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COMPLETE MINIMAL SURFACES OF FINITE TOPOLOGY IN

THE DOUBLED SCHWARZSCHILD 3-MANIFOLD

JAIGYOUNG CHOE, JAEHOON LEE, AND EUNGBEOM YEON

Abstract. We construct a complete embedded minimal surface with arbitrary
genus in the doubled Schwarzschild 3-manifold. A classical desingularization
method is used for the construction.

1. Introduction

The Schwarzschild manifold is a solution to the Einstein equation, representing an
important example of asymptotically flat manifolds. Throughout history, intensive
research on minimal submanifolds in these manifolds has yielded significant results in
geometry, including the positive mass theorem. Hence, investigating various types
of minimal submanifolds in asymptotically flat manifolds is of great importance.
However, only a limited number of examples are currently known, and in particu-
lar, no complete minimal surfaces with positive genus have been discovered in the
(doubled) Schwarzschild 3-manifold.

In this paper, we present the construction of new complete embedded minimal

surfaces in the doubled Schwarzschild 3-manifold M̂ with arbitrary genus:

Main Theorem (Theorem 6.1). For each integer τ ≥ 1, there exists a complete

embedded minimal surface Στ ⊂ M̂ of genus τ . Στ has finite total curvature and
quadratic area growth, and is asymptotic to a totally geodesic plane.

The key idea in our construction is to desingularize the union of the horizon
and the totally geodesic plane along the intersection curve using an appropriate

reflection method in M̂ . This desingularization technique has been utilized in various
studies ([5, 9, 10, 11]). It is very interesting to compare our existence result with
some non-existence results in the Schwarzschild 3-manifold recorded in the literature
([4, 6, 7, 14]).

This paper is organized as follows. Section 2 provides historical remarks on the
subject, along with fundamental facts about the doubled Schwarzschild 3-manifold.
In Section 3, we discuss the geometric details of the area-minimizing disk, offering
insights into the solution of Plateau’s problem for the given contour. Section 4
focuses on the curvature estimate of the area-minimizing disk, while the focus shifts
to the limit behavior in Section 5. Finally, in Section 6, we construct the desired
surfaces by patching together isometric copies of the limit surface.
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2. Preliminaries

2.1. Historical remarks. The Riemannian Schwarzschild manifold has been ex-
tensively studied throughout history as it represents a solution to the Einstein field
equation. Mathematically, the Riemannian Schwarzschild manifold (Mn, gnsch) is
defined as follows:

Mn =

{
x ∈ R

n : |x| ≥
(m
2

) 1

n−2

}
, gnSch =

(
1 +

m

2|x|n−2

) 4

n−2

gRn .

This manifold exhibits spherical symmetry and shows an asymptotically flat behav-
ior at infinity. The boundary of the manifold, known as the horizon, is a totally
geodesic hypersurface in Mn.

The significance of minimal submanifolds in asymptotically flat manifolds was
initially recognized in the pioneering work of Schoen and Yau [14]. They proved
that asymptotically planar stable minimal hypersurfaces cannot exist in asymptot-
ically Schwarzschildean manifolds. This result played a crucial role in establishing
the well-known positive mass theorem, which has greatly influenced subsequent re-
search. In [4], the author further generalized the result to show the non-existence
of complete stable properly embedded minimal hypersurfaces in asymptotically flat
manifolds. Naturally, these non-existence results raise the question of what kinds of
minimal submanifolds would exist in Mn. As a matter of fact, examples of minimal
submanifolds in Mn are very rare in general.

Considering a 2-dimensional complete embedded minimal end in Mn with finite
total curvature and quadratic area growth, the result of [2] implies that it must either
be bounded or has a logarithmic growth. This leads to the intriguing question of
whether complete minimal surfaces with such ends can exist. In [7], non-existence
results for minimal surfaces in asymptotically Schwarzschildean 3-manifolds were
given in this regard. The authors demonstrated that no minimal surfaces, perturb-
ing the Euclidean catenoid, exists in asymptotically Schwarzschildean 3-manifolds.
Furthermore, [6] established that any slab bounded by complete minimal surfaces in
an asymptotically flat 3-manifold must be a Euclidean slab if the manifold possesses
the horizon and non-negative scalar curvature. These results consistently show that
the presence of the horizon poses a substantial obstacle to the existence of complete
minimal examples. However, in the absence of the horizon, complete minimal planes
were obtained in [8].

Given that the horizon obstructs the existence of minimal surfaces, it is worth-
while to consider the doubled Schwarzschild 3-manifold without a boundary, which
can be obtained by the inversion with respect to the horizon. In [3], Brendle showed
the existence of a minimal sphere near the horizon. Additionally, as the inversion
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across the horizon is an isometry, examples of free boundary minimal surfaces with
their boundaries supported on the horizon are closely related. Nonetheless, to date,
no information has been provided regarding the existence of minimal surfaces with
arbitrary genus.

2.2. Doubled Schwarzschild manifolds. Consider the Riemannian manifold M̂ =

R
3\{(0, 0, 0)} equipped with the metric ĝ :=

(
1 + m

2|x|

)4
gR3 , where gR3 denotes the

Euclidean metric and | · | represents the Euclidean norm. Let us define a map

I : M̂ → M̂ given by

I(x) =
(m
2

)2
·
x

|x|2
, ∀x ∈ R

3\{(0, 0, 0)},

which is an inversion with respect to the Euclidean sphere
{
x ∈ R

3 : |x| = m
2

}
. It can

be shown that I induces an isometry of M̂ by exploiting its conformal properties in
Euclidean space. Specifically, I is conformal in Euclidean space with the conformal

factor
(
m
2

)4 1
|x|4

and satisfies the relation

(
1 +

m

2 |I(x)|

)4

·
(m
2

)4 1

|x|4
=

(
1 +

m

2|x|

)4

.

Furthermore, the Riemannian Schwarzschild 3-manifold (M,g) can be defined as

M =
{
x ∈ R

3 : |x| ≥ m
2

}
, g =

(
1 + m

2|x|

)4
gR3 ,

and we can express as the union M̂ = M ∪ I(M). Thus, it is appropriate to refer

to M̂ as the doubled Schwarzschild 3-manifold.
Within M , there exist certain totally geodesic surfaces as fixed point sets under

isometries, namely:

- The horizon ∂M3 =
{
x ∈ R

n : |x| = m
2

}
.

- Planes passing through the origin.

It can be proven that these are the only totally geodesic surfaces in M̂ . In fact,

a surface being totally geodesic in M̂ implies it is totally umbilic in Euclidean
space, thus belonging to either a sphere or a plane. Among spheres and planes,
it can be observed that only the horizon and planes passing through the origin

are totally geodesic in the doubled Schwarzschild 3-manifold. As the metric on M̂
possesses radial symmetry, reflections along totally geodesic planes can be regarded

as isometries in M̂ and will be extensively utilized throughout this paper. Although
minor modifications in the conformal factor would lead to the doubled Schwarzschild
n-manifold, we confine our discussion to the 3-dimensional case.

3. Geometric properties of the area-minimizing disk

We consider a particular contour Γθ,R (θ ∈ (0, π2 ], R > m
2 ) in the Schwarzschild

3-manifold M , which plays a fundamental role in this paper. For each α ∈ [0, 2π),



4 J. CHOE, J. LEE, AND E. YEON
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γ0,R

γθ,R

Cθ,R

Figure 1. The contour Γθ,R.

we denote Qα as a totally geodesic plane passing through the origin and perpen-
dicular to the vector (− sinα, cosα, 0). Likewise, for each φ ∈ [0, π2 ), we denote
Pα,φ as a totally geodesic plane passing through the origin and perpendicular to
(− sinφ cos α

2 ,− sinφ sin α
2 , cosφ). Since all planes Pα,0 are identical, we can simply

refer to it as P0. The contour Γθ,R comprises three distinct arcs: γ0,R, γθ,R, and Cθ,R.
Here, γα,R is a union of two geodesic arcs connecting (0, 0, m2 ), (

m
2 cosα, m2 sinα, 0),

and (R cosα,R sinα, 0). Furthermore, Cθ,R is a circular arc connecting the end-
points of γ0,R and γθ,R. It is worth noting that γα,R lies in the plane Qα. Figure 1
illustrates the contour Γθ,R.

We note that the classical existence results on the Plateau problem guarantee the
existence of a smooth area-minimizing disk Σθ,R with a prescribed boundary Γθ,R.
Additionally, we know that Σθ,R is embedded (see [13] for details) and has planar
symmetry due to the symmetry of the contour across the plane Q θ

2

. As R tends

to ∞, this Plateau solution serves as a fundamental piece that eventually becomes
a complete embedded minimal surface after suitable patching using isometries. We
record the following characteristics of Σθ,R for later use.

Lemma 3.1. Regardless of R > m
2 , Σ

int

θ,R lies within the region enclosed by the three
planes Q0, Qθ, P0, and the horizon ∂M .

Proof. Assume that a part of the surface Σθ,R lies outside of the region enclosed
by Q0, Qθ, P0, and ∂M . We can obtain a contradiction by reflecting the outer
part of the surface with respect to one of the totally geodesic surfaces. Smoothing
the resulting surface leads to a contradiction with the fact that Σint

θ,R is an area-

minimizing disk. Similarly, if Σint
θ,R touches the boundary of the region, we again get

a contradiction using the maximum principle. �

Remark 3.2. This method is analogous to establishing the convex hull property
for minimal surfaces in Euclidean spaces.

Lemma 3.3. The family of area-minimizing disks {Σθ,R} has the following proper-
ties:

(1) The family {Σθ,R} grows monotonically with respect to R in the sense that

Σint
θ,R2

lies above Σint
θ,R1

if R2 > R1 >
m
2 .
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(2) Each Σθ,R meets the totally geodesic plane Pθ,φ along a simple curve that
connects two points Aθ,φ and Bθ,φ. Here, Aθ,φ and Bθ,φ are the points of
intersection with Pθ,φ and γ0,R, γθ,R, respectively, provided that φ ∈

(
0, π2

)
.

Proof. Both properties can be established by employing the cut-and-paste principle
(a general version of this principle can be found in [10]). To show the first property,
we consider two positive real numbers R1 and R2 such that m

2 < R1 < R2. We want
to show that the two surfaces Σθ,R1

and Σθ,R2
only intersect along the boundary

curves γ0,R1
and γθ,R1

of Σθ,R1
. Suppose the surfaces meet at an interior point q

of Σθ,R1
. Regardless of whether they intersect tangentially or trasversely at q, we

can find a piecewise smooth curve of intersection passing through q. However, note
that these intersection curves cannot be connected to C int

θ,R1
since C int

θ,R1
∩Σθ,R2

= ∅
due to Lemma 3.1. This curve, possibly combined with other intersection curves or
γ0,R1

∪ γθ,R1
, forms a piecewise smooth closed curve that bounds simply-connected

regions in both surfaces. This immediately leads to a contradiction based on the
cut-and-paste principle since both surfaces are area-minimizing disks.

For the second part of the lemma, the proof proceeds in the same manner. We
observe that the totally geodesic planes Pθ,φ intersect γ0,R and γθ,R at Aθ,φ and
Bθ,φ, respectively. For every point p ∈ Σint

θ,R ∩ Pθ,φ, it cannot be an endpoint of

the intersection curves. If Σint
θ,R ∩ Pθ,φ contains a piecewise smooth simple closed

curve, we arrive at a contradiction as in the previous argument. Otherwise, every
intersection curve must be connected to Aθ,φ or Bθ,φ, which are the only points in
∂Σθ,R∩Pθ,φ. If Σθ,R∩Pθ,φ were not a simple curve joining Aθ,φ and Bθ,φ, there would
again exist a simple closed curve in the intersection, leading to a contradiction. �

According to the above Lemma 3.3, we obtain an appropriate area bound for the
surface Σθ,R. To get the area bound, we introduce the domain △θ(φ, ǫ, δ) as follows:
Consider a domain in M bounded by the totally geodesic planes Q0, Qθ, Pθ,φ, and
two concentric spheres whose Euclidean distances from the horizon are given by ǫ
and δ, respectively (see Figure 2). Here, φ ∈

(
0, π2

)
and m

2 < ǫ < δ.

Proposition 3.4. For every Σθ,R (R > m
2 ) that intersects ∂△θ(φ, ǫ, δ) transversally,

there exists K > 0 depending only on △θ(φ, ǫ, δ) such that

Areag(Σθ,R ∩△θ(φ, ǫ, δ)) ≤ K.

Proof. Assume that Σθ,R intersects transversally with ∂△θ(φ, ǫ, δ). We only need to

consider the case where the domain satisfies △θ(φ, ǫ, δ)
int ∩Σθ,R 6= ∅. Note that the

intersection curves ∂△θ(φ, ǫ, δ)∩Σθ,R lie on Σint
θ,R since ∂Σθ,R∩△θ(φ, ǫ, δ) = ∅. Since

Σθ,R is a disk-type Plateau solution, there exists a minimal immersion ψ : D → Σint
θ,R

whereD is an open unit disk. By the embeddedness of the surface and transversality,
we see that ψ−1 (∂△θ(φ, ǫ, δ) ∩ Σθ,R) is a union of at most countably many disjoint
closed curves in D. Thus, we can write

ψ−1 (Σθ,R ∩△θ(φ, ǫ, δ)) = ∪∞
i=1DCi

,
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m
2 + ǫ m

2 + δ

O

△θ(φ, ǫ, δ)

Pθ,φ

Γθ,R

Figure 2. The domain △θ(φ, ǫ, δ).

where Ci’s are the outermost curves in D, and DCi
denotes the closed region

bounded by Ci. Here, “outermost” means that there is no other closed curve in
ψ−1 (∂△θ(φ, ǫ, δ) ∩ Σθ,R) that contains C in its interior.

We claim that for each Ci, one can associate a region ΩCi
⊂ ∂△θ(φ, ǫ, δ) bounded

by ψ(Ci) such that ΩCi
∩ ΩCj

= ∅ for all i 6= j. Since C1 and C2 are disjoint, we
can define ΩC1

and ΩC2
. Now assume that {ΩC1

, · · · ,ΩCn} (n ≥ 2) is given. If
ΩCn+1

cannot be defined, then there should be at least one ΩC∗
in each component

of ∂△θ(φ, ǫ, δ) \ ψ(Cn+1). Now there exist Ci (1 ≤ i ≤ n) and an angle φ0 ∈ (φ, π2 )
such that Pθ,φ0

∩ Σθ,R contains two curves in ψ(DCi
) and ψ(DCn+1

). By Lemma
3.3 (2), we know that Σθ,R and Pθ,φ0

meet along a simple curve joining two points
Aθ,φ0

and Bθ,φ0
. It means that this simple curve connects two regions ψ(DCi

) and
ψ(DCn+1

) in Σθ,R. This is impossible since Ci and Cn+1 are two disjoint curves in

the preimage ψ−1 (Σθ,R ∩ ∂△θ(φ, ǫ, δ)). Therefore the claim is proved.
Recall that the surface Σθ,R is an area-minimizing disk. Consequently, we can

replace the area of ψ(DCi
) with a larger area ΩCi

to get the desired area bound

Areag(Σθ,R ∩△θ(φ, ǫ, δ)) ≤ K

where K is just the area of ∂△θ(φ, ǫ, δ). This completes the proof. �

Remark 3.5. It is unsure whether the surface Σint
θ,R would be a graph in the spherical

coordinate system. If it is indeed a graph φ = φ(r, α) over an open domain, where
(r, α, φ) denotes the spherical coordinate system, the limit process in the following
section can be simplified.

4. A curvature estimate

We establish the curvature estimate for the area-minimizing disk Σθ,R discussed

in Section 3. From now on, AM
Σ and AΣ denote the second fundamental form of Σ
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with respect to the metric g and the Euclidean metric, respectively. Additionally,
| · |g refers to the norm relative to g.

Proposition 4.1. There exists C > 0 such that

sup
R>m

2

(
sup

q∈Σθ,R

(∣∣∣AM
Σθ,R

(q)
∣∣∣
g
·min (1, dR3(q, ∂Σθ,R))

))
< C.

Proof. Suppose that C > 0 does not exist. One can find a sequence Ri ր ∞ such
that

sup
q∈Σθ,Ri

(∣∣∣AM
Σθ,Ri

(q)
∣∣∣
g
·min (1, dR3(q, ∂Σθ,Ri

))

)
→ ∞ (4.1)

as i → ∞. Since Σθ,Ri
is compact and dR3(q, ∂Σθ,Ri

) = 0 for each q ∈ ∂Σθ,Ri
,

there exists an interior point qi ∈ Σθ,Ri
where the supremum is attained. Let

λi := |AM
Σθ,Ri

(qi)|g. Consequently, (4.1) implies that λi → ∞ as i→ ∞.

From now on, we consider Σθ,Ri
as a surface in R

3 with the Euclidean metric and
define

Σ̃i := λi (Σθ,Ri
− qi) .

The mean curvature vector at X ∈ Σ̃i is given by

~HΣ̃i
(X) = ~H

λi(Σθ,Ri
−qi)(X)

=
1

λi
~HΣθ,Ri

(
1

λi
X + qi

)

=
−2mλi

|X + λiqi|3 ·
(
1 + mλi

2|X+λiqi|

) · (X + λiqi)
⊥.

Since 1
λi
X + qi ∈ Σθ,Ri

⊂ R
3\Bm

2
(O), we have

∣∣∣∣
1

λi
X + qi

∣∣∣∣ ≥
m

2
, (4.2)

which leads to

∣∣∣ ~HΣ̃i
(X)

∣∣∣ ≤
2mλi

∣∣(X + λiqi)
⊥
∣∣

|X + λiqi|3 ·
(
1 + mλi

2|X+λiqi|

) ≤
4

mλi
.

Hence,

sup
Σ̃i

| ~H
Σ̃i
| → 0 (4.3)
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as i→ ∞. On the other hand, one may compute

|A
Σ̃i
(X)| =

(
1 +

mλi

2|X + λiqi|

)2

·
1

λi
·

∣∣∣∣AM
Σθ,Ri

(
1

λi
X + qi

)∣∣∣∣
g

(4.4)

≤ 4 ·
1

λi
·

∣∣∣∣AM
Σθ,Ri

(
1

λi
X + qi

)∣∣∣∣
g

,

where the inequality follows from (4.2). Fix a positive real number l > 0. By (4.1),

λidR3(qi, ∂Σθ,Ri
) = dR3(O, ∂Σ̃i) → ∞,

which implies that ∂Σ̃i ∩ Bl(O) = ∅ for sufficiently large i. Therefore if X ∈

Σ̃i ∩Bl(O), the assumption on qi yields

4 ·
1

λi
·

∣∣∣∣AM
Σθ,Ri

(
1

λi
X + qi

)∣∣∣∣
g

≤ 4 ·
min(1, dR3(qi, ∂Σθ,Ri

))

min(1, dR3( 1
λi
X + qi, ∂Σθ,Ri

))

= 4 ·
min(λi, dR3(O, ∂Σ̃i))

min(λi, dR3(X, ∂Σ̃i))
,

and by applying the triangle inequality, we obtain

4 ·
min(λi, dR3(O, ∂Σ̃i))

min(λi, dR3(X, ∂Σ̃i))
≤ 4 ·

dR3(O, ∂Σ̃i)

dR3(O, ∂Σ̃i)− l
.

Combining all the above inequalities, we get

|A
Σ̃i
(X)| ≤ 4 ·

dR3(O, ∂Σ̃i)

dR3(O, ∂Σ̃i)− l

for every X ∈ Σ̃i ∩Bl(O), and thus we deduce that

sup
Σ̃i∩Bl(O)

|A
Σ̃i
| < 8 (4.5)

for sufficiently large i.

Now the smooth compactness theorem can be applied to Σ̃i ∩ Bl(O)’s by (4.3)
and (4.5). Furthermore, by applying diagonal arguments, we can eventually obtain

a subsequence Σ̃i (using the same notation) that converges to a smooth complete

minimal surface Σ̃∞ in R
3. By Lemma 4.2 below, Σ̃∞ is also stable. Then the

Bernstein theorem implies that Σ̃∞ must be a plane. However, in (4.4),

|A
Σ̃i
(O)| =

(
1 +

m

2|qi|

)2

,

and therefore |AΣ̃∞

(O)| ≥ 1. This is a contradiction. �

Lemma 4.2. Σ̃∞ is a stable minimal surface in R
3.
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Proof. Consider the following stability inequality of Σθ,R in M :
∫

Σθ,R

(
|AM

Σθ,R
|2g +Ricg(νg, νg)

)
f2 ≤

∫

Σθ,R

|∇Σθ,Rf |2g

for every f ∈ C∞
c (Σθ,R). Here, νg denotes the unit normal vector of Σθ,R in M .

Since the Ricci curvature of M is the smallest in the radial direction, we have

−Ricg(νg, νg)(X) ≤
2m

|X|3
(
1 + m

2|X|

)6 (4.6)

at each X ∈ Σθ,R, where the right-hand side is the negative of the Ricci curvature
along the radial direction. Substituting (4.6) into the above stability inequality and
expressing all the terms with respect to the Euclidean metric, it follows that

∫

Σθ,R


|AΣθ,R

|2 −
2m2(X · ν)2

|X|6
(
1 + m

2|X|

)2


 f2 ≤

∫

Σθ,R

|∇Σθ,Rf |2 +
2m

|X|3
(
1 + m

2|X|

)2 f2,

where ν denotes the unit normal vector in the Euclidean space. Let f̃(X) :=

f
(

1
λi
X + qi

)
for X ∈ Σ̃i. Then f̃ ∈ C∞

c (Σ̃i), and the inequality eventually be-
comes

∫

Σ̃i


|AΣ̃i

|2 −
2m2(X · ν + λi(qi · ν))

2

|X + λiqi|6
(

1
λi

+ m
2|X+λiqi|

)2


 f̃2

≤

∫

Σ̃i

|∇Σ̃i f̃ |2 +
2m

λi|X + λiqi|3
(

1
λi

+ m
2|X+λiqi|

)2 f̃
2.

Since Σ̃i converges to Σ̃∞ smoothly and λi → ∞ as i→ ∞, we deduce that
∫

Σ̃∞

|AΣ̃∞

|2f2 ≤

∫

Σ̃∞

|∇Σ̃∞f |2

for every f ∈ C∞
c (Σ̃∞). Therefore Σ̃∞ is stable. �

Remark 4.3. The idea of performing scaling and the limiting process in the Eu-
clidean space rather than in the Schwarzschild manifold was motivated by [10].
What is new in our proof is that the stability inequality of Σθ,R is also examined in
the Euclidean space, as shown in the proof of Lemma 4.2.

5. Construction of a fundamental piece

In this section, we investigate the limit of Σθ,R as R → ∞. We restrict our at-
tention to angles θ of the form π

N
, where N ≥ 2 is an integer. Let {Σθ,Ri

}∞i=1 be an
arbitrary sequence such that Ri ր ∞. To use the curvature estimate from Propo-
sition 4.1, we introduce an increasing sequence of domains △θ,j := △θ(φj , ǫj , δj)
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(defined in Section 3) such that φj , ǫj , and δj are sequences of positive real numbers
satisfying

φj ց 0, ǫj ց 0, δj ր ∞, ǫj < δj .

We may assume that Σθ,Ri
and ∂△θ,j intersect transversally for all i, j ≥ 1.

Let us define Wθ := ∪∞
j=1△θ,j. For each j, the distances between △θ,j and ∂Σθ,Ri

are bounded below by a positive constant depending only on j. Hence, Proposition
4.1 implies the existence of Cj > 0 such that

sup
Σθ,Ri

∩△θ,j

∣∣∣AM
Σθ,Ri

∣∣∣
g
< Cj (5.1)

for all i ≥ 1. Combining the curvature estimate (5.1) with the area estimate in
Proposition 3.4, we can apply the smooth compactness theorem in each △θ,j. By
employing a diagonal argument, we obtain a subsequence Σθ,Ri

(using the same
notation) such that Σθ,Ri

converges smoothly to Σθ in every compact subset of Wθ

as i→ ∞.
We observe that Σint

θ has a finite number of connected components. Indeed, let

△̃θ,j be a domain defined similarly to △θ,j but with constants R1 and R2 instead
of ǫj and δj . It suffices to show that Σθ ∩K has finitely many components, where

K :=
(
∪∞
j=1△̃θ,j

)
. Proposition 3.4 implies that Σθ ∩ △̃θ,j has a finite number of

components. If there were infinitely many components in Σθ ∩K, there should be

new components in K \ △̃θ,j for infinitely many j. This implies that these new
components approach P0 as j increases. However, by Lemma 3.3, for some R0,
Σθ,R0

∩ K acts as a barrier separating P0 from Σθ ∩ K. This is a contradiction.
Therefore, we have the following convergence result:

Σθ,Ri
→ Σθ := n1T1 + · · ·+ nlTl (5.2)

smoothly in every compact subset of Wθ as i→ ∞. Here, Ti’s are connected smooth
oriented minimal surfaces.

We note that a similar convergence result can be obtained using varifold conver-
gence. In [1], interior regularity for the limit of an almost minimizing sequence of
disks was established using the filigree lemma and the replacement theorem (Lemma
3 and Theorem 1 in [1]). In [12], it was demonstrated how the arguments of [1] can
be modified to homogeneous regular 3-manifolds, proving the persistence of interior
regularity. It is evident that the Schwarzschild 3-manifold is homogenous regular.
Nevertheless, to obtain the complete description of the limit surface as in (5.2), it
is necessary to employ similar arguments throughout this paper.

However, to study the behavior of Σθ at the boundary Γθ :=
⋃

R>m
2

γ0,R∪γθ,R, we

need to consider it as a varifold. We can obtain boundary regularity similar to that
demonstrated in [1] with the same modifications as in [12]. Let M be isometrically
embedded in some R

N0 , and let p ∈ Γθ. As in [1], denote

C+ = lim
k→∞

µrk#v(Σθ) (rk → ∞ as k → ∞),
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where v(Σθ) is a varifold corresponding to Σθ, µr : RN0 → R
N0 is a map defined

by µr(x) = r(x− p), and C+ is any varifold tangent to v(Σθ) at p ∈ Γθ. The main
difference between our case and [1] is that we have to send it to the limit while
applying the filigree lemma and the replacement theorem in each µrk(M). Since
M is simply enlarged, Lemma 1 and Lemma 3 in [12] can be uniformly applied to
µrk(M) for all sufficiently large k. Furthermore, Γθ is a piecewise smooth geodesic
in M with angles of the form π

l
(l ∈ Z>0) at singular points, and it lies on the

boundary of the convex domain Wθ. Therefore, a similar argument as in [1] can be
applied to prove that C+ =

∑s
i=1Hi, where Hi ⊂ TpM ⊂ R

N0 is a convex cone in
some 2-plane such that ∂Hi is a tangent cone of Γθ at p. Moreover, calculating the
density of C+ at p in a similar manner as in [1] gives s ≤ 2, which implies that s = 1
due to orientation. Thus, in (5.2), we have the following result:

Lemma 5.1. Σθ = T1.

Furthermore, we can show that T1 is simply-connected.

Lemma 5.2. T1 is simply-connected.

Proof. Suppose the contrary. We may assume that there is a Jordan curve γ in T1
that represents a non-trivial homotopy class. Then, for sufficiently large i, there
exists a simple closed curve γi in each Σθ,Ri

that converges to γ. Let Di ⊂ Σθ,Ri

be a region bounded by γi. Since Di’s are simply-connected, for γi to converge to a
homotopically non-trivial curve γ in T1, ∪

∞
i=1Di must be unbounded. This implies

that one can find a region Br ⊂M given by
{
x ∈ R

3 : m
2 ≤ |x| < r

}
and Dj ⊂ Σθ,Rj

such that γj = ∂Dj ⊂ Br and Dj ∩
(
M\Br

)
6= ∅. Now, if we decrease the radius

L of the sphere {x ∈ R
3 : |x| = L} from infinity, we can consider the first touching

point with Dj , which lies in the interior of Dj. Since the sphere has mean curvature
vector towards ∂M , this contradicts the maximum principle. �

By the monotonicity property proved in Lemma 3.3, it always converges to the
same surface Σθ regardless of the choice of a sequence Σθ,Ri

. As a consequence, we
obtain the following theorem:

Theorem 5.3. There exists a simply-connected smooth embedded non-compact min-
imal surface Σθ ⊂ Wθ with ∂Σθ = Γθ. Furthermore, Σθ has finite total curvature
and quadratic area growth.

Proof. It only remains to show that Σθ has finite total curvature and quadratic area
growth. Consider area-minimizing disks Σθ,R1

and Σθ,R2
defined in Section 3, where

m
2 < R1 < R2. The area-minimizing property implies

Areag (Σθ,R2
)−Areag (A(R1, R2) ∩Wθ) < Areag (Σθ,R1

)

< Areag (Σθ,R2
) + Areag (A(R1, R2) ∩Wθ) ,

where A(R1, R2) denotes the annular region in P0 bounded by the spheres {x ∈
R
3 : |x| = R1} and {x ∈ R

3 : |x| = R2}. As M is asymptotically Euclidean, Σθ
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has quadratic area growth. On the other hand, the smooth convergence implies the
stability of Σθ. Recall that the stability inequality writes

∫

Σθ

(
|AM

Σθ
|2g +Ricg(νg, νg)

)
f2 ≤

∫

Σθ

|∇Σθf |2g,

and from (4.6), it follows that
∫

Σθ

|AM
Σθ

|2gf
2 ≤

∫

Σθ

|∇Σθf |2g +
2m

|X|3
(
1 + m

2|X|

)6 f2

for every f ∈ C∞
c (Σθ). The right-most term is of the order O

(
1

|X|3

)
. Therefore,

the quadratic area growth of Σθ and the logarithmic cut-off trick imply that Σθ has
finite total curvature. �

6. Proof of main theorem

In this section, we construct complete embedded minimal surfaces in the doubled

Schwarzschild 3-manifold M̂ . As ∂Σθ consists of geodesic lines, we use the reflection
principle to patch up copies of Σθ. This technique has a significant historical im-
portance, and many embedded minimal surfaces have been constructed using this
approach (see [5, 9, 10, 11] for example).

Let τ be a positive integer, and consider the contour Γ π
τ+1

defined in Section

5. By Theorem 5.3, we have the simply-connected minimal surface Σ π
τ+1

. Now we

introduce three particular isometries of M̂ as follows:

a = RefQ0
◦ I, bτ = RefQ π

τ+1

◦ RefP π
τ+1

,0
, cτ = Rot 2π

τ+1

,

where Ref∗ denotes the reflection across the totally geodesic plane ∗, Rot 2π
τ+1

is the

rotation of 2π
τ+1 around the vector (0, 0, 1), and I is the inversion defined in Section

2. Then a, bτ , and cτ generate a group Gτ of isometries of order 2τ + 2. We define

Στ :=
⋃

h∈Gτ

h · Σ π
τ+1

.

Theorem 6.1. For each integer τ ≥ 1, there exists a complete embedded minimal

surface Στ ⊂ M̂ of genus τ satisfying the following properties:

(1) Στ has finite total curvature and quadratic area growth;
(2) Στ is asymptotic to the totally geodesic plane P0;
(3) Στ ∩ ∂M = ∪2τ+2

j=1 ηi, where ηi’s are geodesics on ∂M passing through two
poles and making equal angles of θ = π

τ+1 ;

(4) Στ ∩ P0 = ∪2τ+2
i=1 li, where l

′
is are geodesic lines on P0 perpendicular to ∂M

and ηi and making equal angles of θ = π
τ+1 at infinity; and

(5) Στ has a dihedral group of symmetries of order 2τ +2 generated by rotations
across li and ηj . Σr has genus τ = π

θ
− 1.
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Proof. By the construction process, (3), (4), and (5) are clear. Note that ηi’s and li’s
satisfy ∪2τ+2

i=1 (ηi ∪ li) = ∪h∈Gτ
h ·Γ π

τ+1
. Since Στ is a finite union of isometric copies

of Σ π
τ+1

, (1) follows from Theorem 5.3. On the other hand, in [2, Corollary 1.2],

asymptotic behaviors of complete embedded minimal ends of finite total curvature
and quadratic area growth in asymptotically flat spaces have been classified: the
ends must either be bounded or have logarithmic growth. Properties (1) and (4)
imply that Στ has a planar end. Finally, the genus of Στ can be easily calculated
in terms of θ by the Gauss-Bonnet theorem. �
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