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Abstract

Some mysteries of minimal surface theory can be unravelled through geometric quan-
tities and functions such as the area of cones, the cone angles, and the Laplacian of
functions of distance. In this article I will present this radial point of view, telling a story
behind some papers of mine.

1 Introduction

A minimal surface Σ in R3 can be called a generalized plane. This is because Σ shares some

common properties with a plane: Σ has zero mean curvature, Σ is locally area minimizing,

and Euclidean coordinates x, y, z are harmonic on Σ.

I learned minimal surface theory in a course given by Rick Schoen at the University

of California, Berkeley, in Spring quarter, 1983. And I learned geometric measure theory

from him again in Fall and Winter quarters, 1984 at UCSD. It was at this time that Rick

gave me the thesis problem: Given a compact 3-dimensional Riemannian manifold M , find

a fundamental domain of M with least boundary area in its universal cover [C1].

After my thesis the first problem I worked on was the isoperimetric inequality for minimal

surfaces in Euclidean space. I learned about this problem in Rick’s class at Berkeley. I

succeeded in getting a partial answer to this isoperimetric problem, which became my second

paper [C2]. But there was a 2-year gap between my first paper and the second. During this

period I was under heavy pressure to write a new paper as a postdoctor, so I regretted that

my thesis had no subsequent problem for a sequel.

But only after many years had passed did I realize that I had gained a new sight from

my thesis to solve the isoperimetric problem. I had to prove the existence and regularity of

a fundamental domain with least boundary in the thesis. For the regularity part I used Jean

Taylor’s result [T], which originated from Reifenberg’s epiperimetric inequality [R1] and from

his proof of the analyticity of minimal surfaces [R2]:

Epiperimetric Inequality. Suppose Y is an orientable polyhedral cone, with vertex 0,

of dimension m in Rn, whose boundary lies on the unit sphere with center 0. Then, if Y

lies sufficiently near to a diametral plane, we can construct a new surface Y ∗ with the same

boundary such that

Vol(Y ∗) ≤ kVol(Y ) + (1− k)ωm, (1)

where ωm is the volume of the unit m-ball and k is a constant depending only on m and n.
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Here Reifenberg is comparing the area of an area minimizing surface Σ with that of the

cone Y := 0××∂Σ. There was another occasion for me to encounter a similar inequality in

Rick’s class at Berkeley. He proved the monotonicity of the volume of minimal submanifolds

using the coarea formula. But just before that he showed

Vol(Σ) ≤ Vol(0××∂Σ) (2)

if Σ is minimal in Rn and ∂Σ lies on a sphere with center 0.

In retrospect I think these inequalities were the starting point of my journey after the

thesis. In this survey article I will tell how these inequalities led me to a radial viewpoint on

minimal surfaces. And I will derive those results on the isoperimetric inequality, index and

embeddedness of a minimal surface in my papers [C1], [C2], [C3], [C4], [CG1], [CG2], [CG3].

2 Cone

The day Rick taught the monotonicity in the class he introduced the problem of the isoperi-

metric inequality for a minimal surface Σ ⊂ Rn: Show that Σ satisfies

4πA ≤ L2, A = Area(Σ), L = Length(∂Σ), (3)

and that 4πA = L2 if and only if Σ is a disk on R2. The first affirmative partial answer was

obtained by Carleman [Ca] in 1921 for a simply connected Σ. But the general case is still

open.

Rick himself, together with Li and Yau, had a partial result on this problem [LSY]. Their

argument goes as follows. Harmonicity of the Euclidean coordinates x1, ..., xn on Σ gives

∆r2 = 4, r2 = x2
1 + · · ·+ x2

n.

Integrating this over Σ yields

4 Area(Σ) =

∫
∂Σ

2r
∂r

∂ν
,

where ν is the outward unit conormal to ∂Σ on Σ. Translating Σ suitably, one may assume∫
∂Σ xi = 0. Then

4 Area(Σ) =

∫
∂Σ

2r
∂r

∂ν
≤ 2

∫
∂Σ
r ≤ 2 Length(∂Σ)1/2

(∫
∂Σ

∑
x2
i

)1/2

≤ 1

π
Length(∂Σ)3/2

(∫
∂Σ

∑(dxi
ds

)2
)1/2

=
1

π
Length(∂Σ)2

(the last inequality follows from the Poincaré inequality, and the last equality from
∑

(dxi/ds)
2 =

1). This gives 4πA ≤ L2 when ∂Σ is connected.

I extended Li-Schoen-Yau’s theorem by taking a more geometric point of view [C2]. In

their proof they used the inequality ∂r
∂ν ≤ 1. But if η is the unit normal to ∂Σ which makes

the smallest angle with ∇r, then
∂r

∂ν
≤ ∂r

∂η
≤ 1. (4)
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In fact η is the outward unit conormal to ∂Σ on the cone p××∂Σ, the union of the line segments

from p to the points of ∂Σ. Since p××∂Σ is flat, we actually have ∆r2 = 4 on p××∂Σ as well.

Therefore

4 Area(Σ) =

∫
∂Σ

2r
∂r

∂ν
≤
∫
∂Σ

2r
∂r

∂η
=

∫
p××∂Σ

∆r2 = 4 Area(p××∂Σ),

which gives an area comparison between Σ and p××∂Σ:

Area(Σ) ≤ Area(p××∂Σ). (5)

Note the similarity between (5) and (1), (2).

A nice thing about the cone p××∂Σ is that p××∂Σ is flat and hence is locally developable.

Cut p××∂Σ along a line segment from p to a point of ∂Σ and then one can develop p××∂Σ

into a cone O××C on R2. O××C has the same area as p××∂Σ and C has the same length as

∂Σ. C may or may not have self-intersection depending on whether the cone angle of p××∂Σ

at p is ≥ 2π or < 2π. So we need a cone angle comparison similar to the area comparison

(5). Recall that (5) follows from ∆r2 = 4. From this one can also derive

∆ log r ≥ 2π δp on Σ 3 p,

and

∆ log r = 2πΘp××∂Σ(p) δp on p××∂Σ,

where δp is the Dirac delta function. Hence

2π ≤
∫

Σ
∆ log r =

∫
∂Σ

1

r

∂r

∂ν
≤
∫
∂Σ

1

r

∂r

∂η
=

∫
p××∂Σ

∆ log r = Angle(∂Σ, p), (6)

where Angle(∂Σ, p) is the cone angle of ∂Σ viewed from p, i.e., Angle(∂Σ, p) = 2πΘp××∂Σ(p).

This angle estimate implies that ∂Σ rotates around p by at least 360◦ and consequently C

should intersect itself. Then cutting O××C into two pieces and pasting them appropriately,

one can get a domain D ⊂ R2 with

Area(D) ≥ Area(O××C) ≥ Area(Σ), Length(∂D) = Length(C) = Length(∂Σ).

(See [C2, Lemma 1] for the construction of D). Therefore the classical isoperimetric inequality

for D gives (3) for Σ.

So far ∂Σ has been assumed to be connected. However, even if ∂Σ is not connected, C

as defined above may become a connected curve. This motivates the following.

Definition A set Γ ⊂ Rn is said to be radially connected from p ∈ Rn if {r : r =

dist(p, q), q ∈ Γ} is a connected interval.

If ∂Σ is radially connected from p, then we can apply to p××∂Σ the argument of cutting

and inserting to obtain a cone O××C ⊂ R2 with C connected. Moreover, if p is in Σ, then

C has a self-intersection and so we can obtain the domain D ⊂ R2 as above and hence the

desired isoperimetric inequality for S. See [C2, Theorem 1] for more details. Thus we have

outlined the proof of the following.
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Theorem 1 [C2] If S is a minimal surface whose boundary is radially connected from a point

of the surface, then it satisfies 4πA ≤ L2.

In case ∂Σ has two components, ∂Σ is radially connected from a midpoint(∈ Σ) of the

components. Hence we have the following.

Corollary 1 A minimal surface in Rn with one or two boundary components satisfies 4πA ≤
L2.

A salient difference between the two comparisons (5) and (6) is that equality can hold even

for a nonflat minimal surface Σ in (5), but in (6) equality holds only for a flat star-shaped

surface. Therefore it tempted me to guess that a surface satisfying equality in (5) should

have some peculiar property. Indeed there was something. It is the topic of the next section.

3 Horizon

Note that

Area(Σ) = Area(p××∂Σ)

if and only if
∂r

∂ν
=
∂r

∂η
along ∂Σ.

This happens when −→px is tangent to Σ at every x ∈ ∂Σ. The vector field X = {−→px : x ∈ R3} is

the variation field of the 1-parameter family of homothetic expansions ψr, r > 0 in R3 defined

by ψr(x) = r(x− p) + p. If Σ is minimal, so is ψr(Σ). Therefore we can obtain a foliation of

a tubular neighborhood of Σ whose leaves are minimal surfaces ψr(Σ). The normal variation

field of Σ arising from this foliation is in fact projΣ⊥(X), where projΣ⊥ is the orthogonal

projection onto the normal bundle of Σ. Moreover, projΣ⊥(X) is a Jacobi field on Σ, that

is, it is in the kernel of the Jacobi operator ∆ − 2K. And it vanishes at x ∈ Σ when −→px is

tangent to Σ. Thus if Area(Σ) = Area(p××∂Σ), then ∂Σ is a subset of the nodal set of the

Jacobi field on Σ.

In [C3] I defined the horizon of Σ with respect to X to be the set {x ∈ Σ : −→px is

tangent to Σ}, that is, the nodal set of projΣ⊥(X). By a well-known theory of eigenvalues

and eigenfunctions, each nodal component of projΣ⊥(X) is stable, and by Courant’s nodal

domain theorem the number of the nodal components is a lower bound of the index of the

Jacobi operator. This fact is a generalization of the Morse index theorem that the index on

a geodesic γ from p to q is equal to the number of conjugate points of p on γ. Therefore

the horizon of a minimal surface is a higher dimensional version of the conjugate point on a

geodesic.

There is another natural way of getting Jacobi fields on Σ: Use Killing vector fields of

R3. Suppose V is a variation vector field associated with a family of parallel translations, or

rotations about a line. Then projΣ⊥(V ) is a Jacobi field. Similarly rotations on a 2-plane in

Rn+1 gives rise to a Killing vector field on Sn ⊂ Rn+1, which in turn generates a Jacobi field

on a minimal submanifold of Sn. In [C3] it is shown that the number of the nodal components

4



of this natural Jacobi field on many well-known complete minimal surfaces of R3 and S3 is a

lower bound of “1 + the index of the surface”.

4 Non-Euclidean space

Given a domain D in S2 or in H2, it is known that the area A and perimeter L of D satisfy

4πA ≤ L2 +A2 on D ⊂ S2, 4πA ≤ L2 −A2 on D ⊂ H2.

As in Rn it is conjectured that a minimal surface Σ in Sn,Hn should satisfy the isoperimetric

inequality

4πA ≤ L2 +A2 on Σ ⊂ Sn, 4πA ≤ L2 −A2 on Σ ⊂ Hn. (7)

In [CG1] and [CG2] Gulliber and I extended the cone method of Section 2 to the minimal

surfaces in Hn. The cone method in Hn will be reviewed in this section.

The cone method was based on

∆r2 = 4

for the minimal surfaces in Rn. This originates from

Hess r2 = 2ḡ,

where Hess r2 denotes the Hessian of r2 and ḡ the metric of Rn. How can we compute the

Hessian of a distance function in the non-Euclidean space? We can do this by considering

a Jacobi field. Let r(x) = dist(p, x), p, x ∈ Sn,Hn and let γ be a geodesic from p. If

V (x) is a Jacobi field along γ such that V (p) = 0 and V ⊥ γ′, then |V (x)| = sin r(x) or

|V (x)| = sinh r(x) in Sn,Hn, respectively. One can then show that

Hess cos r = −(cos r)ḡ on Sn, Hess cosh r = (cosh r)ḡ on Hn, (8)

where ḡ is the metric of Sn, Hn.

Let Σk be a submanifold of Mn with mean curvature vector ~H and let ek+1, ..., en be

orthonormal vector fields perpendicular to Σ. Then

∆Σf = ∆Mf + ~Hf −
n∑

α=k+1

Hessf(eα, eα) (9)

for a smooth function f defined on M . Then (8) and (9) yield on a minimal submanifold Σk

of Sn or Hn

∆ cos r = −k cos r on Σ ⊂ Sn, ∆ cosh r = k cosh r on Σ ⊂ Hn.

Moreover ~Hr = 0, so

∆ cos r = −k cos r on p××∂Σ ⊂ Sn, ∆ cosh r = k cosh r on p××∂Σ ⊂ Hn.

Hence it follows that

∆r = cot r(k − |∇r|2) on Σ ⊂ Sn, ∆r = coth r(k − |∇r|2) on Σ ⊂ Hn (10)
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and

∆r = (k − 1) cot r on p××∂Σ ⊂ Sn, ∆r = (k − 1) coth r on p××∂Σ ⊂ Hn. (11)

We are now ready to compute the Laplacian of functions of distance which will yield the area

and angle comparisons in non-Euclidean space. Since sin r is the length of a Jacobi field in

Sk, kωk sink−1 r is the volume of a geodesic sphere of radius r. Let f0(r) be a function of

distance on Sk such that

∇f0 = sin1−k r∇r.

Then

∆f0 = kωk δp.

If f(r) is a function on Sn (not on Sk) such that

∇f = sin1−k r∇r,

then by (10) and (11) we have for minimal Σk ⊂ Sn

∆f ≥ kωk δp on Σ , ∆f = kωk Θp××∂Σ δp on p××∂Σ. (12)

Similarly for f(r) on Hn with ∇f = sinh1−k r∇r, we get

∆f ≥ kωk δp on minimal Σk ⊂ Hn, ∆f = kωk Θp××∂Σ δp on p××∂Σ. (13)

Integrating (12), (13) on Σ and p××∂Σ and using (4), we conclude that for minimal Σk ⊂
Sn,Hn

kωk ≤
∫
∂Σ

∂f

∂ν
≤
∫
∂Σ

∂f

∂η
=

∫
p××∂Σ

∆f = Angle(∂Σ, p). (14)

To get the area comparison let α(r) be the volume of a geodesic ball of radius r in Hk

and let h(r) be a function on Hn such that

∇h =
α

α ′
∇r.

Then it is easy to see that

∆h ≥ 1 on minimal Σk ⊂ Hn, ∆h = 1 on p××∂Σ.

Therefore

Vol(Σ) ≤
∫
∂Σ

∂h

∂ν
≤
∫
∂Σ

∂h

∂η
=

∫
p××∂Σ

∆h = Vol(p××∂Σ).

This area comparison does not hold in Sn: Area(Σ) > Area(p××∂Σ) when Σ is the Clifford

torus in the northern hemisphere and p is the north pole.

Now that we have the angle and area comparisons we can apply the cutting and inserting

argument as in Section 2 to prove

4πA ≤ L2 −A2

for a minimal surface Σ2 ⊂ Hn with ∂Σ radially connected from a point p ∈ Σ. In-

stead of cutting and inserting, one could use the approximation argument that p××∂Σ with

Angle(∂Σ, p) ≥ 2π can be approximated by a sequence of smooth surfaces {Si} with Gaussian

curvature KSi ≤ −1. One then uses Bol’s isoperimetric inequality [Bo] 4πA ≤ L2 −A2 for a

simply connected surface S with KS ≤ −1.
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5 Ray preserving metric

As mentioned above, Bol [Bo] has proved that a simply connected surface S satisfies

4πA ≤ L2 +

(
sup
S
KS

)
A2.

Therefore one is tempted to conjecture that if Σ is a minimal surface in a Riemannian manifold

M with nonconstant sectional curvature KM ≤ K, then

4πA ≤ L2 +KA2.

For this conjecture, however, we cannot resort to the cone method because it is not possible

to prove the area and angle comparisons

Area(Σ) ≤ Area(p××∂Σ), Angle(∂Σ, p) ≥ 2π.

Indeed, even if we have

∆ log(1 + cosh r) ≥ 1 on Σ ⊂M with KM ≤ −1, (15)

we cannot prove

∆ log(1 + cosh r) = 1 on p××∂Σ.

Hence we can only say that

Area(Σ) ≤
∫
∂Σ

sinh r

1 + cosh r

∂r

∂ν
≤
∫
∂Σ

sinh r

1 + cosh r

∂r

∂η
6= Area(p××∂Σ). (16)

So let’s forget about p××Σ and consider the integral
∫
∂Σ

sinh r
1+cosh r

∂r
∂η . This integral is to be com-

puted on the 1-dimensional set ∂Σ but let’s move ∂Σ to a more agreeable ambient space(i.e.,

space form) and compute the integral there; or equivalently, let’s give a constant curvature

(K = −1) metric to p××∂Σ.

Among infinitely many constant curvature metrics on p××∂Σ we want the one that pre-

serves
∫
∂Σ

sinh r
1+cosh r

∂r
∂η . So we want the constant curvature metric ĝ on p××∂Σ that preserves

all of the distance function r, ∂r
∂η and the arclength element ds of ∂Σ. Let’s call ĝ the ray

preserving metric. Hence (i) every geodesic from p under the original metric g on p××∂Σ

remains a geodesic of equal length under ĝ, (ii) the angles between the tangent vctor to ∂Σ

and the geodesic from p remain unchanged, and (iii) the length of any arc of ∂Σ remains the

same.

As a matter of fact, condition (ii) follows from (i) and (iii), and conversely, condition (i)

follows from (ii) and (iii). Therefore one can find the ray preserving metric ĝ by developing

p××∂Σ on the hyperbolic plane H2 when KM ≤ −1 (or on R2 when KM ≤ 0) as follows. Fix

a point q0 in ∂Σ and choose two points p̂ and q̂0 in H2 (or in R2) such that dist(p, q0) =

dist(p̂, q̂0). Let Γ be a curve in H2 (or in R2) starting from q̂0. Parametrize both ∂Σ and Γ

by arc length s such that ∂Σ(0) = q0 and Γ(0) = q̂0. Define θ(s)(θ̂(s), respectively) to be the

angle between ∂Σ and the geodesic from p to ∂Σ(s) (between Γ and the geodesic from p̂ to

Γ(s), respectively). Assume further that Γ satisfies

θ(s) = θ̂(s).
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This is a first order ODE and so such a Γ exists uniquely. Thus the map φ mapping the

geodesic from p to ∂Σ(s) to the geodesic from p̂ to Γ(s) can pull back the constant curvature

metric of p̂××Γ to p××∂Σ, which is the desired ray preserving metric ĝ.

Denote (p××∂Σ, ĝ) by Ĉ. We have the following comparison results between Σ, p××∂Σ

and Ĉ.

Theorem 2 ([CG3]) Let Σ2 be a minimal surface in a simply connected Riemannian mani-

fold Mn of sectional curvature bounded above by a constant K(= 0 or −1). Then

(a) Area (Σ) ≤ Area(Ĉ);

(b) ΘΣ(p) ≤ ΘĈ(p), with equality if and only if Σ = Ĉ;

(c) Area(p××∂Σ) ≤ Area(Ĉ);

(d) Θp××∂Σ(p) ≤ ΘĈ(p).

(e) Let k(s) and k̂(s) be the inward geodesic curvatures of ∂Σ in p××∂Σ and in Ĉ, respectively.

Then k(p) ≥ k̂(s).

In order to prove Theorem 2 and inequality (15) we need to compute the Laplacian of some

distance functions with conditions KM ≤ K and KĈ = K. This will be done in the following

section.

6 Varying curvature

The distance function on a Riemannian manifold M , being the simplest geometric function

on M , implicitly gives us many pieces of information on the geometry of M . Actually all the

results obtained so far in this article have arisen from the Laplacian of functions of distance.

In this section, given the curvature comparison KM ≤ KM , let’s see what one can say about

the distance functions of M and M .

Let r(x) be the distance from a fixed point p to x in M . Assume that γ is a geodesic from

p to q, v a vector at q perpendicular to γ, and X the Jacobi field along γ satisfying X(p) = 0

and X(q) = v. Then

Hess r(X,X) =

〈
X,∇X

∂

∂r

〉
=

∫ r

0

d

dr

〈
X,∇ ∂

∂r
X
〉

=

∫ r

0

(∣∣∣∇ ∂
∂r
X
∣∣∣2 −〈R(X, ∂

∂r

)
∂

∂r
,X

〉)
,

which is the second variation of the length of γ associated with X. The Jacobi field minimizes

the second variation among all vector fields along γ with the same boundary conditions.

Therefore if the sectional curvature of Mn is bounded from above by that of a Riemannian

manifold M
n

which has a distance function r̄ with r̄(x) = dist(p̄, x), then one gets the Hessian

comparison

Hess r(v, v) ≥ Hess r̄(u, u), (17)

where u is the vector at q̄ ∈M perpendicular to the geodesic γ̄ from p̄ to q̄ with r̄(q̄) = r(q)

and |u| = |v|.
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Let Σm be a submanifold of M with mean curvature vector ~H. Given a smooth function

f on M , there are two types of Laplacian of f |Σ on Σ, ∆̄f and ∆f : for an orthonormal basis

{e1, ..., em} of Σ define

∆̄f =

m∑
i=1

Hess f(ei, ei), ∆f =

m∑
i=1

Hess f |Σ(ei, ei).

From (9) one sees that

∆̄f = ∆f − ~Hf. (18)

Therefore if Σ is minimal in M , the intrinsic Laplacian ∆f can be replaced with ∆̄f which

is more extrinsic and easier to compute. With (17) and (18) we are now ready to compute

the Laplacian of functions of distance.

Lemma 1 Let Σ2 be a minimal surface in a simply connected Riemannian manifold Mn of

sectional curvature ≤ K (= 0 or −1).

If K = 0, we have on Σ

(a) ∆r2 ≥ 4;

(b) ∆ log r ≥ 2πΘΣ(p)δp for p ∈ Σ.

If K = −1,

(c) ∆ log(1 + cosh r) ≥ 1;

(d) ∆ log sinh r
1+cosh r ≥ 2πΘΣ(p)δp for p ∈ Σ.

Proof. Assume that M
n

is a complete simply connected Riemannian manifold of constant

sectional curvature K. Let g, ḡ denote the metrics of M and M , respectively, and let ∇, ∇
denote the Riemannian connections of M and M , respectively. When M = Rn, we have

Hess r̄2 = 2ḡ.

Since

∇2r2 = 2r∇2r + 2∇r ⊗∇r and ∇2
r̄2 = 2r̄∇2

r̄ + 2∇r̄ ⊗∇r̄,

(17) and (18) yield (a). Then

∆r = div
1

2r
∇r2 =

1

2r
∆r2 − 1

2r2
〈∇r, 2r∇r〉 ≥ 1

r

(
2− |∇r|2

)
,

and hence

∆ log r = div
1

r
∇r =

1

r
∆r − 1

r2
|∇r|2 ≥ 2

r2
(1− |∇r|2) ≥ 0.

Near p, Σ is approximately TpΣ or the tangent cone of Σ at p, on which ∆ log r = 2πΘΣ(p)δp.

Therefore on Σ we have (b). From (8) we get

Hess r̄ = coth r̄(ḡ −∇r̄ ⊗∇r̄),

and so

∆r ≥ (2− |∇r|2) coth r.
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Then

∆ log(1 + cosh r) = div
sinh r

1 + cosh r
∇r =

1

1 + cosh r
|∇r|2 +

sinh r

1 + cosh r
∆r

≥ 2 cosh r + |∇r|2(1− cosh r)

1 + cosh r
≥ 1,

which gives (c). Now we have

∆ log
sinh r

1 + cosh r
= div

1

sinh r
∇r = − cosh r

sinh2 r
|∇r|2 +

1

sinh r
∆r

≥ 2 cosh r(1− |∇r|2)

sinh2 r
≥ 0.

Note that f(r) := 1
2π log sinh r

1+cosh r is a fundamental solution of the Laplacian on the hyperbolic

plane since 1
2πf ′(r) = sinh r is the length of a Jacobi field. So (d) follows. �

Lemma 2 Let Σ2 be a minimal surface in a simply connected Riemannian manifold Mn of

sectional curvature ≤ K (= 0 or −1). Assume that r is the distance from p and Ĉ denotes

the cone p××∂Σ with the ray preserving metric ĝ of constant curvature KĈ = 0 or −1. Then

on Ĉ

(a) ∆r2 = 4, if KĈ = 0; ∆ log(1 + cosh r) = 1, if KĈ = −1;

(b) ∆ log r = 2πΘĈ(p)δp, if KĈ = 0; ∆ log sinh r
1+cosh r = 2πΘĈ(p)δp, if KĈ = −1.

Proof. On Ĉ ∇r is perpendicular to the mean curvature vector of Ĉ. Hence (18) implies that

for any function f of distance r, ∆̄f = ∆f on Ĉ. Moreover |∇r| ≡ 1 on Ĉ. It follows that all

the inequalities in the proof of Lemma 1 become equalities. This proves the lemma except for

the constant α. The constant 2π that appears in the Laplacian of the fundamental solution

on R2 and H2 comes from the limit as a → 0 of the circumference of the circle of radius a

with center at p̄ divided by a. Similarly, if Sa(p) denotes the geodesic sphere of radius a with

center at p, α equals lima→0
1
aLength(Ĉ ∩ Sa(p)), which is 2πΘĈ(p). �

Now that we have proved Lemmas 1 and 2, we can modify (16) when KM ≤ −1 as follows:

Area(Σ) ≤
∫
∂Σ

sinh r

1 + cosh r

∂r

∂ν
≤
∫
∂Σ

sinh r

1 + cosh r

∂r

∂η
=

∫
Ĉ

∆ log(1 + cosh r) = Area(Ĉ).

Moreover

2π ≤ 2πΘΣ(p) ≤
∫

Σ
∆ log

sinh r

1 + cosh r
=

∫
∂Σ

1

sinh r

∂r

∂ν

≤
∫
∂Σ

1

sinh r

∂r

∂η
=

∫
Ĉ

∆ log
sinh r

1 + cosh r
= 2πΘĈ(p).

Similarly, when KM ≤ 0,

4 Area(Σ) ≤
∫
∂Σ

2r
∂r

∂ν
≤
∫
∂Σ

2r
∂r

∂η
=

∫
Ĉ

∆r2 = 4 Area(Ĉ),

and

2π ≤ 2πΘΣ(p) ≤
∫

Σ
∆ log r =

∫
∂Σ

1

r

∂r

∂ν

≤
∫
∂Σ

1

r

∂r

∂η
=

∫
Ĉ

∆ log r = 2πΘĈ(p).
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Therefore as in Sections 2 and 4 we can prove

4πArea(Ĉ) ≤ Length(∂Σ)2 +KArea(Ĉ)2.

Then from the monotonicity of the function f(A) = 4πA+A2 for A > 0 we get the following:

Theorem 3 Let Σ be a minimal surface in a simply connected Riemannian manifold M with

sectional curvature ≤ K(= 0 or −1). If ∂Σ is radially connected from a point of Σ, then

4πA ≤ L2 +KA2.

It remains to prove (c),(d),(e) of Theorem 2. Let V be a Jacobi field along a geodesic γ

from p to q on p××∂Σ satisfying V (p) = 0, V ⊥ γ′ and let V̂ be a Jacobi field along γ on

Ĉ satisfying V̂ (p) = 0 and V̂ (q) = V (q). Since Kp××∂Σ ≤ KĈ , it follows from the Jacobi

equation that

|V (γ(t))| ≤ |V̂ (γ(t))|. (19)

Therefore (c) and (d) follow easily. Remember that the angles that the rays from p make

with ∂Σ remain the same when the metric of p××∂Σ is changed into the ray preserving metric

of Ĉ. However, (19) implies that the angle between the rays at p increases. Hence it is not

difficult to conclude that the geodesic curvature of ∂Σ decreases when the metric of p××∂Σ

is changed into the ray preserving metric of Ĉ. See Proposition 4 of [CG3] for the details.

7 Embeddedness

In this article so far we have seen that the area comparison and angle comparison both

played a key role in proving the isoperimetric inequality of minimal surfaces. We have also

seen that the area comparison alone gave us unexpected information about the stability and

index of a minimal surface. In this section we will see that the angle comparison alone can

provide us with some valuable information about the embeddedness of a minimal surface and

knottedness of a Jordan curve.

The Douglas solution of the Plateau problem gave rise to three interesting problems about

a minimal surface Σ spanning a given Jordan curve Γ in Rn: If the total curvature of Γ is

not bigger than 4π, is Σ unique? Is Σ embedded? Does Σ have no genus? The uniqueness

of a disk-type Σ was proved by Nitsche [N], the embeddedness of Σ was proved in 2002 by

Ekholm-White-Wienholtz [EWW], and the third problem is still open.

One can understand Ekholm-White-Wienholtz’s proof of the embeddedness more easily

by using the angle comparison as follows. Theorem 2 (b) gives

2πΘΣ(p) ≤ 2πΘp××∂Σ(p) =

∫
∂Σ
〈~k, η〉 ≤

∫
∂Σ
|~k| ≤ 4π,

where the equality is due to the Gauss-Bonnet theorem with ~k the curvature vector of ∂Σ

and η the outward unit conormal to ∂Σ on p××∂Σ. Hence ΘΣ(p) < 2 and Σ is embedded.

11



R. Gulliver and I generalized Ekholm-White-Wienholtz’s theorem to minimal surfaces in

a Riemannian manifold of sectional curvature bounded above by a nonpositive constant K.

The key difference comes from the Gauss-Bonnet theorem on Ĉ:

2πΘĈ(p) =

∫
∂Σ
〈~k, η〉+KArea(Ĉ),

which, compared with Σ ⊂ Rn, has an extra term KArea(Ĉ). Consequently Theorem 2

(b),(c),(d),(e) yield the following:

Theorem 4 Let Σ2 be a minimal surface in a complete simply connected Riemannian man-

ifold Mn with KM ≤ K ≤ 0. If∫
∂Σ
|~k| ≤ 4π −K infp∈CH(∂Σ)Area(p××∂Σ),

where CH(∂Σ) is the convex hull of ∂Σ, then Σ is embedded.

Figure 1: Nonexistent Star

Ekholm-White-Wienholtz remarked that the embeddedness of a minimal disk Σ (when∫
∂Σ |~k| ≤ 4π) implies the unknottedness of ∂Σ, giving a new proof of Fáry-Milnor’s theorem.

Recently a student of mine named Sung-Hong Min[M] has obtained a new criterion for the

unknottedness of a Jordan curve:

Theorem 5 A piecewise-linear Jordan curve Γ5 with five vertices in R3 is unknotted.
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By this theorem the well-known star knot of Figure 1 cannot exist! Min’s proof is based

on the observation that the tangent indicatrix of Γ5 ⊂ Rn is a closed curve consisting of 5

geodesics of length < π on Sn−1 and hence∫
Γ5

|~k| < 4π.

A remarkable fact is that this theorem holds in H3 and S3 as well, that is, every piecewise-

geodesic Jordan curve Γ5 with five vertices in H3 or in a geodesic ball of radius π/4 in S3 is

unknotted.

This fact is surprising when we note that Choe-Gulliver’s theorem needs an extra term

for the non-Euclidean space whereas Min’s theorem requires no extra assumption for Γ5 in

non-Euclidean space. A clue can be found in the angle comparison: Γ5 should bound a

minimal disk Σ in H3 or S3, and Σ must be embedded due to the angle comparison. Why?

Because (i) inequality (14) and Theorem 2 (b) for Σ can be rewritten as

ΘΣ(p) ≤ Θp××∂Σ(p),

(ii) when ∂Σ is piecewise-geodesic, p××∂Σ is the union of 5 totally geodesic triangles, (iii)

Θp××∂Σ(p) is the same whether ∂Σ = Γ5 is in H3, S3 or R3, (iv) 2πΘp××∂Σ(p) = total curvature

of Γ5 when Γ5 is in R3, which has been proved to be less than 4π.

References

[Bo] G. Bol, Isoperimetrische Ungleichungen für Bereiche auf Flächen, Jahres ber. Dtsch.
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