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TOTAL POSITIVE CURVATURE OF HYPERSURFACES

WITH CONVEX BOUNDARY

Jaigyoung Choe, Mohammad Ghomi & Manuel Ritoré

Abstract

We prove that if Σ is a compact hypersurface in Euclidean
space Rn, its boundary lies on the boundary of a convex body C,
and meets C orthogonally from the outside, then the total positive
curvature of Σ is bigger than or equal to half the area of the sphere
Sn−1. Also, we obtain necessary and sufficient conditions for the
equality to hold.

1. Introduction

It is well-known that the total positive curvature τ+ of a smooth
closed hypersurfaces in Euclidean space Rn is bigger than or equal to
the area of the sphere Sn−1. Further, the case of equality has been
extensively studied within the context of the theory of tight immer-

sions [6, 5]. Motivated by applications to isoperimetric problems [10],
we obtain in this paper an analogous sharp inequality for hypersurface
whose boundary lies on a convex body, and meets that convex body
orthogonally from the outside, as we describe below.

First, we give a general definition for τ+. Let Σ be a compact C0 hy-
persurface with boundary ∂Σ in Rn, which is C1-immersed on a neigh-
borhood of ∂Σ (it is not required that Σ be locally embedded away from
∂Σ). A hyperplane Π ⊂ Rn is called a restricted support hyperplane of
Σ at a point p, if p ∈ Π ∩ Σ, Σ lies on one side of Π, and Π is tangent
to Σ when p ∈ ∂Σ. An outward normal of Π is a normal vector to Π
which points towards a side of Π not containing Σ. If Π is a restricted
support hyperplane for an open neighborhood Up of p in Σ, then Π is
called a restricted local support hyperplane; furthermore, p is a locally

strictly convex point of Σ, or p ∈ Σ+, provided that Π ∩Up = {p}. The
total positive curvature τ+ of Σ is defined as the algebraic area of the
unit normals to restricted local support hyperplanes of Σ at points of
Σ+, where by area, we mean the n − 1 dimensional Hausdorff measure.
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Our definition of τ+ is validated by the fact that when Σ+ is C1,1,
the outward unit normal vector field ν : Σ+ → Sn−1 is well-defined and
Lipschitz continuous; thus, by the area formula [11, Theorem 3.2.3],

τ+(Σ) =

∫

Σ+

|GK|,

where GK := det(dν) is the Gauss–Kronecker curvature of Σ. To state
our main result, it only remains to set cn := area(Sn), and recall that
the inward conormal at p ∈ ∂Σ is a unit normal vector of ∂Σ at p which
is tangent to Σ and points inside Σ.

Theorem 1.1. Let Σ be a compact C0 hypersurface in Rn which is C1

immersed on a neighborhood of its boundary ∂Σ. Suppose that ∂Σ lies

on the boundary of a convex set C ⊂ Rn, and at each point p ∈ ∂Σ, the

inward conormal σ(p) is an outward unit normal to a support hyperplane

of C. Then,

(1) τ+(Σ) ≥
cn−1

2
.

Equality holds if and only if

(i) ∂Σ lies in a hyperplane Π,

(ii) σ(p) ⊥ Π for all p ∈ ∂Σ,

(iii) Σ lies strictly on one side of Π, and

(iv) every restricted local support hyperplane of Σ at each point of Σ+

is a restricted support hyperplane of Σ.

Note that when ∂C is C1, the boundary hypothesis in the above
theorem is equivalent to the requirement that Σ meet ∂C orthogonally
along ∂Σ, and a neighborhood of ∂Σ in Σ lie outside of the interior of
C. Further, when Σ is C1, condition (iv) above may be replaced by the
requirement that Σ+ lie on the boundary of the convex hull of Σ.

A pair of surfaces which satisfy conditions (i)–(iv) of Theorem 1.1 are
illustrated in Figure 1. The example on the left is a Möbius strip and
the other is an annulus with a bridge and a handle attached. Similarly,
one may construct surfaces of every topological genus which satisfy con-
ditions (i)–(iv) by adding bridges or handles to an annulus or a Möbius
strip. In short, equality in (1) does not restrict the topology of Σ or
force it to be embedded.

As we mentioned earlier, the above theorem mirrors well-known re-
sults for closed hypersurfaces. In particular, recall that when Σ is closed,
τ+(Σ) ≥ cn−1, because for almost any u ∈ Sn−1, Σ has a strict support
hyperplane with outward unit normal u [18, Theorem 2.2.9]. Further,
it is easy to see that τ+(Σ) = cn−1 if and only if every local support
hyperplane of Σ at each point of Σ+ is a support hyperplane of Σ. Such
surfaces are called 0-tight ; they satisfy Banchoff’s two-piece-property
(TPP) [4], and, when they are smooth, have minimal total absolute cur-
vature

∫
Σ |GK| as studied by Chern and Lashof [7, 8], Kuiper [13, 14],
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Figure 1.

and others [6, 5]. In particular, we should mention papers of Rodriguez
[17] and Kühnel [12] where they prove that (in contrast to the examples
illustrated in Figure 1) a surface with boundary and TPP lies embedded
on the boundary of its convex hull, and therefore has restricted topol-
ogy. The earliest study of closed surfaces with τ+ = cn−1 is due to
Alexandrov [3], see Nirenberg [16].

The prime motivation for this work, however, stems from applications
to isoperimetric problems. In particular, Theorem 1.1 is used in [10],
to show that the area of a hypersurface Σ which traps a given volume
outside of a convex body in Rn must be greater than or equal to the area
of a hemisphere trapping the given volume on one side of a hyperplane,
and equality holds only when Σ is itself a hemisphere. See also [9], for
a generalization of this result to Cartan–Hadamard 3-manifolds. Other
recent results on the structure of hypersurfaces whose boundary lies on
a convex body have been obtained in [1, 2]; also see [15].

The proof of Theorem 1.1 presented here is based on successive gen-
eralizations of the simple observation that if X ⊂ Sn−1 is any convex

spherical set, then the intersection of X with any hemisphere centered
at a point of X contains at least half of X. This fact is proved in Sec-
tion 3, and is then extended to a result for normal cones of finite sets in
Section 4. The latter result is used in turn to prove a still more general
proposition for support cones of general sets in Section 5. Applying
the last result to ∂Σ and its conormal vector field leads to the proof of
Theorem 1.1 in Section 6.

In the appendix, we discuss a relatively short analytic proof of in-
equality (1) when ∂Σ is C2.

Note 1.2. Inequality (1) has an easy proof when C is a sphere.
Indeed, in this case, it can be shown that for every u ∈ Sn−1, Σ has
a restricted support hyperplane which is orthogonal to u. To see this,

let Σ̃ be the surface obtained from Σ by connecting all points of ∂Σ

to the center o of the sphere. Then, Σ̃ is C1 immersed near ∂Σ. For

u ∈ Sn−1, let hu : Σ̃ → R be the height function hu(·) := 〈·, u〉. Note
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that since Σ̃ is a closed C0-immersed hypersurface, it does not lie entirely
in a hyperplane, by the theorem on invariance of domain. Thus, for

every u ∈ Sn−1, hu has a maximum point and a minimum point on Σ̃
which are distinct. In particular, at least one of these extremum points,
which we denote by vu, must be different from o. So, either vu ∈ Σ, or

vu ∈ Σ̃ − {o} − Σ. In the former case, TvuΣ is orthogonal to u. In the
latter case, vu lies in the interior of a line segment oq for some q ∈ Σ.

Thus, since TvuΣ̃ is a support hyperplane of Σ̃, it follows that TvuΣ̃ is

tangent to Σ at q. So TqΣ = TvuΣ̃ is the desired hyperplane.

Note 1.3. Unlike the case where C is a sphere, which was addressed
in Note 1.2, there are surfaces which satisfy the hypothesis of Theorem
1.1, but do not have restricted support hyperplanes orthogonal to every
direction. See Figure 2 for one such surface whose boundary lies on a
cylinder.

Figure 2.

Note 1.4. Inequality (1) is an easy consequence of the Gauss–Bonnet
theorem when n = 3, Σ is homeomorphic to a disk, and C has C2

positively curved boundary. To see this, let γ : (−ǫ, ǫ) → ∂Σ be a local
parametrization of ∂Σ with γ(0) = p and ‖γ′‖ = 1. Let ν(p) be the unit
normal to ∂C, which is parallel to the mean curvature vector of ∂C at
p, and σ(p) be the inward conormal of ∂Σ at p. Then, the geodesic
curvature of ∂Σ at p is given by

κg(p) =
〈
γ′′(0), σ(p)

〉
=

〈
γ′′(0),−ν(p)

〉
= − IIp

(
γ′(0), γ′(0)

)
,

where IIp is the second fundamental form of ∂C with respect to ν(p).
Since ∂C has positive curvature at p, and ν(p) is parallel to the mean
curvature vector, IIp is positive definite. So κg < 0, and consequently

∫

Σ+

GK ≥

∫

Σ
GK = 2πχ(Σ) −

∫

∂Σ
κg ≥ 2πχ(Σ) = 2π.
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3. Convex Spherical Sets

We say that a subset X ⊂ Sn−1 is convex if every pair of points of X
may be joined by a distance minimizing geodesic which lies in X. For
every u ∈ Sn−1, we define the (closed) hemisphere centered at u as

Hu :=
{

p ∈ Sn−1 | 〈p, u〉 ≥ 0
}
.

The distance between any pairs of sets X, Y ⊂ Rn is given by

dist(X, Y ) := inf
{
‖x − y‖ | x ∈ X, y ∈ Y

}
.

If p ∈ Rn, we adopt the common convention dist(X, p) := dist(X, {p}).

Proposition 3.1. Let X ⊂ Sn−1 be a closed convex set with interior

points and u ∈ X. Then,

(2) area(X ∩ Hu) ≥
1

2
area(X).

Equality holds if and only if −u ∈ X. Further, for every ǫ > 0, there

exists δ > 0 such that

(3) if area(X ∩ Hu) ≤

(
1

2
+ δ

)
area(X), then dist(X,−u) ≤ ǫ.

Proof. Let A consist of all geodesic segments connecting u to the
points of X ∩ ∂Hu, where ∂Hu is the set of points of Sn−1 which are
orthogonal to u, and let B be the complement of A in Hu. Further, let
A′ and B′ be the reflections of A and B with respect to the hyperplane
which is orthogonal to u and passes through the origin. Since A ⊂ X,

area(X ∩ A) = area(A) = area(A′) ≥ area(X ∩ A′).

Further, note that if B′ contains any point p of X, then the geodesic
connecting p to u belongs to X and crosses ∂Hu at a point x. But this
would imply that the geodesic ux belongs to A, which can happen only
if p ∈ A′. Thus,

area(X ∩ B′) = 0.
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So, it follows that

area(X ∩ Hu) = area(X ∩ A) + area(X ∩ B)

≥ area(X ∩ A′) + area(X ∩ B′)

= area(X ∩ H−u),

which establishes the desired inequality (2).
Now, suppose that equality holds in (2). Then, the first and the

last quantities in the above expression are equal. So, the intermediate
quantities must be equal as well. Thus, we have

area(X ∩ A) ≤ area(X ∩ A) + area(X ∩ B)

= area(X ∩ A′) + area(X ∩ B′)

= area(X ∩ A′).

So, it follows that

area(X ∩ A′) = area(X ∩ A) = area(A) = area(A′).

Since A′ and X are both closed convex sets, the last equality above
yields that X ∩ A′ = A′. In particular, −u ∈ X.

Conversely, if −u ∈ X, then the convexity of X implies that X∩A′ =
A′. Furthermore, if p ∈ X ∩ B, then by convexity of X, the geodesic
p(−u) must also be contained in X. But, since p(−u) lies partly in
B′, that would imply that X ∩ B′ 6= ∅, which is a contradiction. So,
X ∩ B = ∅. Since X ∩ A = A, we conclude then that

area(X ∩ Hu) = area(A) = area(A′) = area(X ∩ H−u).

So, equality holds in (2).
Finally, note that if left-hand side of (3) holds, then

area(X ∩ H−u) ≥

(
1

2
− δ

)
area(X),

which yields

2δ area(X) ≥ area(X ∩ Hu) − area(X ∩ H−u)

= area(X ∩ A) + area(X ∩ B) − area(X ∩ A′)

≥ area(X ∩ A) − area(X ∩ A′)

= area(A′) − area(X ∩ A′).

In particular, if Bn
ǫ (−u) denotes the n-dimensional closed ball of radius

ǫ centered at −u, and we set

δ ≤
area

(
Bn

ǫ (−u) ∩ A′
)

2 area(X)
,

it follows that

area(X ∩ A′) ≥ area(A′) − area
(
Bn

ǫ (−u) ∩ A′
)
.

So X ∩ Bn
ǫ (−u) 6= ∅, which yields dist(X,−u) ≤ ǫ, as desired. q.e.d.
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Note 3.2. The proof of Proposition 3.1 shows that if X ⊂ Sn−1 is
any convex spherical set of Hausdorff dimension d, then

Hd(X ∩ Hu) ≥
1

2
Hd(X),

where Hd is the d-dimensional Hausdorff measure, and again equality
holds if and only if −u ∈ X.

4. Restricted Normal Cones of Finite Sets

For any subset X ⊂ Rn and point p ∈ Rn, the (unit) normal cone of
X at p is defined as

NpX :=
{

u ∈ Sn−1 | 〈x − p, u〉 ≤ 0, ∀x ∈ X
}
,

i.e., the set of outward unit normals to support hyperplanes of X ∪ {p}
at p. We also set

NX := ∪
p∈X

NpX.

Lemma 4.1. For any set X ⊂ Rn, and point p ∈ Rn, NpX is either

a convex spherical set or consists exactly of a pair of antipodal points.

Proof. Let u0, u1 ∈ NpX. If u0 6= −u1, then the geodesic segment
between u0 and u1 may be parametrized by

u(λ) :=
(1 − λ)u0 + λu1

‖(1 − λ)u0 + λu1‖
,

where λ ∈ [0, 1]. Since 〈x− p, u0〉 ≤ 0 and 〈x− p, u1〉 ≤ 0 for all x ∈ X,
it follows that 〈x − p, u(λ)〉 ≤ 0 as well, which yields that u(λ) ∈ NpX.

If u0 = −u1, and NpX contains no other points, then we are done.
Otherwise, let x be a point of NpX distinct from u0 and u1. Then,
NpX contains the geodesic segments u0x and xu1. Let Π be the two
dimensional plane spanned by u0 and x. Then, u0x and xu1 both lie on
Π, since Π is a plane of symmetry of Sn−1 and geodesics of length less
than π are unique in Sn−1. Thus, u0x ∪ xu1 is a geodesic, and so we
conclude that NpX contains a geodesic connecting u0 and u1. q.e.d.

For any subset X ⊂ Rn and mapping σ : X → Sn−1, we define the
restricted normal cone of X at p with respect to σ as

NpX/σ := NpX ∩ Hσ(p),

and set
NX/σ := ∪

p∈X
NpX/σ.

We say that a point p ∈ X is exposed provided that there passes through
p a support hyperplane Π of X such that Π ∩ X = {p}. The set of
exposed points of X is denoted by XE . The width of a subset X ⊂ Rn

is the distance between the closest pairs of parallel hyperplanes which
contain X in between them.
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Proposition 4.2. Let X := {x1, . . . , xk} ⊂ Rn be a finite set which

lies on the boundary of a convex body. Choose σ(xi) ∈ Nxi
X. Then,

(4) area
(
NX/σ

)
≥

cn−1

2
.

Equality holds if and only if X lies in a hyperplane Π, and σ(xi) is

orthogonal to Π for all xi ∈ XE. Further, for every ǫ > 0, there exists

δ > 0 such that

(5) if area(NX/σ) ≤

(
1

2
+ δ

)
cn−1, then width(X) ≤ ǫ.

Proof. First note that, since X is compact, for every u ∈ Sn−1, the
height function 〈·, u〉 has a maximum point in X, which means that X
has a support hyperplane with outward normal u. Thus,

NX = Sn−1.

Further, a point u ∈ Sn−1 belongs to the interior of some Nxi
X, as a

subset of Sn−1, if and only if there exists a support hyperplane of X at
xi with outward normal u which intersects X only at xi. Thus,

intSn−1

(
Nxi

X
)
∩ intSn−1

(
Nxj

X
)

= ∅,

for all i 6= j. Since, by Lemma 4.1, each Nxi
X with non-vanishing area

is a convex spherical set, and X is a finite set, Proposition 3.1 together
with the two equalities displayed above yields that

area
(
NX/σ

)
=

∑

i

area
(
Nxi

X/σ
)
≥

∑

i

1

2
area

(
Nxi

X
)

=
cn−1

2
.

Now, suppose that equality holds in (4). Then, the middle two quan-
tities in the above expression are equal. This together with Proposition
3.1 yields that

area
(
Nxi

X/σ
)

=
1

2
area

(
Nxi

X
)
,

whenever Nxi
X has interior points. Since X is finite, this can happen

if and only if xi ∈ XE . So, again by Proposition 3.1, Nxi
X contains a

pair of antipodal points ±σ(xi) for all xi ∈ XE . This yields that X lies
in a hyperplane orthogonal to ±σ(xi).

Conversely, suppose that X lies in a hyperplane and σ(xi) are or-
thogonal to that hyperplane for all xi ∈ XE . Then −σ(xi) ∈ Nxi

X, for
all xi ∈ XE . Thus, by Proposition 3.1, the above equality holds for all
xi ∈ XE , which yields that equality holds in (4).

Finally, suppose that the left-hand side of (5) holds. Then, since
area

(
NX/σ

)
is the sum of area

(
Nxi

X/σ
)
, which have disjoint interiors,

there must exist an i such that

area
(
Nxi

X/σ
)
≤

(
1

2
+ δ

)
area

(
Nxi

X
)
.
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In particular, by Proposition 3.1, we may choose δ so small that, for
any ǫ > 0,

dist
(
Nxi

X,−σ(xi)
)
≤ 2 sin

(
ǫ

2 diam(X)

)
,

for some i, where diam(X) denotes the distance between the farthest
points of X. This implies that there exists an element σ̃i ∈ Nxi

X such
that the angle between −σ(xi) and σ̃i is less than or equal to ǫ/diam(X).
Consequently, the angle of the ‘wedge’ containing X generated by the
support hyperplanes of X at xi, with outward unit normals σ(xi) and
σ̃i, is less than or equal to ǫ/diam(X). So,

width(X) ≤
ǫ

diam(X)
· diam(X) = ǫ,

as desired. q.e.d.

5. Restricted Normal Cones of General Sets

For any subset X ⊂ Rn, let Br(X) denote the union of all closed balls
of radius r centered at points of X. The Hausdorff distance between
any pairs of subsets X, Y of Rn is defined as

distH(X, Y ) := inf
{

r ≥ 0 | X ⊂ Br(Y ) and Y ⊂ Br(X)
}
.

We say that a sequence of sets Xi ⊂ Rn converges to X ⊂ Rn, and
write limi→∞ Xi = X, provided that for every ǫ > 0, there exists an
integer k such that distH(Xi, X) ≤ ǫ whenever i ≥ k.

Lemma 5.1. Let X ⊂ Rn be compact, and pi ∈ Rn be a sequence

of points which converges to a point p ∈ Rn. Then, limi→∞ Npi
(X) ⊂

Np(X). Further, if p ∈ Rn − X, then limi→∞ Npi
(X) = Np(X).

Proof. Since X is compact, the set of hyperplanes in Rn with respect
to which X lies on both sides or are disjoint from X is open. This
implies that the set of support hyperplanes of X are closed. Thus,
limi→∞ Npi

(X) ⊂ Np(X).
Now, suppose that p ∈ Rn−X. Then, Np(X) has non-empty interior

(as a subset of Sn−1). Let u ∈ intSn−1(Np(X)), and Π be the hyperplane
through p and orthogonal to u. Then, Π ∩ X = ∅, and consequently,
since X is compact, dist(X, Π) > 0. In particular, we may choose i so
large that the dist(pi, Π) < dist(pi, X). Then, the hyperplane Πi which
passes through pi and is orthogonal to u has X entirely on one side.
Thus, u ∈ Npi

X for i sufficiently large, and so we conclude that

intSn−1

(
Np(X)

)
⊂ lim

i→∞
Npi

(X).

But limi→∞ Npi
(X) is closed, because the space of compact subsets of

Rn is locally compact with respect to the Hausdorff metric [18, Theorem
1.8.4]. So, Np(X) ⊂ limi→∞ Npi

(X). q.e.d.
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Lemma 5.2. Let X ⊂ Rn be compact. Then, except for a set of zero

area, every u ∈ Sn−1 is the outward normal to a support hyperplane of

X which intersects X only at a single point.

Proof. See [18, Theorem 2.2.9]. q.e.d.

Proposition 5.3. Let X ⊂ Rn be a compact set which is disjoint

from the relative interior of its convex hull. Suppose there exists a con-

tinuous mapping σ : X → Sn−1 such that σ(p) ∈ NpX for all p ∈ X.

Then,

(6) area
(
NX/σ

)
≥

cn−1

2
.

Equality holds if and only if X lies in a hyperplane Π, and σ(p) is

orthogonal to Π for all p ∈ XE.

Proof. First, we show that NX/σ is closed. To see this, note that, by
Lemma 5.1, if xi is a sequence of points of X which converges to x, then
the limit of Nxi

X is a subset of NxX. Further, since σ is continuous,
the hemispheres Hσ(xi) converge to Hσ(x). So, the limit of Nxi

X/σ is
a subset of NxX/σ. Now, suppose that we have a sequence of elements
ui ∈ NX/σ which converges to a point u ∈ Sn−1. Then ui ∈ Nxi

X/σ,
for some xi ∈ X. Since X is compact, xi has an accumulation point
x ∈ X. Consequently, as we just argued, the limit of Nxi

X/σ lies in
NxX/σ. So u ∈ NxX/σ, and we conclude that NX/σ is closed.

Next note that, since X is bounded, for any i = 1, 2, . . . , we may
cover it by finitely many balls in Rn of radius 1/i centered at points
of X. Let Xi be the set of the centers of these balls. As i → ∞, Xi

converges to X with respect to the Hausdorff metric, consequently, for
any p ∈ X, NpXi converges to NpX. We claim that, since X is compact,
for every δ > 0, there exists k > 0 such that for all i ≥ k, NpXi is within
a Hausdorff distance δ of NpX for all p ∈ X.

To establish this claim note that, since by assumption X is disjoint
from the relative interior of its convex hull, there exists for every i, a
convex set Xi such that X i ⊂ conv(Xi), X i∩X = ∅, and dist(Xi, X) ≤
2/i. Further, after passing to a subsequence, we may assume that Xi ⊂
Xi+1. For every i, define fi : X → R by

fi(p) := distH

(
NpX, NpXi

)
.

Since p ∈ X and Xi ∩X = ∅, the mapping p 7→ NpX i is continuous, by
Lemma 5.1, with respect to the Hausdorff metric. Further, recall that,
again by Lemma 5.1, that if pk converges to p, then the limit of Npk

X
is a subset of NpX. Thus, fi is lower semicontinuous. Consequently,
since X is compact, fi achieves its supremum on X, i.e., there exists
pi ∈ X such that sup(fi) = fi(pi). But fi+1(pi+1) ≤ fi(pi+1), because
NpXi ⊂ NpXi+1 ⊂ NpX, since Xi ⊂ Xi+1 ⊂ conv(X). Thus, sup(fi)



TOTAL POSITIVE CURVATURE 139

is a decreasing sequence:

sup(fi+1) = fi+1(pi+1) ≤ fi(pi+1) ≤ sup(fi).

So, since sup(fi) > 0, limi→∞ sup(fi) exists. Since Xi → X, this limit
must be zero. This proves the claim, because, since X i ⊂ conv(Xi), we
have fi(p) ≥ distH

(
NpX, NpXi

)
.

Since σ is continuous, it follows that, for any δ > 0, NpX/σ is within
a (Hausdorff) distance δ of NpXi/σ for all p ∈ X, provided that i is
sufficiently large. This yields that NX/σ is within an arbitrarily small
δ distance of NXi/σ, once i is large.

Now, suppose towards a contradiction that the area of NX/σ is less
than cn−1/2. Then, the area of the complement of NX/σ is bigger than
cn−1/2. Since NX/σ is closed, its complement is open, and therefore,
the complement contains a compact subset, say A, whose area is also
bigger than cn−1/2. Since A is at a finite distance away from NX/σ,
by the above discussion, it is disjoint from NXi/σ as well once i is
sufficiently large; therefore, NXi/σ has area less than cn−1/2. But
since Xi is a finite set, by Proposition 4.2, the area of NXi/σ is at least
cn−1/2, and we have our contradiction.

Next, suppose that equality holds in (6). Then, choosing i large
enough, we can make sure that the area of NXi/σ is as close to cn−1/2
as desired. So, by Proposition 4.2, the upper bound for the width of Xi

becomes arbitrarily small as i grows large. But

width(X) ≤ width(Xi) +
2

i
.

So, we conclude that X lies in a hyperplane.
Finally, we show that for all p ∈ XE , σ(p) is orthogonal to the hy-

perplane, say Π, which contains X. To see this, suppose that Π is the
set of points in Rn whose nth coordinate is zero. Let en := (0, 0, . . . , 1)
denote the ‘north pole’ of Sn−1, and A ⊂ X be the set of points p where
〈σ(p), en〉 < 0. Define σ : X → Sn−1, by σ(p) = σ(p) if p ∈ X − A, and
let σ(p) be the reflection of σ(p) with respect to Π otherwise. Note that
NA/σ is the reflection of NA/σ with respect to Π. Thus,

area(NX/σ) = area(NX/σ) =
cn−1

2
.

Let u ∈ Hen and p be a maximum point of the height function 〈·, u〉.
Then, u ∈ NpX. So u ∈ NpX∩Hen . But σ(p) ∈ NpX∩Hen as well. This
yields that 〈u, σ(p)〉 ≥ 0, because, since X ⊂ Π, {en,−en} ⊂ Np(X);
consequently, either NpX = {en,−en} or Np(X) is a ‘lune’ with vertices
at en and e−n, i.e., NpX is the intersection of two (closed) hemispheres
the boundaries of which pass through en and −en. So, we conclude that
u ∈ NpX/σ, which yields

Hen ⊂ NX/σ.
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But area
(
NX/σ

)
= cn−1/2. So NX/σ ⊂ Hen except for a subset of

area 0. In particular, NXE/σ ⊂ Hen except for a subset of area 0. But
if there exists a point u ∈ NXE/σ such that u 6∈ Hen , then since Hen is
closed, σ is continuous, and NXE is dense in Sn−1, it follows that there
exists an open neighborhood U of u in NXE which is disjoint from Hen .
But almost every point of Sn−1 belongs to NXE , thus U has non-zero
area, which is a contradiction. So, it follows that

NXE/σ ⊂ Hen .

In particular, for all p ∈ XE , NpX/σ ⊂ Hen , which can happen only if
σ(p) = en. So, we conclude that, when equality holds in (6), σ(p) = ±en,
i.e., σ(p) is orthogonal to Π for all p ∈ XE .

Conversely, suppose that X lies in a hyperplane Π and σ(p) is orthog-
onal to Π for all p ∈ XE . Then, we claim the equality holds in (6). To
see this, first note that, by Lemma 5.2, area(NXE/σ) = area(NX/σ).
Let σ(p) := σ(p) if σ(p) = en, and σ(p) := −σ(p) otherwise. Then,
area(NXE/σ) = area(NXE/σ). Next, recall that, as we argued above,
NpX

E is a lune with vertices at ±en. Thus, NpX
E/σ(p) = NpX

E∩Hen .
So, NXE/σ = NXE ∩ Hen = Hen , which yields that area(NXE/σ) =
cn−1/2. q.e.d.

6. Proof of Theorem 1.1

6.1. The inequality. Let RNΣ denote the set of outward unit normals
to restricted support hyperplanes of Σ. By Lemma 5.2, almost every
element of RNΣ is an outward normal to a support hyperplane of Σ
which intersects Σ at a point of Σ+. Thus,

(7) τ+(Σ) ≥ area
(
RNΣ

)
.

By assumption, σ(p) ∈ Np∂Σ for all p ∈ ∂Σ. Thus, if u ∈ Np∂Σ/σ,
the height function 〈·, u〉 either has a maximum point in the interior of
Σ, or u ⊥ σ(p). In either case, u ∈ RNΣ, which yields that N∂Σ/σ ⊂
RNΣ.

Thus, by Proposition 5.3,

area
(
RNΣ

)
≥ area

(
N∂Σ/σ) ≥

cn−1

2
,(8)

which establishes inequality (1).

6.2. Necessary conditions for equality. Suppose that equality holds
in (1). We then show that the following conditions hold.

6.2.1. ∂Σ lies in a hyperplane. If equality holds in (1), then the last
two quantities in (8) are equal. So, by Proposition 5.3, ∂Σ lies in a
hyperplane Π.

For convenience, we assume from now on that Π is the hyperplane of
the first n−1 coordinates in Rn. In particular, Π is orthogonal to en :=
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(0, 0, . . . , 1), the ‘north pole’ of Sn−1. Further, we may assume that
Σ∩Π+ 6= ∅, where Π+ denotes the half-space where the nth coordinate
of points of Rn is non-negative.

6.2.2. Every restricted local support hyperplane of Σ at a point

of Σ+ is a restricted support hyperplane of Σ. Let A ⊂ Sn−1 be
the set of unit normals to restricted local support hyperplanes of Σ,
and A+ ⊂ A be the set of unit normals to restricted local support
hyperplanes of Σ at points of Σ+. It follows from Lemma 5.2 that
area(A − A+) = 0. In particular, every non-empty open subset of A+

has positive area. Now, let Ã+ be those elements of A+ which are

not unit normals to restricted support hyperplanes of Σ. Then, Ã+

is open in A+. So, if Ã+ 6= ∅, then area(Ã+) > 0. On the other
hand, if equality holds in (1), then it follows from (7) and (8) that

τ+(Σ) = area(RNΣ), which means that area(Ã+) = 0. So, we conclude

that Ã+ = ∅.

6.2.3. Σ ⊂ Π+. Let Σ′ be the reflection of Σ with respect to Π, and
σ′ be the inward conormal of ∂Σ′. Then if, for some p ∈ ∂Σ, σ(p)
lies in the ‘northern hemisphere’ Hen , σ′(p) must lie in the ‘southern
hemisphere’ H−en and vice versa. Suppose that there exists a support
hyperplane Π′ of Σ ∪ Σ′ at a point p ∈ ∂Σ = ∂Σ′. Let u be the
outward normal of Π′. Then, 〈σ(p), u〉 ≤ 0, and 〈σ′(p), u〉 ≤ 0. Now,
recall that σ(p), σ′(p), and u are all outward unit normals to support
hyperplanes of ∂Σ, i.e., they are elements of Np∂Σ. Further, since ∂Σ
is C1, has codimension 2, and lies in a hyperplane, Np∂Σ is half of
a great circle connecting the north and south poles of Sn−1. So, it
follows that 〈σ(p), u〉 = 0 = 〈σ′(p), u〉. Thus if a support hyperplane of
Σ∪Σ′ intersects a point of ∂Σ, then it is tangent to Σ. In other words,
every support hyperplane of Σ ∪ Σ′ is a restricted support hyperplane
of Σ or Σ′. So, τ+(bd conv(Σ ∪ Σ′)) = τ+(Σ ∪ Σ′). Consequently,
Σ+ ⊂ bd conv(Σ ∪ Σ′). So, Σ+ ∩ int conv Σ′ = ∅, because int conv Σ′ ⊂
int conv(Σ ∪ Σ′). This yields that S := bd conv Σ ∩ int conv Σ′ = ∅,
because otherwise S is a non-flat convex cap, and so it must have strictly
convex points. Thus, we conclude that conv Σ = conv Σ′, or int conv Σ∩
int conv Σ′ = ∅.

Suppose that conv Σ = conv Σ′. Then conv Σ is symmetric with
respect to Π. If there exists a point p ∈ ∂Σ ∩ bd conv Σ, let u be
the outward normal of ∂Σ at p in Π, and note that, since σ(p) ∈ Np∂Σ,
〈σ(p), u〉 ≥ 0. On the other hand, since conv Σ is symmetric with respect
to Π, u is an outward unit normal to a support hyperplane of conv Σ
at p, which yields 〈σ(p), u〉 ≤ 0. So, 〈σ(p), u〉 = 0. Thus, we conclude
that if p ∈ ∂Σ ∩ bd conv Σ, then any support hyperplane of Σ at p is
orthogonal to Π, and is therefore tangent to Σ at p. So, any support
hyperplane of bd conv Σ is a restricted support hyperplane of Σ. But
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since bd conv Σ is a closed surface, τ+(bd conv Σ) ≥ cn−1, whereas, by
assumption, τ+(Σ) = cn−1/2. Hence, we have a contradiction.

So, we conclude that int conv Σ ∩ int conv Σ′ = ∅, which yields that
Σ lies on one side of Π. In particular, since by assumption a point of Σ
lies in Π+, we have Σ ⊂ Π+.

6.2.4. Σ ∩Π = ∂Σ and σ(p) ⊥ Π. Let Σ be the closure of bd conv Σ ∩
int Π+. Then, since Σ lies on one side of Π, ∂Σ = bd conv ∂Σ. Let σ
be the inward unit normal of ∂Σ, and Π′ be the support hyperplane
of Σ which passes through a point p ∈ ∂Σ and contains σ(p). Then,
since Π ∩ Π′ is a support hyperplane of ∂Σ as a subset of Π, and ∂Σ =
bd conv ∂Σ, Π′ must contain an extreme point q of conv ∂Σ, i.e., a point
which does not lie in the relative interior of any line segment of conv ∂Σ.
This is due to the general fact that any support hyperplane of a convex
body contains an extreme point of that body (which is proved easily
by induction on the dimension of C). By Carathéodory’s theorem [18,
Theorem 1.1.4], every point of conv ∂Σ lies in a simplex with vertices
on Σ. Thus, any extreme point of conv ∂Σ must belong to ∂Σ. In
particular, q ∈ ∂Σ. But by Straszewicz’s theorem [18, Theorem 1.4.7],
each extreme point of conv ∂Σ is a limit of its exposed points (which
again must be elements of ∂Σ, since each exposed point is extreme).
Further, by Proposition 5.3 and since Σ ⊂ Π+, σ = en at exposed
points of ∂Σ. So, since σ is continuous, it follows that σ(q) = en.
Since Π′ supports Σ at q, it follows then that 〈u, en〉 ≤ 0, where u is
the outward unit normal to Π′. This yields that Hen ⊂ RNΣ. But
RNΣ ⊂ RNΣ, and recall that area(RNΣ) = τ+(Σ) = cn−1/2. Thus
RNΣ = Hen , which yields that σ is orthogonal to Π. Further, RNΣ =
Hen , which yields that Σ ∩ Π = ∂Σ. Thus, every point of ∂Σ which
lies on bd conv ∂Σ is a point of ∂Σ. So σ(p) = en at all such points.
This completes the proof because if a point of ∂Σ lies in int conv ∂Σ,
then, since σ is by assumption an outward normal of ∂Σ, it follows that
σ(p) = en.

6.3. Sufficient conditions for equality. Suppose that the conditions,
we established above hold. Let Σ′ be the reflection of Σ with respect
to Π. Then at each locally strictly convex point of Σ ∪ Σ′, every local
support hyperplane of Σ ∪ Σ′ is a support hyperplane of Σ ∪ Σ′. Thus

2 τ+(Σ) = τ+(Σ ∪ Σ′) = area
(
N(Σ ∪ Σ′)

)
= cn−1,

which completes the proof. q.e.d.

Appendix: Analytic Proof of Inequality (1) When ∂Σ is C2

Let

U∂Σ :=
{

(p, u) | p ∈ ∂Σ, u ∈ Sn−1, u ⊥ Tp∂Σ
}
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denote the unit normal bundle of ∂Σ, and ν : U∂Σ → Sn−1, given by

ν(p, u) := u,

be its Gauss map. Define I ⊂ J ⊂ U∂Σ by

I :=
{

(p, u) ∈ U∂Σ | 〈x − p, u〉 ≤ 0, ∀x ∈ Σ
}
,

J :=
{

(p, u) ∈ U∂Σ | 〈x − p, u〉 ≤ 0, ∀x ∈ ∂Σ
}
.

Note that if (p, u) ∈ J − I, then the height function x 7→ 〈x − p, u〉
achieves its maximum in the interior of Σ, and thus, Σ has a restricted
support hyperplane with outward normal u. Hence,

τ+(Σ) ≥ area ν(J − I),

since almost every support hyperplane of Σ intersects Σ at a single point
[18, Theorem 2.2.9]. So to prove (1) it suffices to show that

(9) area ν(J − I) ≥
cn−1

2
.

To this end, note that, since, again by [18, Theorem 2.2.9], almost every
element of ν(I − J) has multiplicity one,

area ν(J − I) =

∫

J−I

Jac ν =

∫

J

Jac ν −

∫

I

Jac ν,

where Jac ν denotes the Jacobian of ν, which may be defined as the
pull back via ν of the volume element of Sn−1. Further, note that,
since every unit vector u ∈ Sn−1 is the outward normal to some support
hyperplane of ∂Σ,

∫

J

Jac ν = area ν(J) = cn−1.

Thus, to establish (9), it suffices to show that
∫

I

Jac ν ≤
1

2

∫

J

Jac ν.

In particular, if Ip and Jp denote the fibers of I and J respectively, then,
by Fubini’s theorem, it suffices to show that

(10)

∫

Ip

Jac ν ≤
1

2

∫

Jp

Jac ν,

for all p ∈ ∂Σ.
The above inequality is trivially satisfied whenever Ip = ∅ or ν(Ip)

consists only of a pair of antipodal points of Sn−1. Thus, by Lemma
4.1, we may assume that Ip is non-empty and connected, which in turn
yields that Jp is non-empty and connected as well.
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For every u ∈ Sn−1, let hu : ∂Σ → Sn−1 be the height function given
by

hu(p) := 〈p, u〉.

Then, we have the following well-known identity

Jac ν(p,u) =
∣∣ det(Hess hu)p

∣∣,

where (Hess hu)p : Tp∂Σ×Tp∂Σ → R denotes the Hessian of hu at p. (To
see this one may note that U∂Σ can be identified with a hypersurface
U∂Σ of Rn via the endpoint map (p, u) 7→ p+u. Then, the Gauss map ν
of U∂Σ, is given by ν(p + u) := u = ν(p, u). Consequently, Jac ν(p,u) =
Jac νp+u = |det(IIp+u)|, where IIp+u is the second fundamental form

of U∂Σ at p + u. But IIp+u = (Hess hu)p+u, where hu : U∂Σ → R is

the height function hu(p + u) := 〈p + u, u〉. In particular, hu(p + u) =
hu(p) + 1, which yields that det(Hesshu)p+u = det(Hess hu)p.)

Next, let σ⊥(p) be a unit normal vector of ∂Σ at p which is orthogonal
to σ(p), and is chosen so that the function 〈x− p, σ⊥(p)〉 is positive for
some x ∈ Σ or vanishes for all x ∈ Σ. For θ ∈ [−π, π], define

u(θ) := cos θ σ(p) + sin θ σ⊥(p), and Hθ := (Hess hu(θ))p.

Then, since ‖∂u/∂θ‖ = 1, the change of variables formula allows us to
rewrite (10) as

∫ θ1

θ0

|det(Hθ)| dθ ≤
1

2

∫ φ1

φ0

|det(Hθ)| dθ,

where [θ0, θ1] ⊂ [φ0, φ1] ⊂ [−π, π], and u([θ0, θ1]) = ν(Ip), u([φ0, φ1]) =
ν(Jp).

Note that if u ∈ ν(Ip), then 〈u, σ(p)〉 and 〈u, σ⊥(p)〉 must both be
non-positive. Thus, [θ0, θ1] ⊂ [−π,−π

2 ]. Further, since 0 ∈ [φ0, φ1], it
follows that [θ0, 0] ⊂ [φ0, φ1]. Hence, to prove the above inequality, it is
enough to show that

(11)

∫
−

π
2

θ0

|det(Hθ)| dθ ≤

∫ 0

−
π
2

|det(Hθ)| dθ.

To this end, note that for any tangent vectors Xp, Yp ∈ Tp∂Σ, with
local extensions X, Y ,

Hθ(Xp, Yp) = Xp

(
Y hu(θ)

)
=

〈
DXp

Y, u(θ)
〉

= cos θ
〈
DXp

Y, u(0)
〉

+ sin θ
〈
DXp

Y, u
(π

2

)〉

= cos θ H0(Xp, Yp) + sin θ Hπ
2
(Xp, Yp),

where D denotes the standard covariant derivative, or Levi–Civita con-
nection on Rn.
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Also note that H0 is negative semidefinite because by assumption
u(0) = σ(p) ∈ ν(Jp). Further, since θ0 ∈ [−π,−π

2 ] ∩ [φ0, φ1], and
0 ∈ [φ0, φ1], it follows that −π

2 ∈ [φ0, φ1]. So u(−π
2 ) ∈ ν(Jp), which

yields that Hπ
2

is positive semidefinite. For any θ ∈ [−π,−π
2 ], let θ′ :=

−π − θ ∈ [−π
2 , 0]. Then, cos θ′ = − cos θ < 0, and sin θ′ = sin θ < 0.

Thus,

−Hθ′(Xp, Xp) ≥ −Hθ(Xp, Xp).

Hence, the eigenvalues of −Hθ′ are bigger than or equal to those of −Hθ.
But for all θ ∈ [θ0,−

π
2 ], Hθ and Hθ′ are both negative semidefinite,

because u(θ), u(θ′) ∈ ν(Ip). So −Hθ and −Hθ′ are positive semidefinite.
Consequently,

|det(Hθ′)| = det(−Hθ′) ≥ det(−Hθ) = |det(Hθ)|,

which yields that

(12)

∫
−

π
2

θ0

|det(Hθ)| dθ ≤

∫ θ′
0

−
π
2

|det(Hθ)| dθ.

Since θ′0 ≤ 0, this yields (11), which in turn completes the proof of (1).
Now, suppose that equality holds in (1), then equality holds in the

above inequalities. In particular, equalities hold in (11) and (12), which
yields ∫ θ′

0

−
π
2

|det(Hθ)| dθ =

∫ 0

−
π
2

|det(Hθ)| dθ.

So, we conclude ∫ 0

θ′
0

|det(Hθ)| dθ = 0.

This implies that (Hess hu(θ))p ≡ 0 for all θ′0(p) ≤ θ ≤ 0, as p ranges
over ∂Σ. But it is a well-known consequence of Sard’s theorem that hu

is a Morse function [6], i.e., it has non-degenerate Hessian, for almost
all u ∈ Sn−1. So, we must have θ′0 = 0, which yields that θ0 = −π, for
some p. So u(−π) ∈ ν(Jp). But −u(−π) = u(0) = σ(p) ∈ ν(Jp) as well.
Hence, ∂Σ lies in a hyperplane. q.e.d.

Note 6.1. If ∂Σ is a C3 closed curve with non-vanishing curvature,
and γ : R → ∂Σ is a unit parametrization of ∂Σ, then its unit normals
may be parametrized by

ν(t, θ) := − cos θ N(t) + sin θ B(t),

where N(t) and B(t) are, respectively, the principal normal and binor-
mal vectors of ∂Σ at γ(t). A computation, using Frenet–Serret formulas,
shows that

Jac ν(t,θ) =

∣∣∣∣
∂n

∂t
×

∂n

∂θ

∣∣∣∣ = κ(t) | cos θ|,
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where κ is the curvature of ∂Σ. Then, the observation that −N(t) lies
in ν(Jγ(t)) − ν(Iγ(t)) yields a quicker proof of (10).
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