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Most histories of the isoperimetric problem begin with its legendary origins in the ”Problem
of Queen Dido” about 800 B.C. In Vergil’s Aeneid there is a reference to the story in ques-
tion. Dido, fleeing from the Phoenician city of Tyre ruled by King Pygmalion, her tyrannical
brother, and arriving at the site that was to become Carthage, sought to purchase land from
the natives. They asserted that they would sell only as much ground as she could surround
with a bull’s hide. She accepted the terms and made the most of them by cutting a bull’s
hide into narrow strips which she pieced together to form a single, very long strip. Then, by
sheer intuition, she reasoned that the maximum area could be encompassed by shaping the
strip into the circumference of a circle. Thus she was able to lead a comfortable life in the big
land. But her peaceful life did not last long; King Pygmalion, ever wanting more power and
land, invaded Carthage. Queen Dido was forced to flee again. This time she decided to move
to the wonderland, where the natives inhabit a minimal surface. There she purchased land
surrounded by the same strip that she had used in Carthage. And Queen Dido asked herself
whether her land in the wonderland was bigger than that in Carthage......

A rigorous mathematical proof that Dido made the optimum choice in Carthage was not
achieved until the nineteenth century [St]. But her question that was raised in the wonderland
has not been completely settled yet. This survey note concerns Queen Dido’s new problem and
will summarize the results so far obtained.

1. Hélein’s proof
Let us begin with a proof of the original problem of Dido. There are numerous proofs for the
problem; among these we will introduce the most recent one given by Helein [H] in 1994. Queen
Dido’s characterization of the circle is most succinctly expressed in the isoperimetric inequality

4πA ≤ L2, (1)

where A is the area enclosed by a curve C of length L, and where equality holds if and only if
C is a circle. In fact, there are equivalent isoperimetric inequalities for curves on a sphere and
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a hyperbolic plane whose Gaussian curvatures are +1 and −1, respectively:

4πA ≤ L2 + KA2 (2)

for a curve C on a surface with constant Gaussian curvature K.

Helein’s proof uses a calibration argument which works for all constant K in (2).

Proof of (2). Let D be the domain enclosed by a smooth curve C on a surface with constant
Gaussian curvature K. (x, y) denotes a point in D × ∂D. For fixed y ∈ ∂D, cover D with the
set of all circular arcs emanating from y and perpendicular to ∂D at y. Let V (x, y) be the unit
tangent vector to the arc pointing away from y. Then V (x, y) is a unit vector field on D× ∂D.
One can easily compute

divV =
1 + f ′(r)

f(r)
< ν,∇r > (3)

where ν is the unit inward normal to ∂D at y, r = dist(x, y), and f(r) = r, sin r, sinh r if
K = 0,+1,−1, respectively. Moreover one can show that if r = dist(x, z), x, z ∈ D, then

div
1 + f ′(r)

f(r)
∇r = 4πδx −K, (4)

where δx is the Dirac function centered at x. Let ω, dl be the volume forms of D, ∂D, respec-
tively. Then we have a two-form α = V ω ∧ dl such that

dα = divV ω ∧ dl =
1 + f ′(r)

f(r)
< ν,∇r > ω ∧ dl.

Therefore
∫

D×∂D
dα =

∫

D

(∫

∂D

1 + f ′(r)
f(r)

< ν,∇r > dl
)

ω =
∫

D

(∫

D
d

(

1 + f ′(r)
f(r)

∇r ω
))

ω

=
∫

D

(∫

D
div

(

1 + f ′(r)
f(r)

∇r
)

ω
)

ω =
∫

D

(∫

D
(4πδx −K)ω

)

ω

=
∫

D
(4π −KA)ω = 4πA−KA2.

On the other hand
∫

D×∂D
dα =

∫

∂D×∂D
α ≤

∫

∂D×∂D
dl ∧ dl = L2.

Thus we get (2).

2. Li-Schoen-Yau’s proof.
A minimal surface, being a locally least area surface, can be said to be a generalized plane.
For this reason it is natural to conjecture that the isoperimetric inequality (2) should hold for
domains in a minimal surface in a simply connected space form. The first partial proof for
a minimal surface in Rn was obtained by Carleman in 1921 [Ca]. He proved the inequality
for a simply connected minimal surface. Then in 1959 Reid [R] and Hsiung [Hs] proved it for
a minimal surface with connected boundary, and in 1975 a proof was obtained by Osserman-
Schiffer for a doubly connected minimal surface in R3, and in 1977 by Feinberg [F] for a doubly
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connected minimal surface in Rn. Then in 1983 Li-Schoen-Yau proved (1) for a minimal surface
with two boundary components in R3. Since Li-Schoen-Yau’s theorem extends all the previous
theorems except Feinberg’s, let us briefly introduce their proof.

Fix a point p ∈ Rn and define r(x) = dist(p, x). Since rectangular coordinate functions
x1, ..., xn of Rn are harmonic on a minimal surface Σ2 ⊂ Rn we have on Σ

4r2 = 4, (5)

where we take p as the origin. Translating Σ suitably, we may assume
∫

∂Σ xi = 0. Then

4Area(Σ) =
∫

Σ
4r2 =

∫

∂Σ
2r

∂r
∂ν

(ν: the outward unit conormal to ∂Σ)

≤ 2
∫

∂Σ
r ≤ 2Length(∂Σ)1/2

(∫

∂Σ

∑

x2
i

)1/2

≤ 1
π

Length(∂Σ)3/2

[

∫

∂Σ

∑

(

dxi

ds

)2
]1/2

(by the Poincaré inequality)

=
1
π

Length(∂Σ)2, (because
∑

(

dxi

ds

)2
= 1)

which proves (1) when ∂Σ is connected. In case ∂Σ is not connected, Li-Schoen-Yau assumed
that for any i = 1, ..., n the components of ∂Σ can be assembled together to become a connected
curve Ci after translations parallel to the hyperplane {xi = 0} of Rn. They called such ∂Σ
weakly connected. Under this assumption one has

∫

∂Σ
x2

i =
∫

Ci

x2
i ≤ 1

2π
Length(Ci)

∫

Ci

(

dxi

ds

)2
(by the Poincaré inequality)

=
1
2π

Length(∂Σ)
∫

∂Σ

(

dxi

ds

)2
.

Adding up this inequality for all i = 1, ..., n, one gets (1) as above. Equivalently, ∂Σ is said
to be weakly connected if there exists a rectangular coordinate system {y1, ..., yn} of Rn such
that no hyperplane {yi = const} in Rn separates ∂Σ. And they proved that given a minimal
surface Σ in R3 ∂Σ is weakly connected if ∂Σ has two components.

3. Proof by comparisons of area and angle
The author extended Li-Schoen-Yau’s theorem by taking a more geometric point of view [C1].
In their proof they used the inequality ∂r

∂ν ≤ 1. But if η is the unit normal to ∂Σ which makes
the smallest angle with ∇r, then

∂r
∂ν

≤ ∂r
∂η

≤ 1.

In fact, η is the outward unit conormal to ∂Σ on the cone p××∂Σ, the union of the line segments
from p to the points of ∂Σ. Although p××∂Σ is not minimal the identity 4r2 = 4 holds there
too because

4r2 = 4 + 2 < X,4X > = 4 + 2 < X, ~H > = 4,

where X is the coordinate vector and ~H is the mean curvature vector of p××∂Σ. Therefore

4Area(Σ) =
∫

Σ
4r2 =

∫

∂Σ
2r

∂r
∂ν

≤
∫

∂Σ
2r

∂r
∂η

=
∫

p××∂Σ
4r2 = 4Area(p××∂Σ),
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which gives an area comparison between Σ and p××∂Σ. A nice thing about the cone p××∂Σ is
that p××∂Σ is flat and hence is locally developable. If ∂Σ is connected, cut along a line segment
l from p to a point in ∂Σ and then one can develop p××∂Σ into a cone O××C on a plane. O××C
has the same area as p××∂Σ and C has the same length as ∂Σ. C may not be a closed curve.
But to make it closed one takes p ∈ Σ and then on Σ one can show

4 log r ≥ 2πδp.

Hence
2π ≤

∫

Σ
4 log r =

∫

∂Σ

1
r

∂r
∂ν

≤
∫

∂Σ

1
r

∂r
∂η

= Angle(∂Σ, p),

where Angle(∂Σ, p) is the angle of ∂Σ viewed from p. This angle estimate implies that ∂Σ
rotates around p more than 360◦ and consequently C should intersect itself. Then cutting
O××C into two pieces and assemblying them appropriately gives rise to a new domain D ⊂ R2

with

Area(D) ≥ Area(O××C) ≥ Area(Σ), Length(∂D) = Length(C) = Length(∂Σ).

Therefore the isoperimetric inequality for D gives (1) for Σ. So far ∂Σ has been assumed to
be connected. But if ∂Σ is radially connected from p, that is, if {r : r = dist(p, q), q ∈ ∂Σ}
is a connected interval, then we can apply the argument of ”cutting and inserting” as well as
”cutting and assemblying” to obtain the desired domain D and hence to prove (1) for such
Σ. See [C1, Theorem 1] for more details. Although there is no relationship between radial
connectivity and weak connectivity, we have a stronger corollary than Li-Schoen-Yau’s: if Σ is
in Rn such that ∂Σ has two components then from a point in Σ which is a midpoint between
the two components, ∂Σ is radially connected and hence (1) holds for such Σ.

The author and Gulliver [CG1, 2] investigated the possibility of extending the geometric
method above to minimal surfaces Σ in Sn and Hn. They showed that the area comparison
Area(Σ) ≤ Area(p××∂Σ) does hold for Σ ⊂ Hn but not for Σ ⊂ Sn [CG1, Proposition 2,
Remark 1] whereas the angle estimate Angle(∂Σ, p) ≥ 2π holds for Σ in Sn as well as in Hn

[CG2, Proposition 2]. And they proved the isoperimetric inequality

4πA ≤ L2 −A2

for a minimal surface Σ ⊂ Hn whose boundary is radially connected from a point of Σ. They
did not employ the aforementioned cutting and inserting argument; instead, they used Bol’s
isoperimetric inequality directly for p××∂Σ [B].

Some minimal surfaces in R3, like compound soap films, contain singular curves. They
are not smooth (although smooth almost everywhere) and in some literature they are called
stationary varifolds or area minimizing currents. Here one can ask whether the isoperimetric
inequality (1) holds also for these surfaces with singularities. In [C2] the author gave an
affirmative answer; moreover he derived a new type of optimal isoperimetric inequality for
certain types of soap films with singularities.
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4. The ambient space of varying curvature
So far we have considered minimal surfaces in a Riemannian manifold M̄ of constant curvature.
In this section let us extend the results of the preceding section to minimal surfaces in a manifold
M of varying curvature. The main obstacle to this extension is that one cannot prove the area
comparison

Area(Σ) ≤ Area(p××∂Σ)

for Σ and p××∂Σ in M . But we will get around this difficulty by comparing the area of Σ ⊂ M
with that of a cone in M̄ associated with p××∂Σ.

When we study a Riemannian manifold of varying curvature the comparison theorems
are very useful tools. Among several comparison theorems the one that we need most for our
purposes is the Hessian comparison theorem for the distances in M and in M̄ . From this
comparison we can get the following lemmas on the Laplacian of some functions of distance.
(See [C3] for their proofs.)

Lemma 1. Let Σ2 be a minimal surface in a simply connected Riemannian manifold M of
sectional curvature bounded above by a constant K. Define r(x) = dist(p, x) for fixed p ∈ M .
If K = 0, we have on Σ
(a) 4r2 ≥ 4;
(b) 4r ≥ 1

r (2− |∇r|2);
(c) 4 log r ≥ 2πδp if p ∈ Σ.
If K = −k2 < 0, then
(d) 4r ≥ k(2− |∇r|2) coth kr;
(e) 4 log(1 + cosh kr) ≥ −K;
(f) 4 log sinh kr

1+cosh kr ≥ 2πδp if p ∈ Σ;
(g) 4 log sinh kr ≥ 2πδp −K if p ∈ Σ.
If K = k2 > 0, then
(h) 4r ≥ k(2− |∇r|2) cot kr;
(i) 4 log sin kr ≥ 2πδp −K if p ∈ Σ and r ≤ π

2k ;
(j) 4 log sin kr

1+cos kr ≥ 2πδp if p ∈ Σ and r ≤ π
2k .

Lemma 2. Let Γ = p̄××C be the cone from p̄ over a curve C in a Riemannian manifold M̄ of
nonpositive constant sectional curvature K = −k2. Then on Γ
(a) 4r̄2 = 4 if K = 0; 4 log(1 + cosh kr̄) = −K if K < 0;
(b) 4 log r̄ = αδp̄ if K = 0; 4 log sinh kr̄

1+cosh kr̄ = αδp̄ if K < 0,
where α = Angle(C, p̄).

Now we have the main theorem as follows.

Theorem 1. Let Σ be a minimal surface in a complete simply connected Riemannian manifold
M with sectional curvature bounded above by a nonpositive constant K. If ∂Σ is radially
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connected from a point of Σ, then Σ satisfies the isoperimetric inequality

4πA ≤ L2 + KA2,

where equality holds if and only if Σ is a geodesic disk in a surface of constant Gaussian
curvature K.

Sketchy Proof. First, suppose K < 0. Integrate Lemma 1(e) to get

−KArea(Σ) ≤
∫

Σ
4 log(1 + cosh kr) =

∫

∂Σ

k sinh kr
1 + cosh kr

∂r
∂ν

≤
∫

∂Σ

k sinh kr
1 + cosh kr

∂r
∂η

(6)

=
∫

∂Σ

k sinh kr
1 + cosh kr

√

1− < ∇r, τ >2, (7)

where ν, η are as in the preceding section and τ is a unit tangent to ∂Σ. Now the key step in
the extension to the variable curvature case is to carry the integral in (7) over to the simply
connected space form M̄ of curvature K. Let C1, ..., Cl be the components of ∂Σ. Fix p̄ ∈ M̄ ,
define r̄(y) = dist(p̄, y), y ∈ M̄ , and choose qi ∈ Ci for each i = 1, ..., l. Then choose q̄1, ..., q̄l ∈
M̄ in such a way that r(qi) = r̄(q̄i). Suppose that each curve Ci is parametrized by ci(s) with
arclength parameter s such that qi = ci(0) = ci(λi), λi = Length(Ci). Then we construct a
curve C̄i in M̄ starting from q̄i and parametrized by c̄i(s) with arclength parameter s ∈ [0, λi]
and c̄i(0) = q̄i such that the unit tangent vector c̄′i(s) makes an angle of cos−1 < ∇r, c′i(s) >
with ∇r̄. Of course the curve C̄i is not unique; but given a two-dimensional infinite cone p̄××C
containing q̄i, one can uniquely determine a curve C̄i on p̄××C with the prescribed properties.
Since p̄××C is developable, one can also assume without loss of generality that c̄i(0) = c̄i(λi),
or equivalently, C̄i is closed. Anyhow, r on Ci coincides with r̄ on C̄i in the sense that

r(ci(s)) = r̄(c̄i(s)) and < ∇r, c′i(s) > = < ∇r̄, c̄′i(s) > .

Hence

−KArea(Σ) ≤
l

∑

i=1

∫

Ci

k sinh kr
1 + cosh kr

√

1− < ∇r, c′i(s) >2

=
l

∑

i=1

∫

C̄i

k sinh kr̄
1 + cosh kr̄

√

1− < ∇r̄, c̄′i(s) >2.

If η̄ is the outward unit conormal to C̄i on p̄××C̄i, then

Area(Σ) ≤ − 1
K

l
∑

i=1

∫

C̄i

k sinh kr̄
1 + cosh kr̄

∂r̄
∂η̄

=
l

∑

i=1

∫

p̄××C̄i

1
−K

4 log(1 + cosh kr̄)

=
l

∑

i=1

Area(p̄××C̄i) (by Lemma 2(a))

= Area(p̄××C̄), C̄ =
l

⋃

i=1

C̄i.

Also it follows from the definition of C̄i that

Length(∂Σ) = Length(C̄).

6



Similarly, integrating Lemma 1(f) over Σ and using Lemma 2(b) as above, we get

2π ≤ Angle(C̄, p̄).

Moreover, since r|∂Σ coincides with r̄|C̄ , C̄ is also radially connected from p̄. Hence by [CG1,
Lemma 4] we get

4πArea(p̄××C̄) ≤ Length(C̄)2 + KArea(p̄××C̄)2.

Therefore using the comparisons of area and angle obtained above and the monotonicity of the
quadratic function 4πA −KA2 of A > 0, we obtain the desired isoperimetric inequality for Σ
in case K < 0.

Second, suppose K = 0. Lemma 1(a) and Lemma 2(a) imply

Area(Σ) ≤ Area(p̄××C̄),

and Lemma 1(c) and Lemma 2(b) imply

2π ≤ Angle(C̄, p̄).

Thus the theorem follows from [C1].

5. Weak isoperimetric inequality
It would be beautiful if Hélein’s argument could work out well for minimal surfaces as well.
But various attempts made by the author with that wish have ended up with no results as yet.
In this section, instead, we will exploit Simon’s argument which resembles Hélein’s (see [CG2,
p.181]), and obtain an isoperimetric inequality, though not sharp, which holds for all minimal
surfaces without any connectivity assumption.

Theorem 2. Let Σ2 be a minimal surface in a complete simply connected Riemannian manifold
with sectional curvature bounded above by a constant K. If K ≤ 0, then

2πA ≤ L2 + KA2. (8)

In case K > 0, (8) holds under the additional assumption diam(Σ) ≤ π
2
√

K
.

Proof. i) K = −k2 < 0. Integrating Lemma 1(g) for fixed p ∈ Σ, we get

2π −KA ≤
∫

Σ
4 log sinh kr ≤

∫

∂Σ
k coth kr. (9)

Since (9) holds for all p ∈ Σ we can integrate it over Σ and apply Fubini’s theorem to obtain

2πA−KA2 ≤
∫

Σ

∫

∂Σ
k coth kr =

∫

∂Σ

∫

Σ
k coth kr

≤
∫

∂Σ

∫

Σ
4r (by Lemma 1(d))

=
∫

∂Σ

∫

∂Σ

∂r
∂ν

≤ L2.

ii) K = 0. Integrate Lemma 1(c) twice and apply Lemma 1(b) as in i).
iii) K > 0. Integrate Lemma 1(i) twice and apply Lemma 1(h).

7



References

[B] G. Bol, Isoperimetrische Ungleichung für Bereiche auf Flächen, Jber. Deutsch. Math.-
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[He] F. Hélein, Isoperimetric inequalities and calibrations, preprint.

[Hs] C. C. Hsiung, Isoperimetric inequalities for two-dimensional Riemannian manifolds with
boundary, Ann. of Math. (2) 73(1961), 213–220.

[OS] R. Osserman and M. Schiffer, Doubly connected minimal surfaces, Arch. Rational Mech.
Anal. 58(1975), 285-307.

[R] W. T. Reid, The isoperimetric inequality and associated boundary problems, J. Math. Mech.
8(1959), 897–906.

[St] J. Steiner, Sur le maximum et le minimum des figures dans le plan sur la sphère et dans
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