RELATIVE ISOPERIMETRIC INEQUALITY FOR DOMAINS OUTSIDE A
CONVEX SET
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ABSTRACT. Given a convex se€ C R™ and a setD C R"™ ~ C, the inequality

%n%;nVolume(D)"*1 < Volume(9D ~ 9C)™ is called the relative isoperimetric

inequality. We prove this inequality in three cases: i) wiiéand D are symmetric about
n — 1 mutually orthogonal vertical hyperplanes afidd N 9C' is a graph over a hori-
zontal hyperplane; ii) whedD ~ 9C anddD N 9C are graphs over a subsdtof a
horizontal hyperplane such thatis symmetric about — 1 mutually orthogonal vertical
hyperplanes; iii) wherC' is ann-dimensional ball. Also, ifS is a disk type surface of
nonpositive Gaussian curvature aiid_ 0S5 is connected and concave, it is proved that
2mArea(S) < Length(dS ~ T')2. These relative isoperimetric inequalities are sharp.
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1. Introduction
The classical isoperimetric inequality states thabifs a set inR"™ andw,, is the volume
of a unit ball inR", then

1) n"w, Volume(D)" ! < Volume(dD)"

and equality holds if and only iD is a ball. An immediate consequence of this inequality
is that if H is a closed half space &' and D is a subset of{ then

1
5n"anolume(D)"_1 < Volume(9D ~ 0H)"

and equality holds if and only iD is a half ball with the flat part of its boundary contained
in 0H. This follows if one applies (1) to the union &f and its mirror image acrossH .
Then a natural question to ask is the following.dfC R™ is a convex set and is a
subset oR™ ~ C, doesD satisfy the isoperimetric inequality

1
2 5n”wnVolume(D)’“1 < Volume(dD ~ 9C)™?

Does equality hold if and only i€ = H and D is a half ball with the flat part of its

boundary lying in0H? (2) is called theelative isoperimetric inequality(' is called the

supporting set ofD, and Volume(dD ~ 90C) is called the relative volume d@iD. For

n = 2 one can easily prove (2) by reflecting the convex hulDadbout its linear boundary.
A partial answer fom > 3 was recently obtained by I. Kim [7]; he showed that if

U={(x,y) € R?:y > f(x), f" > 0}, then (2) holds foC' = U x R"~2. In this paper
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we prove that the relative isoperimetric inequality holdS'is a graph which is symmetric
aboutn — 1 hyperplanes oR™. In particular, we prove (2) whe@' is a ball. The tools
we use are Gromov's method of using the divergence theorem and Steiner's method of
symmetrization.

Moreover we prove the relative isoperimetric inequality on a disk type sufacé
nonpositive Gaussian curvature. In 1926 Weil [10] showed that such a s\ fesaitsfies

47 Area(S) < Length(9S)>.

By contrast we prove that If is a connected subset@f on which the geodesic curvature
is not positive with respect to the inward unit normal, then

2 Area(S) < Length(9S ~ T')?

and equality holds if and only if is a flat half disk.
Added in proaf The author and M. Rit@[11] have recently proved the relative isoperi-
metric inequality in the general setting using a different method.

2. Gromov’s method

In [5] Gromov gave a new proof of the classical isoperimetric inequality. His proof is
based on a volume-preserving map whose divergence is bigger than or equal to the dimen-
sion of space. In this section we shall see how Gromov’s method can be adapted for our
purpose and why the convexity of the supporting set is necessary.

Theorem 1. Let C be a convex set iR™ and D a subset oR"™ ~ C with piecewise
C' boundary. Suppose that every normal veetdo 0D N 0C toward the exterior ofD
does not point upward, that i$y, %} < 0 for the unit vertical vecto%%. Suppose also
that there exist vertical hyperplanék,, ..., IT,,_; which are mutually perpendicular such
that C and D are symmetric about each of them. Then

%n”anolume(D)”*1 < Volume(0D ~ 0C)",

where equality holds if and only i is a half ball.

Proof. First let us define &' map¢p : D — [0, 1] by

QSD(I'l, ’xn) = (¢17 "'7¢n)7 ¢Z =

v;
B
v;
v =L (a',...,a") €D :ad =27 1<j<i—1,—00<a <o0,i <k<n},
T; = L”_Hl{(al, wna™) ED: o =27,1<j<i-1,—o00<a' <z, —oo0< ak < o0o,i+l < k},
where L* is the k-dimensional Lebesgue measure. Thgn= ¢'(z!,...,2%) and the Ja-
cobian matrix of¢p, (g%;), is lower triangular with diagonal entrie%% = ”Ui and

o'\ 1
det <8J:j> =0

go" = L. Therefore
T Un
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Similarly, defineg : B — [0, 1]" whereB is the half ball
®) {(@',.;2") €R" 12" 2 0,) (a')* < (2w, ' Volume(D))*/"}.

Note thatVolume(B) = Volume(D) = v;. Like ¢p the Jacobian determinant ¢f;
equalsl/v;. Lety : D — B be defined by) = ¢§1 o ¢p. Then the Jacobian determinant
of ¢ equals 1. In other wordg; is a volume-preserving map.

Now let us consider a vector field on D defined byV (z)=the position vector of
Y(x), x € D. Since the Jacobian matrix gfis also lower triangular, it follows from the
arithmetic-geometric mean inequality that

@) n = n(det DY)!/™ < divV.

Let IT,, be the horizontal hyperplanfx™ = 0} and letUy, ..., Us.—1 be the congruent
subsets ofl,, separated by the vertical hyperplareés, ..., IT,,_;. TranslatingC and D

in a suitable way we may assume that edhcontains(0, ..., 0). Define the projection
p:R" = II,, by p(at, ...,2") = (2!, ...,2"~1,0). By the divergence theorem applied to
(4), we have

(5) nVolume(D) < / (V,n) +/ (V,n),
dD~OC aDNaC
wherer is the outward unit normal toD. By (3) we have
(6) V| < (2w;, *Volume(D))"/™ on D ~ AC.
By the symmetry of” and D aboutll, ..., II,,_; and by the convexity of’, we get
@) (V,n) <0ondDNAC.

This is because it € D N dC andp(z) € Uy, 1 < k < 271, then bothy(z) and
—p(qy) lie in Uy, whereg,, € R™ is the point whose position vector is Therefore it
follows from (5),(6), and (7) that

nVolume(D) < (2w, Volume(D))'/"Volume(dD ~ 8C),

which imples (2).
Now let us assume that equality holds in (2). Then we have equality in (4),(5),(6), and
(7). Hence

(8) gﬁ: =1lon D,

9) V = (2w;, Volume(D))* ™y on 8D ~ dC,
and

(10) V LnondDNoC.

Therefore (8) and the fact thaty is lower triangular imply that
(11) Y=zt + fizt, 2t i =1, 0.
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Let A; andAs be disjoint subsets ¢fD ~ 9C such that:™(¢(A41)) > 0, "™ (¥(A2)) =0
andA; UA; = 0D ~ 0C. By (9) 3", (/))? = (2w;, ! Volume(D))?/™ on A; and hence

0 = Y widyi= Zw (d +Zaf¢ )
=1

i=1

- , " Of7 ,
_ 7 Vi 7
= Z(l/} +‘Z P 8xi)dx'
j=i+1

Therefore the vector

=~ OfI "L Of - of"
(w%Zwaip ¢2+ZW87£2,---,1/} L gn ;’Z - )

j=2 j=3

is normal toA4;. (9) then implies that there is a constantlepending on the point of;
such that

(¢1+Zwa T ¢2+Z% 30 w"*1+w”8i{:, w) = (ay', . ay™).

Sincey)™ > 0 on A;, comparing the last components of these vectors givesl. Hence
the second last components give us
afm
oxn—1
Let us now fixz!, ...,z"~2. Then (11) and (12) imply that

(13) 1/]1 — bl, " wn—Q — bn—27 wn—l — xn—l + bn—l’ ,L/]n — xn + bn7 on A17

(12)

:OOHAl.

whereb!, ..., b" are constants. It follows thatr! = constant : i = 1,....n — 2} N A;

is a translate of a semicircle anB ~ II,,. Since we can arbitrarily move and rotate the
rectangular coordinates', ..., ™"~ while fixing 2", we can say that the intersection of
A with any 2-plane perpendicular to the horizontal hyperplpés a semicircle.

Choose a poing € A; such that)(q) is the north pole ofB. Then from (13) we
conclude that the intersection df; with any 2-planeP which passes through and is
perpendicular tdT,, is part of a semicircle of radiuQw;, ' Volume(D))'/". Thus4, is
congruent to a subset of the northern hemisplide~ 11,.

On the other hand (10) implies thaD N 9C is flat; for otherwise there should exist a
point at which(V,n) < 0. Note that

Y{AU (0D NOC)} = BNIL,.
But by (9) we have
¥(As) C (B NIL,).
Hence
Y(OD N OC) = BNII, and (0D ~ 9C) = 0B ~ 11,,.
ThereforeD is a half ball.



RELATIVE ISOPERIMETRIC INEQUALITY 5

3. Symmetrization

One of the oldest and most powerful methods in isoperimetric inequalities is Steiner’s
symmetrization [9]. The key idea of this method is that gikdanctionsz™ = f; (2!, ..., 2" 1),
o 2= fr(zt,...,2"1), the volume of the graph of the average functiorygf..., fy is
not bigger than the average of the volumes of the graplfs,of, fx. This volume estimate
is based on the simple inequality fevectors inR™: vy + ... + vk| < |ug| + ... + |vg]. In
this section, using the symmetrization method, we shall improve Theorem 1.

Theorem 2. Let C be a convex set iR™, D a subset oR" ~ C with piecewiseC'"
boundary, andl,, a horizontal hyperplandz™ = 0}. Suppose that bothD ~ dC and
0D N oC are graphs over a closed sét C II,,. If A is symmetric about — 1 vertical
hyperplanedl, ..., IT,,_; which are mutually perpendicular, then

1
5n"wnVolume(D)”_1 < Volume(dD ~ 9C)",

where equality holds if and only i is a half ball.

Proof. Let fo, g0 : A — R be the functions defined by* = fo(z?!,...,2" 1), 2" =
go(zt, ...,2" 1) such tha D ~ 9C,dD N AC are the graphs ofy, go, respectively. Let
G be the group of isometries @™ generated by, — 1 horizontal reflections which leave
II,, ..., II,,_; fixed, respectively.G consists oR"~! elements, say;i, ..., 7on—1. Define
fi = foor;andg; = goor;,i = 1,...,2"" L. Also definef = 2" Zfl;l fisg =
91-n 22" " g Sincefy > go on A andfy = go on9A, we havef > gon A andf = g
ondA. Hence grapby) and grapliy) enclose a domaid, and it is easy to see that

~

(14) Volume(D) = Volume(D).

Note also thatD is symmetric aboufly, ..., IT,,_; and grapky) C dD is a subset 0HC
for some convex doamaifi. Moreover

Volume(dD ~ dC) = Volume(graph(f))

- dfi - ofi

o 1—n 1—n

- /A (2 Ei:axl""ﬂ ;axn_l,lﬂ
_ dfi ofi _

_ 1—n n—1

_ /( I YR CF >|

2n71
_ dfi Of;
1—-n
2 [ S| (Gt

2n—1

— 273" Volume(graph(f;)) = Volume(graph(fo))

i=1

IN

(15) = Volume(0D ~ 9C).
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Therefore by Theorem 1 applied € D and by (14) and (15), we get the desired inequal-
ity.
Suppose equality holds fdp. Then by Theorem 1, (14), and (15) equality should also
hold for D. Hence (15) becomes equality ame:E constant. So
gﬁ :%forlgi,jgw—l, 1<k<n-1,
andgraph(go) is a hyperplane. Thereforg is symmetric aboufl, ..., II,,_; and hence
go = constant. Thus from Theorem 1 it follows thd® is a half ball.

Although the symmetry assumption is required in Theorems 1 and 2, it is not necessary
in case the convex sét is a ball:

Theorem 3.If Cisaball inR™ and D is a subset oR™ ~ C with rectifiable boundary,
then .
§n”aun\/'olume(D)”*1 < Volume (9D ~ 0C)"
with equality if and only ifD is a half ball.

It is easy to prove this theorem once we know that the isoperimetric region of the com-
plement of a ball is rotationally symmetric about a line through the center of the ball.

Lemma. Outside a ballC c R" there exists a seb whose boundary has the least
relative volumeVolume (9D ~ C') among all sets outsid€ with the same volume 4s.
In fact, 0D ~ 9C is a spherical cap perpendicular @C and oD N dC lies in an open
hemisphere ofC.

Proof of Lemma.The existence o) can be obtained by following the compactness
argument in [8], pp. 441-444. Obvious@@ ~ JC has constant mean curvature and
makes90° with dC. We claim thatD is rotationally symmetric about a line. Suppose not.
Then there exists am—3)-dimensional great sphefein 9C such thatD is not symmetric
about any hyperplane containitty Choose a hyperplarié containingsS' that devidesD
into Dy and D, of equal volume. Suppose without loss of generality ¥atime (9D, ~
(8C UTI)) < Volume(dDy ~ (9C UTI)). Let D3 be the mirror image oD, acrossil
and defineD, 3 to be the union of the closures 8f, and Ds. If 9D ~ 9C intersectd] at
90°, then the unique continuation property of the constant mean curvature hypersurfaces
implies thatD is symmetric abouil, contradicting our hypothesis. Therefore some part
of D15 ~ AC should be not! alongIl. Then we can slightly perturﬁlg along this
singular part to get a sé’ ¢ R™ ~ C such that

Volume(D') = Volume(D;3) = Volume(D),

and
Volume(dD' ~ 9C) < Volume(dDy3 ~ dC) < Volume(dD ~ AC).
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But this contradicts the least relative volume properbﬁﬁ)‘. HenceD must be rotation-
ally symmetric about a liné. Now let {q} = (9D ~ dC) N [ and take a spherical cap
A throughg which is rotationally symmetric abodtand has the same mean curvature as
dD ~ 8C. SincedD ~ OC is tangent tod atq, we can apply the maximum principle and
conclude thabD ~ IC itself is a spherical cap. ThenD N C is a subset of an open
hemisphere 0dC.

Proof of Theorem 3Let D be as in Lemma witiVolume(D) = Volume(D). Let D*
be the convex hull oD and F the flat part o9 D*. Then

1 1
57”L"anOIume(D)"_1 < 5V”L"anolume(D*)"_1 < Volume(0D* ~ F)"
= Volume(dD ~ dC)" < Volume(dD ~ dC)".

If equality holds, thero D has the least relative volume and hence by Lenina- D.
Also the inequalities above should become equality anb se D*. ThereforeD is a half
ball andoC' is a hyperplane.

4. Negatively curved surfaces
It was Carleman [4] who first showed that the classical isoperimetric inequality

(16) 4 Area(S) < Length(9S)?

remains valid for a disk type minimal surfaSdn space. Then in 1926 Weil [10] obtained

the same result for a disk type surface of negative Gaussian curvature. Thereafter a variety
of different methods were employed by a dozen mathematicians to prove the same or more
general inequality; Bol [2] used parallel curves and Alexandrov [1] used the method of
polyhedral approximation. Huber's method [6] was to improve the inequality of Carleman
and its generalization to subharmonic functions by Beckenbach and R&ad In this
section we give a new simple proof of (16) using the maximum principle: Given a disk
type negatively curved surfac® we construct a flat surfac® with area larger than that

of S and perimeter equal to that 6t Then (16) follows immediately from the classical
isoperimetric inequality foD. In fact, a more general theorem is provedd is concave

onI'; C 95, then

2mArea(S) < Length(dS ~ T'y)?

with equality if and only ifS is a flat half disk.

Theorem 4. Let S be a disk type surface of nonpositive Gaussian curvature. Suppose
that 95 is the disjoint union of'; andI'y such thafl’; is connected and concave, i.e., if
¢(s) is an arclength parametrization @f,, thenc” (s) vanishes or points outward fror\.

Then

2rArea(S) < Length(I'z)?
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and equality holds if and only # is a flat half disk.

Proof. Let D ¢ R? be a half disk with the diametet; and the semicircl€ such that
0D = C; U C,. Take the coordinates andy of R? such that: = 0 onC; andz > 0 on
C>. Assuming that: andy are also the isothermal coordinatesS¥ia a conformal map
¢ : D — S, we can write the metric of asg = €2/ (dz? + dy?) for some functionf on
D. ltis well known that the Gaussian curvatukeof S satisfies

K=—e2Af.
So by the curvature hypothesis
a7 Af>0onD.

Let h be the harmonic function oP satisfying the mixed boundary condition

(18) h = fon Cy

and

(19) % =0on Cy
ov

wherev is the outward unit normal t@;. The key point here is that the concavityIof
implies

This is because

(20) L <.
0 0 0
> V _ - = - = Vv _ it i

0 = < e ffd@ye ayae > < (93/’ e f%e 8x>

8
oz
0
_ —3f —3f )
- < w%> < Niw>

1 3,010 _s0f 0f
——e —_— = _ = .
2 Jzx |y or Ov
Using the maximum principle, we can conclude from (17),(18),(19), and (20) that

(21) h> fonD.

Now let us introduce a surfac® which is D equipped with the new flat metrig =
e (dx? + dy?). Actually D is the image ofD in the complex plane under the complex
analytic functiong(z) such thatlog |¢(z)| = h(z,y),z = = + iy. Denote byC:, Cs
the parts oD which correspond t@’;, C, of 9D, respectively. From (19) it follows re-
markably thaC'; is also a line segment ilD. HenceD satisfies the relative isoperimetric
inequality

2w Area(D) < Length(Cy)?.
However, (21) and (18) imply respectively that

Area(S) < Area(D) and Length(T'y) = Length(C).
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Therefore

2mArea(S) < Length(T2)?.

If equality holds here, the® is a half disk andf = h on D. ThusS is also a half disk.
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