most a pole of order 2 at the origin.

Theorem 2.3. Any conformal hyperbolic metric on ∆∗ has a regular singularity
at z = 0.

3. Intrinsic behavior of regular ends

A puncture-type end pj of f is called regular if the hyperbolic Gauss map G has
at most a pole at pj . On the other hand, a puncture-type end pj is called g-regular
if the Schwarzian derivative S(g) of the secondary Gauss map g has at most a pole
of order 2 at pj .

Theorem 3.1. All ends of a complete CMC-1 face are g-regular. In particular, all
ends are of puncture-type.

Theorem 3.2. The Hopf differential of a weakly complete CMC-1 face of finite
topology has at most a pole at any complete elliptic end.

Definition 3.3. An elliptic end of a weakly complete CMC-1 face of finite topology
is integral if the monodromy of the secondary Gauss map is the identity, and non-
integral otherwise.

Lemma E1. Let f : ∆∗ → S3
1 be a g-regular non-integral elliptic end. Then the

singular set does not accumulate the end 0.

Lemma E2. Suppose f : ∆∗ → S3
1 is a g-regular integral elliptic end. If the

singular set accumulates at the end, then there are an m ∈ N and a δ ∈ R such that,
for any ε > 0, there exists an r > 0 so that the singular set of f in {z; 0 < |z| < r}
lies in S(m, ε, δ).
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Definition 3.4. A parabolic end of a weakly complete CMC-1 face is of the first
kind if

S(dσ2)− dz2

2z2
= S(g)− dz2

2z2
= S(G) + 2Q− dz2

2z2

has at most a pole of order 1. Otherwise, it is of the second kind.

Lemma P. Let f : ∆∗ → S3
1 be a g-regular parabolic end of a weakly complete

CMC-1 face. If the end is of the first kind, the singular set does not accumulate at
the end. If the end is of the second kind, then the singular set does accumulate at
the end. In this case, there exist an m ∈ N and a δ ∈ R such that, for all ε > 0,
there exists an r > 0 such that the singular set of f in {z; 0 < |z| < r} lies in
S(m, ε, δ).

Lemma H. Let f : ∆∗ → S3
1 be a g-regular hyperbolic end of a weakly complete

CMC-1 face. Then any ray in ∆∗ emanating from the origin meets the singular set
infinitely many times.

Corollary 3.5. The monodromy of a hyperbolic metric on ∆∗ is either elliptic or
parabolic. That is, hyperbolic monodromy never occurs.

Corollary 3.6 (Characterization of hyperbolic ends). A g-regular end f : ∆∗ →
S3

1 of a weakly complete CMC-1 face is hyperbolic if and only if any ray in ∆∗

emanating from the origin meets the singular set infinitely many times.

Theorem 3.7. Any complete end of a weakly complete CMC-1 face is either g-
regular elliptic or g-regular parabolic of the first kind.

Theorem 3.8. Let f : M2 → S3
1 be a CMC-1 face. If f is complete, then

(1) f is weakly complete,
(2) the singular set of f is compact, and
(3) M2 has finite topology and each end is of puncture-type.

Conversely, if f satisfies (1), (2) and (3), and if the parabolic ends of f , if there is
any, are regular, then f is complete.

Theorem 3.9. Any complete CMC-1 face is of finite type.

4. The Osserman type inequality.

Lemma 4.1. The Hopf differential of a CMC-1 face has a pole of order 2 at any
complete regular parabolic end.

Lemma 4.2. Let f : ∆∗ → S3
1 be a complete regular end at z = 0 of a CMC-1

face with the Hopf differential Q and the hyperbolic Gauss map G. Then the metric
dσ2

# = 4dGdG
(1+|G|2)2 on ∆∗ satisfies

Ord
z=0

(dσ2
#) ≥ Ord

z=0
(Q) + 2 .

Theorem 4.3. A complete regular end of a CMC-1 face which is not an S3
1 -

horosphere is properly embedded if and only if the degree of the hyperbolic Gauss
map is 1.


