Harmonic Morphisms and Stable Minimal Submanifolds

Gundon Choi and Gabjin Yun

Jan, 2007

1 Introduction

The theory of harmonic morphisms is one of particularly interesting subclasses of harmonic maps. A harmonic map $\varphi : (M,g) \to (N,h)$ between Riemannian manifolds is a critical point of the energy functional defined on each compact domain of M. A harmonic morphism between Riemannian manifolds is a map preserving harmonic structure. In other words, a map $\varphi : (M^n, g) \to (N^m, h)$ is called a harmonic morphism if for any harmonic function f defined on an open subset $V \subset N$ such that $\varphi^{-1}(V) \neq \emptyset$, the composition $f \circ \varphi : \varphi^{-1}(V) \to \mathbb{R}$ is also harmonic. Harmonic morphisms are characterized as harmonic maps which are horizontally (weakly) conformal.

2 Preliminaries

Let $\varphi : (M^n, g) \to (N^m, h)$ be a smooth map between Riemannian manifolds (M, g) and (N, h). For a point $x \in M$, we set $\mathcal{V}_x = \ker(d\varphi_x)$. The space \mathcal{V}_x is called the vertical space at x. Let \mathcal{H}_x denote the orthogonal complement of \mathcal{V}_x in the tangent space $T_x M$. For a tangent vector $X \in T_x M$, we denote $X^{\mathcal{V}}$ and $X^{\mathcal{H}}$, respectively, the vertical component and the horizontal component of X. Let \mathcal{V} and \mathcal{H} denote the corresponding vertical and horizontal distributions in the tangent bundle TM. We say that φ is horizontally (weakly) conformal if, for each point $x \in M$ at which $d\varphi_x \neq 0$, the restriction $d\varphi_x|_{\mathcal{H}_x} : \mathcal{H}_x \to T_{\varphi(x)}N$ is conformal and surjective. Thus there exists a non-negative function λ on M such that

$$h(d\varphi(X), d\varphi(Y)) = \lambda^2 g(X, Y)$$

for horizontal vectors X, Y. The function λ is called the *dilation* of φ . Note that λ^2 is smooth and is equal to $|d\varphi|^2/m$, where $m = \dim(N)$.

Let $\varphi: M^n \to N^m$ be a horizontally (weakly) conformal map between Riemannian manifolds (M,g) and (N,h). Denote the set of critical points of φ by $C_{\varphi} = \{x \in M : d\varphi_x = 0\}$ and let $M^* = M - C_{\varphi}$. We define two tensors T and A over M^* by

$$T_E F = (\overline{\nabla}_{E^{\mathcal{V}}} F^{\mathcal{V}})^{\mathcal{H}} + (\overline{\nabla}_{E^{\mathcal{V}}} F^{\mathcal{H}})^{\mathcal{V}}$$

and

$$A_E F = (\overline{\nabla}_{E^{\mathcal{H}}} F^{\mathcal{H}})^{\mathcal{V}} + (\overline{\nabla}_{E^{\mathcal{H}}} F^{\mathcal{V}})^{\mathcal{H}}$$

for vector fields E and F on M. Here $\overline{\nabla}$ denotes the Levi-Civita connection on M.

Let M^n be an *n*-dimensional complete Riemannian manifold and let P be a *k*-dimensional immersed submanifold of M. Then the tangent space of M can be decomposed into

$$TM = TP \oplus TP^{\perp}$$

Define, for two tangent vectors X, Y on P, i.e., sections of TP, the symmetric 2-tensor B(X, Y) by

$$B(X,Y) = (\overline{\nabla}_X Y)^{\perp} = (\overline{\nabla}_X Y)^{\mathcal{H}} = T_X Y,$$

where $\overline{\nabla}$ is the Levi-Civita connection on M and \perp denotes the normal component. We say P is minimal if the mean curvature trace(B) = 0.

Let E be a normal vector field on P with compact support. Then the second derivative of the volume functional \mathcal{A} in the direction E([8]) is given by

(1)
$$\mathcal{A}''(0) = \int_P \langle -\Delta E + \overline{\mathcal{R}}(E) - \mathcal{B}(E), E \rangle.$$

Introducing a local orthonormal basis $\{e_1, \dots, e_k, \xi_{k+1}, \dots, \xi_n\}$ on TM such that $\{\xi_{k+1}, \dots, \xi_n\}$ is a local orthonormal frame on TP^{\perp} , the equation (1) becomes

(2)
$$\mathcal{A}''(0) = \int_{P} |\nabla^{\perp} E|^2 - \sum_{i=1}^{k} \langle \overline{R}(e_i, E) E, e_i \rangle - \sum_{i,j=1}^{k} \langle B(e_i, e_j), E \rangle^2$$

It is well-known that P is totally geodesic if and only if B = 0 and hence $\mathcal{B} = 0$.

We say a minimally immersed submanifold P of M is *stable* (or volume-stable) if, for any normal variation E with compact support, the second derivative of the volume functional in the direction E is non-negative, i. e.,

$$\mathcal{A}''(0) \ge 0.$$

3 Stability of Minimal Fibers

Let $\varphi : M^n \to N^m$ be a horizontally (weakly) conformal map between Riemannian manifolds (M, g) and (N, h). Suppose for a point $z \in N$, the fiber $P := \varphi^{-1}(z)$ is a k-dimensional minimal submanifold of M. Then the tangent vectors to P correspond vertical vectors of φ and normal vectors to P correspond to horizontal vectors of φ .

We have

(3)
$$\mathcal{A}''(0) = \int_{P} \sum_{i=1}^{k} \left(\left| \left(\overline{\nabla}_{e_{i}} E \right)^{\mathcal{H}} \right|^{2} - \left| \left(\overline{\nabla}_{E} e_{i} \right)^{\mathcal{H}} \right|^{2} \right) + \int_{P} \sum_{i=1}^{k} \left\langle \left(\overline{\nabla}_{E} T \right)_{e_{i}} e_{i}, E \right\rangle + \int_{P} \left\{ \frac{|E|^{2}}{2} \sum_{i=1}^{k} \left\langle \nabla \log \lambda^{2}, e_{i} \right\rangle^{2} - \frac{|E|^{2}}{2} \sum_{i=1}^{k} \left\langle \overline{\nabla}_{e_{i}} \left(\nabla \log \lambda^{2} \right)^{\mathcal{V}}, e_{i} \right\rangle \right\}$$

Lemma 3.1 (Key Lemma 1) Let $\varphi : (M^n, g) \to (N^m, h)$ be a horizontally conformal submersion with dilation λ . Assume $P := \varphi^{-1}(z), z \in N$ is a submanifold of M. Then

$$\lambda^2 \Delta_P \left(\frac{1}{\lambda^2}\right) = \left| \left(\nabla \log \lambda^2\right)^{\mathcal{V}} \right|^2 - \operatorname{div}_P (\nabla \log \lambda^2)^{\mathcal{V}},$$

where Δ_P and div_P denote the Laplacian and divergence on P, respectively, and ∇ denotes the gradient on M.

Theorem 3.2 (Codimension 1) Let $\varphi : (M^n, g) \to (N^1, h)$ be a horizontally conformal submersion with dilation λ and suppose $P = \varphi^{-1}(t), t \in N$ is a minimal hypersurface of M. If Tis parallel, then P is volume-stable.

Sketch. Using Lemma 3.1 and other equations and formulae, We obtain

(4)
$$\mathcal{A}_E''(0) = \int_P \left| (\nabla f)^{\mathcal{V}} \right|^2 - \frac{1}{4} \int_P f^2 \left| (\nabla \log \lambda^2) \right|^{\mathcal{V}} \right|^2 + \frac{1}{2} \int_P f^2 \lambda^2 \Delta \left(\frac{1}{\lambda^2} \right).$$

Applying the integration by parts, we have

$$\mathcal{A}_E''(0) = \int_P \left| \left(\nabla f\right)^{\mathcal{V}} \right|^2 + \frac{1}{4} \int_P f^2 \left| \left(\nabla \log \lambda^2\right) \right)^{\mathcal{V}} \right|^2 + \int_P f\left\langle \left(\nabla f\right)^{\mathcal{V}}, \left(\nabla \log \lambda^2\right)^{\mathcal{V}} \right\rangle$$

Using the arithmetic-geometric inequality $2ab \leq \epsilon a^2 + \frac{1}{\epsilon}b^2$ for $\epsilon > 0$, we obtain (with $\epsilon = 2$)

$$\left| f\left\langle (\nabla f)^{\mathcal{V}}, \left(\nabla \log \lambda^2\right)^{\mathcal{V}} \right\rangle \right| \leq \left| (\nabla f)^{\mathcal{V}} \right|^2 + \frac{1}{4} f^2 \left| \left(\nabla \log \lambda^2\right) \right)^{\mathcal{V}} \right|^2.$$

Hence one can conclude that

$$\mathcal{A}''(0) \ge 0.$$

Corollary 3.3 Let $\varphi : (M^n, g) \to (N^1, h)$ be a horizontally conformal submersion whose fibers are totally geodesics. Then every fiber P is volume-stable.

Theorem 3.4 (Codimension 2) Let $\varphi : (M^n, g) \to (N^2, h)$ be a horizontally conformal submersion with dilation λ , where N is a 2-dimensional Riemannian manifold. Suppose $P = \varphi^{-1}(z), z \in N$ is a minimal submanifold of M. If T is parallel and the horizontal distribution \mathcal{H} is integrable, then P is volume-stable.

Corollary 3.5 Let $\varphi : (M^n, g) \to (N^2, h)$ be a submersive harmonic morphism from an *n*dimensional Riemannian manifold M^n to a 2-dimensional Riemannian manifold N^2 . If T is parallel and the horizontal distribution \mathcal{H} is integrable, then any fiber is volume-stable.

Corollary 3.6 Let $\varphi : (M^n, g) \to (N^2, h)$ be a submersive harmonic morphism with totally geodesic fibers. If the horizontal distribution \mathcal{H} is integrable, then any fiber is volume-stable.

Remark 3.7 In Theorem 3.4, Corollary 3.5 or Corollary 3.6, the condition that the horizontal distribution \mathcal{H} is integrable is indispensable. For instance, the Hopf map $\varphi : S^3 \to S^2$ is a submersive harmonic morphism with totally geodesic fibers, but the fibers are not volume-stable.

In [10], Montaldo proved if a submersive harmonic morphism $\varphi : (M^n, g) \to (N^2, h)$ from a compact Riemannian manifold to a surface has volume-stable minimal fibers, then φ is energy-stable, that is, the second derivative of the energy functional is non-negative. Thus Corollary 3.5 and Corollary 3.6 imply the following corollaries.

Corollary 3.8 Let $\varphi : (M^n, g) \to (N^2, h)$ be a submersive harmonic morphism from a compact *n*-dimensional Riemannian manifold M^n to a 2-dimensional Riemannian manifold N^2 . If T is parallel and the horizontal distribution \mathcal{H} is integrable, then φ is energy-stable harmonic map.

Corollary 3.9 Let $\varphi : (M^n, g) \to (N^2, h)$ be a submersive harmonic morphism with totally geodesic fibers and M is compact. If the horizontal distribution \mathcal{H} is integrable, then φ is energy-stable.

The converse for Corollary 3.8 or Corollary 3.9 is not true anymore. In fact, it is known ([10]) that the quotient map $\overline{\varphi} : \mathbb{R}P^3 \to S^2$ of the Hopf map $\varphi : S^3 \to S^2$ is energy-stable, but the horizontal distribution of $\overline{\varphi}$ is not integrable.

For higher codimensional case, we have the following properties.

Theorem 3.10 Let $\varphi : (M^n, g) \to (N^m, h)$ be a horizontally conformal submersion from an *n*-dimensional Riemannian manifold M^n to an *m*-dimensional Riemannian manifold N^m $(n \ge m \ge 3)$. Suppose a fiber of φ , $P = \varphi^{-1}(z), z \in N$ is a minimal submanifold of M. If the horizontal distribution \mathcal{H} is integrable and the tensor T is parallel, then P is volume-stable.

Corollary 3.11 Let $\varphi : (M^n, g) \to (N^m, h)$ be a submersive harmonic morphism with totally geodesic fibers. If the horizontal distribution \mathcal{H} is integrable, then every fiber is volume-stable.

4 Horizontal Homotheticity

Definition 4.1 A non-constant map $\varphi : (M, g) \to (N, h)$ is said to be horizontally homothetic if it is horizontally conformal and $(\nabla \log \lambda^2)^{\mathcal{H}} = 0$

Theorem 4.2 ([2]) Let $n > m \ge 2$, $\varphi : (M^n, g) \to (N^m, h)$ be a horizontally homothetic harmonic morphism and P be a submanifold of N. Then the followings are equivalent.

- (1) P is minimal in N
- (2) $\varphi^{-1}(P)$ is minimal in M.

Let $\varphi : (M^n, g) \to (N^m, h)$ be a submersion with the horizontal distribution \mathcal{H} and vertical distribution \mathcal{V} , respectively. Let $P^l \subset N$ be an *l*-dimensional submanifold of N and define

$$L = \varphi^{-1}(P).$$

For each $x \in L = \varphi^{-1}(P)$, we define

 $\mathcal{W}_x = T_x L, \quad \mathcal{H}'_x = W_x \cap \mathcal{H}, \quad \mathcal{H}''_x = W_x^{\perp}$

so that we have the following orthogonal decompositions

$$\mathcal{W} = \mathcal{V} \oplus \mathcal{H}', \quad \mathcal{H} = \mathcal{H}' \oplus \mathcal{H}'', \quad TM = \mathcal{V} \oplus \mathcal{H} = \mathcal{W} \oplus \mathcal{H}''.$$

The second fundamental form B of $L = \varphi^{-1}(P)$ in M is defined by

(5)
$$B: \mathcal{W} \times \mathcal{W} \to \mathcal{H}'', \qquad B(X,Y) = \left(\overline{\nabla}_X Y\right)^{\mathcal{H}''}$$

Note that

$$\dim L = \dim \varphi^{-1}(P) = n - m + b$$

Lemma 4.3 (Key Lemma 3) Let $\varphi : (M^n, g) \to (N^m, h)$ be a horizontally conformal submersion with dilation λ . Let P^l be an l-dimensional submanifold of N and let $L = \varphi^{-1}(P)$. Assume $l \leq m-1$. Then

$$\lambda^2 \Delta_L \left(\frac{1}{\lambda^2} \right) = \left| \left(\nabla \log \lambda^2 \right)^{\mathsf{T}} \right|^2 - \operatorname{div}_L (\nabla \log \lambda^2)^{\mathsf{T}},$$

where Δ_L and div_L denote the Laplacian and divergence on L, respectively, ∇ denotes the gradient on M and \intercal denotes the tangential component of L, i.e., W-component.

Theorem 4.4 Let $\varphi : (M^n, g) \to (N^m, h)$ be a horizontally homothetic harmonic morphism with dilation λ to a Riemannian manifold N of non-positive sectional curvature. Let P be a totally geodesic submanifold of N and let $L = \varphi^{-1}(P)$. If T is parallel and the horizontal distribution of φ is integrable, then L is a stable minimal submanifold of M.

As a direct application, we can obtain the following result.

Corollary 4.5 Let $\varphi : (M^n, g) \to (N^m, h)$ be a horizontally homothetic harmonic morphism with totally geodesic fibers to a Riemannian manifold N of non-positive sectional curvature. Let P be a totally geodesic submanifold of N and let $L = \varphi^{-1}(P)$. If the horizontal distribution of φ is integrable, then L is a stable minimal submanifold of M.

In case of hypersurfaces, the assumption on the sectional curvature condition can be weakened to non-positive Ricci curvature.

Corollary 4.6 Let $\varphi : (M^n, g) \to (N^m, h)$ be a horizontally homothetic harmonic morphism to a Riemannian manifold N of non-positive Ricci curvature. Let P be a totally geodesic hypersurface of N and let $L = \varphi^{-1}(P)$. If T is parallel and the horizontal distribution of φ is integrable, then L is a stable minimal hypersurface of M.

References

- P. Baird and J. Eells, A conservation law for harmonic maps, Lecture Notes in Mathematics, 894, Springer(1981), pp. 1-25.
- [2] P. Baird and S. Gudmundsson, p-harmonic maps and minimal submanifolds, Math. Ann., 294 (1992), 611-624.
- [3] B. Fuglede, Harmonic morphisms between Riemannian manifolds, Ann. Inst. Fourier, Grenoble 28 (1978), 107-144.
- [4] S. Gudmundsson, The Geometry of Harmonic Morphisms, Ph. D Thesis, 1992.
- [5] T. Ishihara, A mappings of Riemannian manifolds which preserves harmonic functions, J. Math. Kyoto Univ. 19 (1979), 215-229.
- [6] H. Jin and X. Mo, On submersive p-harmonic morphisms and their stability, Contemporary Mathematics, 308 (2002), 205-209.
- [7] A. Kasue and T. Washio, Growth of equivariant harmonic maps and harmonic morphisms, Osaka Jour. of Math., 27 (1990), 899-928.
- [8] H. B. Lawson, Lectures on minimal submanifolds, Mathematics Lecture Series, 9, Publish or Perish, 1980.
- [9] E. Loubeau, On *p*-harmonic morphisms, Preprint.
- [10] S. Montaldo, Stability of harmonic morphisms to a surface, Intern. J. Math., 9 (1998), 865-875.
- [11] B. O'Neill, The fundamental equations of a submersion, Mich. Math. J., 13 (1966), 459-469.

Gundon Choi

GARC and Department of Mathematics Seoul National University San 56-1, Shilim, Seoul, Korea e-mail address: cgd@math.snu.ac.kr

Gabjin Yun Department of Mathematics Myong Ji University San 38-2, Namdong, Yongin Kyunggi, Korea, 449-728 e-mail address: gabjin@mju.ac.kr