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1 Introduction

The theory of harmonic morphisms is one of particularly interesting subclasses of harmonic

maps. A harmonic map ϕ : (M, g) → (N, h) between Riemannian manifolds is a critical

point of the energy functional defined on each compact domain of M . A harmonic morphism

between Riemannian manifolds is a map preserving harmonic structure. In other words, a map

ϕ : (Mn, g) → (Nm, h) is called a harmonic morphism if for any harmonic function f defined

on an open subset V ⊂ N such that ϕ−1(V ) 6= ∅, the composition f ◦ ϕ : ϕ−1(V ) → R is also

harmonic. Harmonic morphisms are characterized as harmonic maps which are horizontally

(weakly) conformal.

2 Preliminaries

Let ϕ : (Mn, g) → (Nm, h) be a smooth map between Riemannian manifolds (M, g) and (N, h).

For a point x ∈ M , we set Vx = ker(dϕx). The space Vx is called the vertical space at x. Let

Hx denote the orthogonal complement of Vx in the tangent space TxM . For a tangent vector

X ∈ TxM , we denote XV and XH, respectively, the vertical component and the horizontal

component of X. Let V and H denote the corresponding vertical and horizontal distributions

in the tangent bundle TM . We say that ϕ is horizontally (weakly) conformal if, for each point

x ∈ M at which dϕx 6= 0, the restriction dϕx|Hx : Hx → Tϕ(x)N is conformal and surjective.

Thus there exists a non-negative function λ on M such that

h(dϕ(X), dϕ(Y )) = λ2g(X,Y )

for horizontal vectors X, Y . The function λ is called the dilation of ϕ. Note that λ2 is smooth

and is equal to |dϕ|2/m, where m = dim(N).

Let ϕ : Mn → Nm be a horizontally (weakly) conformal map between Riemannian manifolds

(M, g) and (N, h). Denote the set of critical points of ϕ by Cϕ = {x ∈ M : dϕx = 0} and let

M∗ = M − Cϕ. We define two tensors T and A over M∗ by

TEF = (∇EVF
V)H + (∇EVF

H)V

and

AEF = (∇EHFH)V + (∇EHF V)H
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for vector fields E and F on M . Here ∇ denotes the Levi-Civita connection on M .

Let Mn be an n-dimensional complete Riemannian manifold and let P be a k-dimensional

immersed submanifold of M . Then the tangent space of M can be decomposed into

TM = TP ⊕ TP⊥.

Define, for two tangent vectors X, Y on P , i.e., sections of TP , the symmetric 2-tensor B(X,Y )

by

B(X, Y ) = (∇XY )⊥ = (∇XY )H = TXY,

where ∇ is the Levi-Civita connection on M and ⊥ denotes the normal component. We say P

is minimal if the mean curvature trace(B) = 0.

Let E be a normal vector field on P with compact support. Then the second derivative of

the volume functional A in the direction E ([8]) is given by

A′′(0) =

∫

P

〈−∆E +R(E)− B(E), E〉.(1)

Introducing a local orthonormal basis {e1, · · · , ek, ξk+1, · · · , ξn} on TM such that {ξk+1, · · · , ξn}
is a local orthonormal frame on TP⊥, the equation (1) becomes

A′′(0) =

∫

P

|∇⊥E|2 −
k∑

i=1

〈R(ei, E)E, ei〉 −
k∑

i,j=1

〈B(ei, ej), E〉2(2)

It is well-known that P is totally geodesic if and only if B = 0 and hence B = 0.

We say a minimally immersed submanifold P of M is stable (or volume-stable) if, for any

normal variation E with compact support, the second derivative of the volume functional in

the direction E is non-negative, i. e.,

A′′(0) ≥ 0.

3 Stability of Minimal Fibers

Let ϕ : Mn → Nm be a horizontally (weakly) conformal map between Riemannian manifolds

(M, g) and (N, h). Suppose for a point z ∈ N , the fiber P := ϕ−1(z) is a k-dimensional minimal

submanifold of M . Then the tangent vectors to P correspond vertical vectors of ϕ and normal

vectors to P correspond to horizontal vectors of ϕ.

We have

A′′(0) =

∫

P

k∑
i=1

(∣∣∣
(∇ei

E
)H∣∣∣

2

−
∣∣∣
(∇Eei

)H∣∣∣
2
)

+

∫

P

k∑
i=1

〈(∇ET
)

ei
ei, E

〉
(3)

+

∫

P

{
|E|2
2

k∑
i=1

〈∇ log λ2, ei〉2 − |E|2
2

k∑
i=1

〈
∇ei

(∇ log λ2
)V

, ei

〉}
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Lemma 3.1 (Key Lemma 1) Let ϕ : (Mn, g) → (Nm, h) be a horizontally conformal sub-

mersion with dilation λ. Assume P := ϕ−1(z), z ∈ N is a submanifold of M . Then

λ2∆P

(
1

λ2

)
=

∣∣∣
(∇ log λ2

)V∣∣∣
2

− divP (∇ log λ2)V ,

where ∆P and divP denote the Laplacian and divergence on P , respectively, and ∇ denotes the

gradient on M .

Theorem 3.2 (Codimension 1) Let ϕ : (Mn, g) → (N1, h) be a horizontally conformal sub-

mersion with dilation λ and suppose P = ϕ−1(t), t ∈ N is a minimal hypersurface of M . If T

is parallel, then P is volume-stable.

Sketch. Using Lemma 3.1 and other equations and formulae, We obtain

A′′
E(0) =

∫

P

∣∣∣(∇f)V
∣∣∣
2

− 1

4

∫

P

f 2
∣∣∣
(∇ log λ2)

)V∣∣∣
2

+
1

2

∫

P

f 2λ2∆

(
1

λ2

)
.(4)

Applying the integration by parts, we have

A′′
E(0) =

∫

P

∣∣∣(∇f)V
∣∣∣
2

+
1

4

∫

P

f 2
∣∣∣
(∇ log λ2)

)V∣∣∣
2

+

∫

P

f
〈
(∇f)V ,

(∇ log λ2
)V〉

Using the arithmetic-geometric inequality 2ab ≤ εa2 +
1

ε
b2 for ε > 0, we obtain (with ε = 2)

∣∣∣f
〈
(∇f)V ,

(∇ log λ2
)V〉∣∣∣ ≤

∣∣(∇f)V
∣∣2 +

1

4
f 2

∣∣∣
(∇ log λ2)

)V∣∣∣
2

.

Hence one can conclude that

A′′(0) ≥ 0.

Corollary 3.3 Let ϕ : (Mn, g) → (N1, h) be a horizontally conformal submersion whose fibers

are totally geodesics. Then every fiber P is volume-stable.

Theorem 3.4 (Codimension 2) Let ϕ : (Mn, g) → (N2, h) be a horizontally conformal

submersion with dilation λ, where N is a 2-dimensional Riemannian manifold. Suppose

P = ϕ−1(z), z ∈ N is a minimal submanifold of M . If T is parallel and the horizontal distri-

bution H is integrable, then P is volume-stable.

Corollary 3.5 Let ϕ : (Mn, g) → (N2, h) be a submersive harmonic morphism from an n-

dimensional Riemannian manifold Mn to a 2-dimensional Riemannian manifold N2. If T is

parallel and the horizontal distribution H is integrable, then any fiber is volume-stable.

Corollary 3.6 Let ϕ : (Mn, g) → (N2, h) be a submersive harmonic morphism with totally

geodesic fibers. If the horizontal distribution H is integrable, then any fiber is volume-stable.

3



Remark 3.7 In Theorem 3.4, Corollary 3.5 or Corollary 3.6, the condition that the horizontal

distribution H is integrable is indispensable. For instance, the Hopf map ϕ : S3 → S2 is a

submersive harmonic morphism with totally geodesic fibers, but the fibers are not volume-

stable.

In [10], Montaldo proved if a submersive harmonic morphism ϕ : (Mn, g) → (N2, h) from a

compact Riemannian manifold to a surface has volume-stable minimal fibers, then ϕ is energy-

stable, that is, the second derivative of the energy functional is non-negative. Thus Corollary 3.5

and Corollary 3.6 imply the following corollaries.

Corollary 3.8 Let ϕ : (Mn, g) → (N2, h) be a submersive harmonic morphism from a compact

n-dimensional Riemannian manifold Mn to a 2-dimensional Riemannian manifold N2. If T is

parallel and the horizontal distribution H is integrable, then ϕ is energy-stable harmonic map.

Corollary 3.9 Let ϕ : (Mn, g) → (N2, h) be a submersive harmonic morphism with totally

geodesic fibers and M is compact. If the horizontal distribution H is integrable, then ϕ is

energy-stable.

The converse for Corollary 3.8 or Corollary 3.9 is not true anymore. In fact, it is known

([10]) that the quotient map ϕ : RP 3 → S2 of the Hopf map ϕ : S3 → S2 is energy-stable, but

the horizontal distribution of ϕ is not integrable.

For higher codimensional case, we have the following properties.

Theorem 3.10 Let ϕ : (Mn, g) → (Nm, h) be a horizontally conformal submersion from an

n-dimensional Riemannian manifold Mn to an m-dimensional Riemannian manifold Nm (n ≥
m ≥ 3). Suppose a fiber of ϕ, P = ϕ−1(z), z ∈ N is a minimal submanifold of M . If the

horizontal distribution H is integrable and the tensor T is parallel, then P is volume-stable.

Corollary 3.11 Let ϕ : (Mn, g) → (Nm, h) be a submersive harmonic morphism with totally

geodesic fibers. If the horizontal distribution H is integrable, then every fiber is volume-stable.

4 Horizontal Homotheticity

Definition 4.1 A non-constant map ϕ : (M, g) → (N, h) is said to be horizontally homothetic

if it is horizontally conformal and
(∇ log λ2

)H
= 0

Theorem 4.2 ([2]) Let n > m ≥ 2, ϕ : (Mn, g) → (Nm, h) be a horizontally homothetic

harmonic morphism and P be a submanifold of N . Then the followings are equivalent.

(1) P is minimal in N

(2) ϕ−1(P ) is minimal in M .
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Let ϕ : (Mn, g) → (Nm, h) be a submersion with the horizontal distribution H and vertical

distribution V , respectively. Let P l ⊂ N be an l-dimensional submanifold of N and define

L = ϕ−1(P ).

For each x ∈ L = ϕ−1(P ), we define

Wx = TxL, H′
x = Wx ∩H, H′′

x = W⊥
x

so that we have the following orthogonal decompositions

W = V ⊕H′, H = H′ ⊕H′′, TM = V ⊕H = W ⊕H′′.

The second fundamental form B of L = ϕ−1(P ) in M is defined by

B : W ×W → H′′, B(X, Y ) =
(∇XY

)H′′
,(5)

Note that

dim L = dim ϕ−1(P ) = n−m + l

Lemma 4.3 (Key Lemma 3) Let ϕ : (Mn, g) → (Nm, h) be a horizontally conformal sub-

mersion with dilation λ. Let P l be an l-dimensional submanifold of N and let L = ϕ−1(P ).

Assume l ≤ m− 1. Then

λ2∆L

(
1

λ2

)
=

∣∣(∇ log λ2
)ᵀ∣∣2 − divL(∇ log λ2)ᵀ,

where ∆L and divL denote the Laplacian and divergence on L, respectively, ∇ denotes the

gradient on M and ᵀ denotes the tangential component of L, i.e., W-component.

Theorem 4.4 Let ϕ : (Mn, g) → (Nm, h) be a horizontally homothetic harmonic morphism

with dilation λ to a Riemannian manifold N of non-positive sectional curvature. Let P be

a totally geodesic submanifold of N and let L = ϕ−1(P ). If T is parallel and the horizontal

distribution of ϕ is integrable, then L is a stable minimal submanifold of M .

As a direct application, we can obtain the following result.

Corollary 4.5 Let ϕ : (Mn, g) → (Nm, h) be a horizontally homothetic harmonic morphism

with totally geodesic fibers to a Riemannian manifold N of non-positive sectional curvature.

Let P be a totally geodesic submanifold of N and let L = ϕ−1(P ). If the horizontal distribution

of ϕ is integrable, then L is a stable minimal submanifold of M .

In case of hypersurfaces, the assumption on the sectional curvature condition can be weak-

ened to non-positive Ricci curvature.

Corollary 4.6 Let ϕ : (Mn, g) → (Nm, h) be a horizontally homothetic harmonic morphism

to a Riemannian manifold N of non-positive Ricci curvature. Let P be a totally geodesic

hypersurface of N and let L = ϕ−1(P ). If T is parallel and the horizontal distribution of ϕ is

integrable, then L is a stable minimal hypersurface of M .
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