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1. introduction

In 1873, Schwarz [14] found a way to extend the domain of the definition of a
complex analytic function. It states that if an analytic function f(z) is defined in
the upper half-plane, extends to a continuous function on the real axis, and takes
on real values on the real axis, then one can extend it to an analytic function in the
whole plane by the formula

f(z) = f(z).

What is remarkable in this extension is that the resulting function must also be
analytic along the real axis, even though one assumes no differentiability there.

The reflection principle can be used to reflect a harmonic function h(x, y) defined
in the upper half-plane, which continuously extends to the zero value on the x-axis.
The extension of h to the lower half-plane is based on the rule

h(x,−y) = −h(x, y).
Schwarz’s reflection principle has a natural generalization for minimal surfaces as

well: If a minimal surface Σ contains a line segment ℓ on its boundary, then Σ can
be analytically extended across ℓ by rotating Σ about ℓ by 180◦. Moreover, if Σ is
perpendicular to a plane Π along ∂Σ∩Π, one can extend Σ across ∂Σ∩Π by taking
its mirror image over Π.

In [1] the author extended Schwarz’s reflection: If Σ meets Π along ∂Σ ∩ Π at
a constant contact angle( ̸= 90◦), then Σ has an analytic reflection Σ∗ across Π, so
that Σ ∪ Σ∗ is minimal.

In this paper we further generalize the reflection principle: The sphere can become
a mirror like the plane. To be precise, one can reflect a minimal surface across a
sphere if it is perpendicular to the sphere along its boundary.

This new reflection principle will be pivotal in studying free boundary minimal
surfaces in a ball. Nitsche proved that every free boundary minimal disk in a ball
must be a flat equatorial disk [11]. Nitsche’s result has led many mathematicians,
including Nitsche himself and Fraser-Li [4], to conceive the conjecture that every
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embedded free boundary minimal annulus in a ball should be the critical catenoid,
the part of the catenoid in a ball perpendicular to the boundary sphere. In this con-
jecture, the hypotheses of embeddedness and 90◦-contact-angle are indispensable,
as Fernández-Hauswirth-Mira have recently constructed immersed free boundary
minimal annuli and embedded minimal annuli with non-orthogonal contact angle in
a ball [3]. Recently, there have been partial answers to the conjecture: [6], [8], [10],
[15]. In this paper, we use the reflection principle to prove this conjecture in the
affirmative as follows.

Solve the Cauchy problem for the Laplacian to choose specific isothermal coor-
dinates. Use these coordinates to transform the Steklov condition into the Schwarz
condition and establish the reflection principle for the free boundary minimal sur-
faces in a ball. Reflect the free boundary minimal annulus Σ across its two bound-
aries alternatingly and infinitely many times. Then, one can get a complete minimal

surface with two ends Σ̃. If Σ is embedded, Σ̃ has a total curvature of −4π. There-

fore Σ̃ must be the catenoid, and Σ the critical catenoid.
Acknowledgments. The author thanks Pablo Mira for helpful discussions on the

Cauchy problem.

2. Cauchy problem

Given a minimal surface Σ in R3, one can introduce isothermal coordinates x, y
to express the metric of Σ as

ds2 = F (x, y)2(dx2 + dy2).

Let Ψ be the conformal harmonic map Ψ from D ⊂ R2 onto Σ that pushes forward
the Euclidean coordinates of R2 to the isothermal coordinates x, y on Σ. Suppose Σ
is simply connected or doubly connected, i.e., annular. So let D = {(x, y) : x2+y2 <
1, 0 < y} and δ = {(x, 0) : −1 < x < 1}, or let D be an infinite strip R× (0, a) with
δ := R × {0}, and Ψ a periodic map. This paper concerns the case where Σ has a
free boundary γ ⊂ ∂Σ in the unit sphere S2. One can choose Ψ so that γ = Ψ(δ).
By Lewy’s regularity theorem [9], γ is an analytic curve and F (x, 0) is an analytic
positive function on γ.

To establish the reflection principle for Σ, we need specific isothermal coordinates
x, y, which satisfies F (x, y) = 1 along the free boundary γ. To find such x, y, we
first need to solve the Cauchy problem for the Laplacian.

Cauchy problem. Given analytic functions g(x) and f(x) on the free
boundary γ ⊂ ∂Σ ⊂ S2 of the minimal surface Σ ⊂ R3, find a harmonic
function h(x, y) on Σ satisfying

h = g and
∂h

∂ν
= f along γ,

where ν is the inward unit conormal to γ on Σ.

It is only known that the Cauchy problem for the Laplacian in Σ is solvable in a
local neighborhood of γ [5]. Moreover, it is ill-posed because even a slight variation
in the initial data along γ can significantly change the solution function. Therefore
we solve the problem only for the simplest case:

g ≡ 0, and f ≡ 1 along γ

on Σ in R3.
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Lemma 2.1. Let’s define Σ, x, y, F (x, y),Ψ, D, δ, γ and ν as above. Then there
exists a superharmonic function k on Σ satisfying the Cauchy conditions

(2.1) k = 0,
∂k

∂ν
= 1 along γ.

Proof. Let x1, x2, x3 be the rectangular coordinates of R3 such that (x1, x2, x3) =
(0, 0, 0) at the center of the unit ball B. x1, x2, x3 are harmonic on the minimal
surface Σ. Define

r2 = x21 + x22 + x23 .

Then

∆r2 = 2
3∑

i=1

(xi∆xi + |∇xi|2)

= 4,

and

∆ log r = div

(
∇r2

2r2

)
= − 2

r2
|∇r|2 + 2

r2

≥ 0.

Hence
k := − log r

is a superharmonic function on Σ satisfying the Cauchy conditions (2.1). □

Lemma 2.2. Under the same hypotheses as Lemma 2.1, there exists a harmonic
function h on Σ satisfying the Cauchy conditions

(2.2) h = 0,
∂h

∂ν
= 1 along γ.

Proof. Consider the following PDE on Σ,

(2.3) Lu := ∆u+

(
− 2

r2
|∇r|2 + 2

r2

)
= 0.

Lemma 2.1 implies u = k is a solution of Lu = 0, and so the following are equivalent:

u is a solution of Lu = 0. ⇐⇒ u− k is harmonic.

Moreover, the boundary value problem for Lu = 0 has a unique solution u as the
sum of k and h, where h satisfies

∆h = 0 in Σ, h = u− k on ∂Σ.

Let Hγ be the set of all solutions of (2.3) on Σ which vanish along γ and are
continuous on ∂Σ. Define a subset Hγ

0 of Hγ by

Hγ
0 = {u ∈ Hγ :

∂u

∂ν
≤ 0 along γ}.

Hγ
0 is nonempty because k − cy is in Hγ

0 if c is a sufficiently big constant.
Now that we have an element u in Hγ

0 , we can slowly deform the values of u along
∂Σ by increasing them on ∂Σ \ γ and fixing them on γ at zero. In this way, we
can obtain a 1-parameter family of boundary values bt along ∂Σ, which determine
a 1-parameter family of solutions ut of L(u) = 0 in Σ with ut|∂Σ = bt. Here we are



4 J. CHOE

hoping that the values of ∂ut/∂ν will increase, and fortunately, one of ut will satisfy
∂ut
∂ν = 0 along γ. Then k − ut will be the harmonic function satisfying (2.2).
Following this relatively intuitive idea, let us give a rigorous proof. Given u ∈ Hγ

0 ,
define

m0(u) = min {∂u/∂ν|γ}
and

M0 = max {m0(u) : u ∈ Hγ
0}.

Obviously
m0(u) ≤ 0 for any u ∈ Hγ

0 , and M0 ≤ 0.

We will show that M0 = 0 and that there exists uγ ∈ Hγ
0 such that m0(uγ) = 0.

Then k − uγ will be the desired harmonic function on Σ satisfying the Cauchy
conditions (2.2).

First, let’s suppose Σ is simply connected. Let Cω(γ) be the set of all analytic
functions on the free boundary γ and C0(∂Σ \ γ) the set of all continuous functions
on ∂Σ \ γ. Given a bounded continuous function e on ∂Σ vanishing on γ, let ue
be the unique solution of Lu = 0 on Σ satisfying the Dirichlet condition ue|∂Σ = e.
Define the Dirichlet-to-Neumann map

N : C0(∂Σ \ γ) → Cω(γ) by N (e|∂Σ\γ) =
∂ue
∂ν |γ .

Then N is linear, and the boundary point lemma(Hopf lemma) tells us that N is
one-to-one and order-preserving, that is, if e1, e2 ∈ C0(∂Σ \ γ), e1 ≤ e2 on ∂Σ \ γ
and e1 < e2 on a nonempty open subset of ∂Σ \ γ, then N (e1) is strictly smaller
than N (e2) on γ.

Suppose M0 < 0, and let’s derive a contradiction. For any η > 0 there exists
uη ∈ Hγ

0 such that

M0 − η ≤ ∂uη
∂ν

≤ 0 along γ.

If M1 denotes the maximum of
∂uη

∂ν (x, 0) for small η, then M0 < M1 ≤ 0. That is

because if M1 ≤M0, then there exists a harmonic function h̄(x, y) = cy(c > 0) in Σ
such that uη + h̄ is in Hγ and satisfies

M0 − η +
c

F (x, 0)
≤ ∂(uη + h̄)

∂ν
(x, 0) ≤M1 +

c

F (x, 0)
≤M0 +

c

F (x, 0)
.

So there exist a sufficiently small η and some c > 0 such that

M0 < M0 − η +
c

max{F (x, 0)}
, M0 < m0(uη + h̄),

and
M0 +

c

min{F (x, 0)}
< 0, uη + h̄ ∈ Hγ

0 ,

which contradicts thatM0 is the maximum among all m0(u), u ∈ Hγ
0 . ThereforeM1

should be greater than M0.
Define a smooth non-constant function f(x) on γ by

f(x) =
2

5

(
M0 +M1

2
− ∂uη

∂ν
(x, 0)

)
F (x, 0),

and set b = M1−M0
5 > 0. Then

(2.4) M0 + b− 3

5
η ≤ ∂uη

∂ν
(x, 0) +

f(x)

F (x, 0)
≤M1 − b.
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Let b0 = f(1)−f(−1)
2 . Then f(x) − b0x can be extended to a continuous periodic

function with period 2 on the x-axis; so its Fourier series will be written as

f(x)− b0x =
a0
2

+
∞∑
n=1

(an cosnπx+ bn sinnπx).

Define

fm(x) =
a0
2

+

m∑
n=1

(an cosnπx+ bn sinnπx).

Then {fm(x)} converges absolutely to f(x), and for any ε > 0 there exists k such
that

(2.5) |f(x)− b0x− fk(x)| < ε.

Since fk(x) is a finite Fourier sum, its Taylor series at x = a has an infinite radius
of convergence for any a:
(2.6)

fk(x) = fk(a)+f
′
k(a)(x−a)+

f ′′k (a)

2!
(x−a)2+

f ′′′k (a)

3!
(x−a)3+

f
(4)
k (a)

4!
(x−a)4+ · · · .

Now, we use the convergence of the Taylor series of fk(x) to find the desired
harmonic function. Remember that the term-by-term integration of (2.6) converges
absolutely. Hence the following series also converges for all −∞ < x <∞:

fk(a)(x−a)−
f ′′k (a)

3!
(x−a)3+

f
(4)
k (a)

5!
(x−a)5−

f
(6)
k (a)

7!
(x−a)7+· · ·+(−1)k

f
(2k)
k (a)

(2k + 1)!
(x−a)2k+1+· · · .

For each a we can define a function ha(y) on the vertical line {(a, y) : −∞ < y <∞}:

ha(y) = (b0a+fk(a))y−
f ′′k (a)

3!
y3+

f
(4)
k (a)

5!
y5−

f
(6)
k (a)

7!
y7+· · ·+(−1)k

f
(2k)
k (a)

(2k + 1)!
y2k+1+· · · .

Therefore we have an entire function h(x, y) with two variables on R2:
(2.7)

h(x, y) = (b0x+fk(x))y−
f ′′k (x)

3!
y3+

f
(4)
k (x)

5!
y5−

f
(6)
k (x)

7!
y7+· · ·+(−1)k

f
(2k)
k (x)

(2k + 1)!
y2k+1+· · · .

Clearly, h(x, y) is well-defined in the entire plane and h(x, y) − b0xy is periodic in
x. Moreover, h(x, y) is harmonic because

hxx = f ′′k (x)y −
f
(4)
k (x)

3!
y3 +

f
(6)
k (x)

5!
y5 − · · ·+ (−1)k

f
(2k+2)
k (x)

(2k + 1)!
y2k+1 + · · ·

= −hyy.

Thus the entire harmonic function h(x, y) satisfies the Cauchy conditions on Σ:

h(x, 0) = 0 and
∂h

∂ν
(x, 0) =

∂h

∂y
(x, 0)

∂y

∂ν
(x, 0) =

b0x+ fk(x)

F (x, 0)
.

Then by (2.5) we have

b0x+ fk(x)− ε

F (x, 0)
<

f(x)

F (x, 0)
<
b0x+ fk(x) + ε

F (x, 0)



6 J. CHOE

and hence by (2.4) we get

M0 + b− 3

5
η − ε

F (x, 0)
<
∂uη
∂ν

(x, 0) +
b0x+ fk(x)

F (x, 0)
< M1 − b+

ε

F (x, 0)
.

Therefore if η and ε are sufficiently small, we have

M0 < M0 +
b

2
<
∂(uη + h)

∂ν
(x, 0) < M1 −

b

2
< 0.

Thus

uη + h ∈ Hγ
0 and M0 +

b

2
< m0(uη + h),

which contradicts the assumption that M0 is the maximum among {m0(u) : u ∈
Hγ

0}. Therefore M0 = 0.
Finally, it remains to show the existence of a function uγ ∈ Hγ

0 with m0(uγ) = 0.
Let {un(x, y)} be a sequence of functions in Hγ

0 such that − 1
n < m0(un) < 0. Define

a (piecewise) continuous function on ∂Σ:

b∂Σ = lim sup
n→∞

un|∂Σ,

and let uγ(x, y) be a unique function in Σ with uγ |∂Σ = b∂Σ. It may happen that
uγ /∈ Hγ

0 because b∂Σ can be infinite at some points of ∂Σ \ γ, but uγ is finite in
Σ \ ∂Σ and a solution of Lu = 0. Since uγ |γ = un|γ and m0(un) → 0, we have

uγ = 0 and
∂uγ
∂ν

= 0 along γ.

Therefore

∆(k − uγ) = 0 in Σ and k − uγ = 0,
∂(k − uγ)

∂ν
= 1 along γ.

Setting h = k − uγ completes the proof when Σ is simply connected.
The same proof works also for doubly connected Σ. We do not need to subtract

b0x from f(x) because f(x) can be directly lifted to a continuous periodic function
on the x-axis. □

Remark 2.3. a) In the proof of Lemma 2.2, we also found an entire solution h(x, y)
to the Cauchy problem ∆h(x, y) = 0, h(x, 0) = 0, ∂h

∂y (x, 0) = f(x) in R2 by using

the Taylor series of f(x) in case its radius of convergence is infinite. But one can
also use the Fouruer series: If an, bn are the Fourier coefficients of f(x) with period
2, then

h(x, y) =
a0
2
y +

∞∑
n=1

1

n
sinhny(an cosnπx+ bn sinnπx).

b) One can similarly find an entire harmonic solution h(x, y) to the Cauchy prob-
lem h(x, 0) = g(x), ∂h

∂y (x, 0) = 0 in R2 in two ways, provided g(x) is an analytic

periodic function with period 2 that has a Taylor series with an infinite radius of
convergence. Given the Taylor series of g(x) centered at a,

g(x) = g(a) + g′(a)(x− a) +
g′′(a)

2!
(x− a)2 +

g′′′(a)

3!
(x− a)3 +

g(4)(a)

4!
(x− a)4 + · · · ,

we extract

g(a)−g
′′(a)

2!
(x−a)2+g

(4)(a)

4!
(x−a)4−g

(6)(a)

6!
(x−a)6+· · ·+(−1)k

g(2k)(a)

(2k)!
(x−a)2k+· · · .
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Then, define a function ha(y) on the vertical line {(a, y) : −∞ < y <∞} by

ha(y) = g(a)− g′′(a)

2!
y2 +

g(4)(a)

4!
y4 − g(6)(a)

6!
y6 + · · ·+ (−1)k

g(2k)(a)

(2k)!
y2k + · · · ,

and the solution is

h(x, y) = g(x)− g′′(x)

2!
y2 +

g(4)(x)

4!
y4 − g(6)(x)

6!
y6 + · · ·+ (−1)k

g(2k)(x)

(2k)!
y2k + · · · .

On the other hand, given ak and bk for the Fourier coefficients of g(x), the entire
harmonic function h(x, y) can be also written as

(2.8) h(x, y) =
a0
2

+
∞∑
n=1

coshny(an cosnπx+ bn sinnπx).

Two special solutions to the Cauchy problems in R2 can generate a general solu-
tion as follows.

Proposition 2.4. Let f(x), g(x) be analytic periodic functions whose Taylor series
have an infinite radius of convergence on the x-axis of R2. Then the solution h(x, y)
to the Cauchy problem in R2

∆h(x, y) = 0, h(x, 0) = g(x),
∂h

∂y
(x, 0) = f(x)

can be written as

h(x, y) =
∞∑
k=0

{
(−1)k

g(2k)(x)

(2k)!
y2k + (−1)k

f
(2k)
k (x)

(2k + 1)!
y2k+1

}
.

Going back to Σ, Lemma 2.2 gives us desired isothermal coordinates:

Lemma 2.5. Let Σ be a simply connected or doubly connected minimal surface with
free boundary γ in a unit ball of R3. Then there exist isothermal coordinates X,Y
in Σ away from the punctures p1, . . . , pn of Σ such that

ds2 = F (X,Y )2(dX2 + dY 2) in Σ,

and
Y = 0, F (X, 0) = 1 along γ.

Proof. From Lemma 2.2 we get a harmonic function h in Σ with

(2.9) h = 0,
∂h

∂ν
= 1 along γ.

Let h∗ be the harmonic function that is conjugate to h. Then {X,Y } := {h∗, h}
become isothermal coordinates on Σ such that Y = 0 along γ. If we write the metric
of Σ as

ds2 = F (X,Y )2(dX2 + dY 2),

then (2.9) implies
F (X, 0) = 1 along γ.

In the domain D (as in Lemma 2.2), the function Z = H(z) mapping x + iy to
X + iY is holomorphic. z is called a branch point of H(z) if H ′(z) = 0. Then
(H−1)′(Z) = ∞ if H−1(Z) is a branch point of H(z). Hence

0 < F (X,Y ) ≤ ∞.
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But X,Y can be called isothermal coordinates only if 0 < F (X,Y ) < ∞. So the
branch points of H(z) will be deleted from Σ and called the punctures of Σ.

When Σ is doubly connected, X is multi-valued in Σ and periodic in D = R ×
(0, a), and hence F (X,Y )2(dX2 + dY 2) is well defined in Σ. □

3. reflection across a sphere

With the specific isothermal parameters, we can now introduce the reflection
principle for free boundary minimal surfaces in a ball.

Theorem 3.1. Let Σ be an immersed, simply connected or doubly connected min-
imal surface in the unit ball B ⊂ R3. In case Σ is simply connected, assume that
γ := ∂Σ∩∂B is connected and immersed, and Σ∪γ is C1 such that Σ is perpendic-
ular to ∂B along γ, that is, γ is a free boundary of Σ in B. If Σ is doubly connected,
γ is assumed to be one of the two boundary components of Σ.

a) Then there exists a minimal surface Σdouble ⊃ Σ that is an analytic continuation
of Σ across γ such that Σ∗ := Σdouble \ Σ is conformally equivalent to Σ.

b) We call Σ∗ the spherical mirror image of Σ across ∂B.
c) Σ∗ may have ends and in this case Σ∗ is conformally equivalent to Σ with

punctures.
d) Similarly, a minimal surface Σ outside B with a free boundary in ∂B can be

reflected across ∂B.

Proof. As in Section 2, there is a conformal map Ψ from a half unit disk D :=
{(x, y) : x2 + y2 < 1, 0 < y} onto the simply connected Σ, mapping δ, the diameter
of D, onto γ. Ψ is harmonic as well since Σ is minimal. Assume that Z = H(z)
is a holomorphic function on D that gives the isothermal parameters X,Y with
Z = X + iY and z = x+ iy such that

ds2 = FH(X,Y )2(dX2 + dY 2)

and

(3.1) FH(X,Y ) = 1 on H(δ) ⊂ {Y = 0}.
Since Σ is perpendicular to ∂B along γ, we have

(3.2) Ψ := (ψ1, ψ2, ψ3) =

(
∂ψ1

∂ν
,
∂ψ2

∂ν
,
∂ψ3

∂ν

)
along γ,

where ν is the outward unit conormal to ∂Σ on Σ. From (3.1) we see that

ν = − ∂

∂Y
along γ.

(This is the reason why we first proved Lemma 2.5.) Introducing a reparametrization

Φ := (ϕ1, ϕ2, ϕ3) = Ψ ◦H−1 : H(D) → Σ,

we see that

(3.3) (ϕ1, ϕ2, ϕ3) = −
(
∂ϕ1
∂Y

,
∂ϕ2
∂Y

,
∂ϕ3
∂Y

)
along γ.

If H is not injective, the image H(D) of D under H overlaps itself and Ψ ◦H−1 is
not well defined. In this case, one can introduce the multiplicity on H(D), and then
with multiplicity on H(D), one can make Ψ ◦ H−1 well-defined. In other words,
{X,Y } on Σ are the pull-back under H of the {X,Y } coordinates of C. Since ϕj
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is harmonic in X and Y , we can find a holomorphic function Φj(Z) on H(D) with
ReΦj = ϕj , j = 1, 2, 3. Then

−∂ϕj
∂Y

= Im
∂Φj

∂Z
.

Hence on the X-axis (3.3) implies,

(3.4) Im

(
iΦj −

∂Φj

∂Z

)
= 0.

Note that the left hand side Im(iΦj − ∂Φj/∂Z) is a harmonic function on H(D)
vanishing on ∂(H(D)) ⊂ X-axis . So far, we have transformed the Steklov condition
(3.2) into the Schwarz condition (3.4). By the Schwarz reflection principle the
holomorphic function iΦj − ∂Φj/∂Z on H(D) has a holomorphic extension

Λj := λj + iλ∗j over H(D) ∪H(δ) ∪H(D)∗,

where λj , λ
∗
j are harmonic conjugates and H(D)∗ is the mirror image of H(D) across

the X-axis.
Does Φj also have a holomorphic extension over H(D) ∪ H(δ) ∪ H(D)∗? Yes,

it surely does! One can obtain the holomorphic extension of Φj by solving the
first-order linear differential equation

iΦj −
∂Φj

∂Z
= Λj .

Clearly,
∂

∂Z
(e−iZΦj) = −e−iZΛj ,

hence

Φj = −eiZ
∫
e−iZΛjdZ.

Φj involves two arbitrary constants: one arising from λj and the other from the
integration of eiZΛj . We choose the correct constants which give us ReΦj |H(D) = ϕj .
Therefore

ϕj := Re

(
−eiZ

∫
e−iZΛjdZ

)
is the desired harmonic extension of ϕj over H(D) ∪H(δ) ∪H(D)∗.

From the symmetry of the holomorphic function H, we know that H maps D ∪
δ ∪D∗ onto H(D) ∪H(δ) ∪H(D)∗. Hence

Ψ1 := Re(Φ1 ◦H,Φ2 ◦H,Φ3 ◦H)

is a harmonic map defined on D ∪ δ ∪ D∗ and is an analytic continuation of the
original conformal harmonic map Ψ : D → Σ. Composing with H gives an analytic
continuation in the original isothermal coordinates x, y.

Since Ψ = (ψ1, ψ2, ψ3) : D → Σ is conformal, we have(
dψ1

dz

)2

+

(
dψ2

dz

)2

+

(
dψ3

dz

)2

= 0 in D.

As Ψ1 := (Ψ1
1,Ψ

1
2,Ψ

1
3) is the harmonic extension of Ψ in D ∪ δ ∪D∗, we also have(

dΨ1
1

dz

)2

+

(
dΨ1

2

dz

)2

+

(
dΨ1

3

dz

)2

= 0 in D ∪ δ ∪D∗.
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Hence Ψ1 is conformal as well. So Ψ1(D ∪ δ ∪D∗) is minimal. Define

Σdouble = Ψ1(D ∪ δ ∪D∗) and Σ∗ = Ψ1(D∗).

Then Σ∗ is the desired spherical mirror image of Σ that is conformally equivalent
to Σ.

Suppose now that Σ is a minimal annulus. There exists a periodic conformal
harmonic map Ψ of R× (0, a) onto Σ for some a > 0. Then, as above, we can find
Ψ1 : R× (−a, a) → R3, an analytic continuation of Ψ. Here, we must show that Ψ1

is periodic in x. Consider the vector-valued harmonic function on R× (−a, a)

∆(x, y) := Ψ1(x+ 2π, y)−Ψ1(x, y).

Then at (x, y) ∈ R× (0, a) we have

∆(x, y) = Ψ(x+ 2π, y)−Ψ(x, y) [because Ψ1 ≡ Ψ on R× (0, a)]

= 0 [because Ψ is periodic in x with period 2π on R× (0, a)].

Hence ∆ ≡ 0 on R × (0, a) and since ∆ is harmonic, ∆ vanishes on R × (−a, a) as
well, meaning that Ψ1 is also periodic in x on R× (−a, a) with period 2π.

Define Σdouble := Ψ1(R × (−a, a)) and Σ∗ := Ψ1(R × (−a, 0)). Then Σ∗ is the
desired spherical mirror image of Σ, and clearly, Σ∗ is conformally equivalent to Σ,
possibly with punctures. Some punctures of Σ∗ will correspond to the ends because
the conformal factor F (X,Y ) can become infinite at those punctures.

Whether Σ is inside B or outside B, Σ can be reflected across ∂B as long as its
free boundary γ lies inside ∂B. This is because (3.2) and (3.3) still hold (with the
opposite sign) whether Σ ⊂ B or Σ ⊂ Bc. □

4. repeated reflections

There is a substantial difference between the case where Σ has only one free
boundary γ and the case where Σ has two free boundary components γ1 and γ2. In
the first case, Σ can be extended only once across γ, but in the second case, it can
be extended infinitely many times, across γ1 and γ2 alternatingly.

Let Σ be a minimal annulus with a free boundary γ in a ball B ⊂ R3 and assume
that γ is a closed loop. There exists a periodic conformal harmonic map Ψ from
V := R × (0, a) onto Σ such that Ψ has period 2π in x and maps the x-axis onto
γ. As in Theorem 3.1, Ψ is extended by the Schwarz reflection principle to Ψ1 on
R× (−a, a) so that Ψ1(R× (−a, a)) is the analytic continuation of Σ containing the
spherical mirror image of Σ, Σ∗ = Ψ1(R × (−a, 0)). Let’s call Ψ1(R × (−a, a)) the
double extension of Σ = Ψ(R × (0, a)) across γ = Ψ(R × {0}). Denote the double
extension of Σ across γ by Σγ . One can say that γ is conformally in the center of
Σγ . Let’s call γ the line of reflection. Ψ1 may have punctures in R × (−a, a). In
that case, the set of punctures of Ψ1 will be denoted as P1 and Σγ will be the image
Ψ1(R× (−a, a) \ P1).

Suppose Σ is a minimal annulus with two boundary components γ1 and γ2, free on
∂B. Suppose also that Ψ is a periodic conformal harmonic map from V := R×(0, a)
onto Σ with period 2π and γ1 = Ψ(R × {0}). As above, Ψ defined on R × (0, a)
extends to Ψ1 on R × (−a, a) \ P1 by the reflection across γ1, and Σ has a double
extension Σγ1 = Ψ1(R× (−a, a) \ P1). The starting point of the infinite reflections
is that γ1 is in the center of Σγ1 whereas γ2 is not. By alternating γ1 and γ2 as the
line of reflection, one can extend Σ infinitely many times.
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Since γ2 is a free boundary of Σγ1 , by Theorem 3.1 we can reflect Σγ1 across
γ2 := Ψ1(R × {a}) to get a periodic analytic continuation Ψ2 of Ψ1 defined on
R × (−a, 3a). (Ψ2 does not mean Ψ ◦ Ψ.) Then Σγ1γ2 := Ψ2(R × (−a, 3a)) is the
double extension of Σγ1 . More precisely, considering the set of punctures of Ψ2

denoted P2 ⊂ R × (−a, 3a), Σγ1γ2 will be Ψ2(R × (−a, 3a) \ P2). This time γ2 is
in the center of Σγ1γ2 whereas γ1 is not. Note here that γ1 = Ψ(R × {0}) is the
free boundary of the subset Ψ2(R × (0, 3a)) of Σγ1γ2 . So let’s apply Theorem 3.1
to Ψ2(R× (0, 3a)) to extend Ψ2 to Ψ3 periodically on the strip R× (−3a, 3a) \ P3.

Hence Σγ2
1γ2 := Ψ3(R × (−3a, 3a) \ P3) is the double extension of Ψ2(R × (0, 3a))

and is an analytic continuation of Σγ1γ2 . Now γ2 is not in the center of Σγ2
1γ2 and

is the free boundary of the subset Ψ3(R × (−3a, a), so again we apply Theorem
3.1 to get a periodic conformal harmonic map Ψ4 defined on R × (−3a, 5a) \ P4.

Σγ2
1γ

2
2 := Ψ4(R× (−3a, 5a) \ P4) is an analytic continuation of Σγ2

1γ2 .
From here, let’s proceed by induction. Suppose there is a periodic conformal

harmonic map Ψ2k defined on R × (−(2k − 1)a, (2k + 1)a) \ P2k with period 2π

and extending the original Ψ on R × (0, a). Denote Σγk
1 γ

k
2 := Ψ2k(R × (−(2k −

1)a, (2k + 1)a) \ P2k). γ1 is not in the center of Σγk
1 γ

k
2 and is the free boundary of

Ψ2k(R×(0, (2k+1)a)). So using Theorem 3.1 , we can reflect Ψ2k(R×(0, (2k+1)a))
across γ1 and extend Ψ2k to Ψ2k+1 periodically on R×(−(2k+1)a, (2k+1)a)\P2k+1

with period 2π. Then Σγk+1
1 γk

2 := Ψ2k+1(R× (−(2k + 1)a, (2k + 1)a) \ P2k+1) is an

analytic continuation of Σγk
1 γ

k
2 . Again reflect Ψ2k+1(R× (−(2k + 1)a, a)) across its

free boundary γ2 by Theorem 3.1 to get a periodic analytic continuation Ψ2k+2 of

Ψ2k+1 to R× (−(2k+1)a, (2k+3)a) \ P2k+2 with period 2π and with Σγk+1
1 γk+1

2 :=

Ψ2k+2(R× (−(2k + 1)a, (2k + 3)a) \ P2k+2). Obviously Σγk+1
1 γk

2 ⊂ Σγk+1
1 γk+1

2 .

Define a conformal harmonic map Ψ̃n on the annulus {w ∈ C : e−(n−1)a < |w| <
e(n−1)a} by

Ψ̃n(w) := Ψn(i logw).

Even though logw is many-valued, Ψ̃n(w) is well-defined because Ψn(x + iy) is
periodic in x with period 2π. Hence we have an increasing sequence of minimal

surfaces {Σ̃n} defined by

Σ̃n := Ψ̃n
(
{w : e−(n−1)a < |w| < e(n−1)a}

)
, Σ ⊂ Σ̃2 ⊂ Σ̃3 ⊂ · · · ⊂ Σ̃n ⊂ · · · .

It follows that

Σ̃n = Ψn(R× (−(n− 1)a, (n− 1)a) \ Pn) and Σ̃2k ⊂ Σγk
1 γ

k
2 ⊂ Σ̃2k+2.

So the limiting surface

Σ̃ := lim
n→∞

Σ̃n

exists and equals limk→∞Σγk
1 γ

k
2 . Furthermore Σ̃ is conformally equivalent to R2, S1×

R, or S2 with punctures. The corresponding conformal harmonic map should also
exist:

Ψ̃ := lim
n→∞

Ψ̃n.

One can see that

Σ̃ = Ψ̃
(
R2 \ ({O} ∪ P̃)

)
, P̃ :=

⋃
n

⋃
z∈Pn

e−iz.
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5. critical catenoid

So far, the free boundary property has been the key to establishing the reflection
principle. Moreover, the complex function theory has been the primary tool in

constructing the minimal surface Σ̃. Henceforth, we will show that Σ̃ is the catenoid
if the original Σ is embedded. Then Σ will have to be the critical catenoid. From
here, differential geometry will be the primary tool.

In this section we will follow the arguments of [2] and use their notations. Let X
be a smooth surface (as a map) with isothermal coordinates u, v such that w = u+iv
is a complex coordinate on X. Denote the metric of X by ds2 = Λ(u, v)(du2+ dv2).
Let n⃗ be a unit normal to X in R3 and let L,M,N be the components of the second
fundamental form of X, H the mean curvature, and K the Gaussian curvature of
X. We have the following from the Lemma of Section 1.3 in [2].

Lemma 5.1. X satisfies

Xuu =
Λu

2Λ
Xu − Λv

2Λ
Xv + L n⃗

(5.1) Xuv =
Λv

2Λ
Xu +

Λu

2Λ
Xv +M n⃗

Xvv = −Λu

2Λ
Xu +

Λv

2Λ
Xv +N n⃗

H =
L+N
2Λ

, K =
LN −M2

Λ2

(5.2)

[
1

2
(L −N )− iM

]
w̄

= ΛHw.

Define

f(w) :=
1

2
(L −N )− iM, α := Re [w2f(w)], β := Im [w2f(w)].

(5.2) implies that f(w) is holomorphic if the surface X has constant mean curvature.
Let ρ, θ be the polar coordinates on R2 such that w = u + iv = ρeiθ. Then (5.1)

can be rewritten as

Xρρ =
Λρ

2Λ
Xρ −

1

ρ

Λθ

2Λ

1

ρ
Xθ +

(
α

ρ2
+ ΛH

)
n⃗

(5.3)
1

ρ
Xρθ =

1

ρ

Λθ

2Λ
Xρ +

(
1

ρ
+

Λρ

2Λ

)
1

ρ
Xθ −

β

ρ2
n⃗

1

ρ2
Xθθ = −

(
1

ρ
+

Λρ

2Λ

)
Xρ +

1

ρ

Λθ

2Λ

1

ρ
Xθ −

(
α

ρ2
− ΛH

)
n⃗.

Lemma 5.2. Let Σ be an immersed minimal annulus in a unit ball B ⊂ R3 with
free boundary ∂Σ ⊂ ∂B. If Σ̃ is the analytic continuation of Σ obtained after infinite
reflections as in the preceding section, then the Gaussian curvature K is nowhere

zero on Σ̃.
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Proof. (5.3) will give important information on the free boundary γ1∪γ2 of Σ. Recall
that ρ = 1 on γ1 and ρ = ea on γ2. First, we know that

Xρ =
√
ΛX on γ1 ∪ γ2.

Next, we differentiate this equation with respect to θ:

(5.4) Xρθ = (
√
Λ)θX +

√
ΛXθ =

(
√
Λ)θ√
Λ

Xρ +
√
ΛXθ on γ1 ∪ γ2.

Now let’s apply Lemma 5.1 when X = Ψ̃ and Λ = F 2. Then w2f(w) = α+ iβ is a

holomorphic function on Σ̃. Compare (5.4) with (5.3) to get

1

ρ
+
Fρ

F
= F and β = 0 on γ1 ∪ γ2.

Hence β ≡ 0 on Σ. Remember that β, being harmonic, extends to Σ̃. Therefore

β ≡ 0 on Σ̃ as well, and hence α is a constant c on Σ̃. c is nonzero because otherwise
Σ would be flat. (See Theorem, p.343, [2].) By Lemma 5.1

K = −L2 +M2

F 4
= −|f |2

F 4
= −

∣∣∣∣α+ iβ

w2

∣∣∣∣2 1

F 4
= −

∣∣∣ c
w2

∣∣∣2 1

F 4
.

Therefore K < 0 everywhere on Σ̃ because 0 < |w| <∞ on Σ̃. □

A point of a minimal surface is called a flat point if the Gaussian curvature K
vanishes at that point. The flat points are isolated on a minimal surface. If a
minimal surface is in R3, then the flat point is a point at which the derivative of
the Gauss map vanishes. Hence Lemma 5.2 implies that the Gauss map is a local

diffeomorphism everywhere on Σ̃. Let Ψ̃ be the immersion from R2 \ ({O} ∪ P̃)

onto Σ̃ and G the Gauss map from Σ̃ to S2. Then G ◦ Ψ̃ is a covering map from

R2 \ ({O}∪ P̃) onto its image G ◦ Ψ̃(R2 \ ({O}∪ P̃)) ⊂ S2. G ◦ Ψ̃ is also a conformal
map(with the opposite orientation of S2).

Definition 5.3. Denote by n, s the north and south poles of S2, respectively. Let
πs be the stereographic projection from S2 \ {n, s} onto R2 \ {O}, mapping a neigh-

borhood of s to a neighborhood of O. Then G ◦ Ψ̃ ◦ πs is a conformal covering map

from S2 \ ({n, s} ∪ π−1
s (P̃)) into S2.

The free boundary ∂Σ is the union of lines of curvatures γ1, γ2 on ∂B. Since K is
negative on ∂Σ, the principal curvatures are nonzero along ∂Σ. Hence both γ1 and

γ2 are locally strictly convex(in the opposite directions) on ∂B. Since G ◦ Ψ̃ ◦ πs is

a conformal covering map from S2 \ ({n, s} ∪ π−1
s (P̃)) into S2, G ◦ Ψ̃ ◦ πs extends

across the punctures {n, s} ∪ π−1
s (P̃) to a holomorphic map from S2 to S2.

Lemma 5.4. Σ̃ is complete.

Proof. As K vanishes nowhere on Σ̃, by Theorem 3.1.1 of [12], there exist global

isothermal coordinates x, y on Σ̃ whose coordinate curves are the lines of curvature.

Moreover, x is periodic on Σ̃ with period 2π, and the two fundamental forms can
be expressed in terms of the principal curvature κ > 0 as follows:

(5.5) I =
1

κ
(dx2 + dy2), II = (dx2 − dy2).
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For 0 ≤ a < 2π and any b, define ℓa,b := {(a, y) : b < y} and w(z) := e−iz. w(ℓa,b)

are the rays going off to ∞ for all a, b. We claim that the length L(Ψ̃ ◦ w(ℓa,b)) of
the curve Ψ̃ ◦w(ℓa,b) on Σ̃ is infinite for any w(ℓa,b). Suppose L(Ψ̃ ◦w(ℓc,d)) is finite
for some ℓc,d. Using (5.5), one can compute L(Ψ̃ ◦ w(ℓc,d)):

L(Ψ̃ ◦ w(ℓc,d)) =
∫ ∞

d

1√
κ(c, y)

dy.

This integral can be finite only if

(5.6) lim
y→∞

κ(c, y) = ∞.

When the Gauss map Gmaps Σ̃ into S2, G expands the length of the curve Ψ̃◦w(ℓc,d)
by the factor of κ(c, y) at the point Ψ̃ ◦w(ℓc,y)). Hence one can compute the length

of G ◦ Ψ̃ ◦ w(ℓc,d):

L(G ◦ Ψ̃ ◦ w(ℓc,d)) =
∫ ∞

d

1√
κ(c, y)

· κ(c, y)dy =

∫ ∞

d

√
κ(c, y)dy.

It follows from (5.6) that

(5.7) L(G ◦ Ψ̃ ◦ w(ℓc,d)) = ∞.

But we show that this is a contradiction. Remember that being a conformal covering

map, G ◦ Ψ̃ ◦ πs : S2 \ ({n, s} ∪ π−1
s (P̃)) → S2 extends to a holomorphic map from

S2 to S2. Clearly γc,d := π−1
s (w(ℓc,d)) has finite length on S2 and G ◦ Ψ̃ ◦ πs(γc,d) =

G ◦ Ψ̃ ◦ w(ℓc,d). Hence G ◦ Ψ̃ ◦ w(ℓc,d), being the holomorphic image, should also

have finite length on S2, which contradicts (5.7). Therefore L(Ψ̃ ◦ w(ℓa,b)) = ∞ for
any ℓa,b, as claimed. Similarly,

L(Ψ̃ ◦ w(ℓ−a,b)) = ∞ for all ℓ−a,b := {(a, y) : y < b},

where w(ℓ−a,b) are the rays approaching O away from P̃.

Let ρ be a curve in R2 \ ({O} ∪ P̃) ending at a puncture z∗0 ∈ P̃. The rectangular

coordinates x1, x2, x3 of R3 are harmonic on Σ̃ and their pull-backs under Ψ̃, x1 ◦
Ψ̃, x2 ◦ Ψ̃, x3 ◦ Ψ̃, are also harmonic in R2 \ ({O} ∪ P̃). Suppose the length of ρ is

finite. Then in a neighborhood of z∗0 , x1 ◦ Ψ̃, x2 ◦ Ψ̃, x3 ◦ Ψ̃ are bounded harmonic
functions with isolated singularity at z∗0 . But this is a removable singularity for

these harmonic functions. Hence Ψ̃(z∗0) is a regular point of Σ̃ and so z∗0 cannot be

a puncture of Ψ̃ in R2 \ ({O} ∪ P̃). Therefore ρ must have infinite length. Thus Σ̃
is complete. □

Lemma 5.5. Suppose the free boundary minimal annulus Σ in a ball of R3 is em-

bedded. Then the complete minimal surface Σ̃ that is obtained from Σ by applying
the spherical reflection infinitely many times is the catenoid.

Proof. Our proof will use the embeddedness of Σ to derive the convexity of ∂Σ,

which will give the injectivity of the Gauss map on Σ and then on Σ̃, which will
finally show

∫
Σ̃
K = −4π.

Recall that K < 0 on Σ̃ and so the Gauss map G : Σ̃ → S2 is a local diffeomor-
phism. Being the free boundaries of Σ, γ1 and γ2 are lines of curvature, hence they
are locally strictly convex (in the opposite directions) on the boundary sphere. In
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fact, γ1 and γ2 are strictly convex because Σ is embedded. As the sum of the fluxes
of γ1 and γ2 vanish, one can find a great circle Γ0 that separates γ1 and γ2. Now
we claim that G|γ1 and G|γ2 are both injective. Suppose there exist p1, p2 ∈ γ1 such
that G(p1) = G(p2). Let Γ1 be the equator whose north pole is G(p1). Clearly Γ1

is tangent to γ1 at both p1 and p2. But this contradicts the convexity of γ1. Hence
G|γ1 must be injective. Similarly, G|γ2 is also injective. Let’s now show that G(γ1)
and G(γ2) are disjoint. Suppose G(p1) = G(p2) for some pi ∈ γi. Then there is a
great circle Γ1,2 which is tangent to γi at pi, i = 1, 2 such that γ1 and γ2 lie on the
same side of Γ1,2 because they are convex curves. Then the total flux of Σ along
∂Σ has a nonzero projection in the north pole direction with Γ1,2 as the equator,
which is a contradiction because the total flux should vanish. Therefore G(γ1) and
G(γ2) are disjoint, and together they bound G(Σ). As G is a local diffeomorphism,
G must also be injective in the interior of Σ.

Remember that we performed repeated reflections to obtain Σ ⊂ Σ̃2 ⊂ Σ̃3 ⊂ · · · ⊂
Σ̃n ⊂ · · · , Σ̃n := Ψn(R× (−(n−1)a, (n−1)a)\Pn). So Σ̃ is conformally equivalent

to S2 \ ({n, s} ∪ π−1
s (P̃)). Since the Gaussian curvature never vanishes on Σ̃, Σ̃ is

foliated by the lines of curvature {γt : −∞ < t < ∞} so that γ1 = γ1, γ
2 = γ2.

Let Dt ⊂ Σ̃ (1.5 < t) be the domain between γt and γ3−t, that is, ∂Dt = γt ∪ γ3−t.

Then {Dt}1.5<t is an increasing family of domains in Σ̃, that is, Dt ⊂ Ds if t < s.
Moreover,

lim
t→∞

Dt = Σ̃ and lim
|t|→∞

G(γt) = {q1, q2},

where q1, q2 are two points in S2 \ G(Ψ̃(P̃)). Note that (i) as G is injective in Σ,
G(γj) winds once around qj , j = 1, 2, respectively; (ii) the set of lines of curvature
{γt : −∞ < t < ∞} foliates Σ; (iii) So G(γt) should wind once around q2 for t
near ∞ and around q1 for t near −∞. Since lim|t|→∞G(γt) = {q1, q2}, G must

be injective on γt for t near ±∞. On the other hand, if each domain G(Dt) is
counted with multiplicity in S2, then {G(Dt)} is an increasing family of domains in
S2 \ {q1, q2}. Hence, if G is not injective on γa for some a > 2 (or a < 1), neither
is G on γb for any b greater than a in case a > 2 (or smaller than a in case a < 1).
However, G is injective on γ1 ∪ γ2 and on γb for any |b| near ∞. Therefore G must

be injective on any γt, and so must be G on any Dt. Thus G is injective on Σ̃.

As Σ̃ is complete and G is a conformal map (against the negative orientation in

S2), G(Σ̃) should cover S2 almost everywhere and should cover only once. More

precisely, G(Σ̃) = S2 \ ({n, s} ∪ G(Ψ̃(P̃))), where P̃ is the set of punctures of Ψ̃ in
R2 \ {O}. Apply a well-known theorem of Osserman (Theorem 19, p.136 [7]) that if

Σ̃ is a complete minimal surface with the Euler characteristic χ and with r ends in
R3, then ∫

Σ̃
K ≤ 2π(χ− r).

But the fact that G(Σ̃) covers S2 once almost everywhere implies
∫
Σ̃
K = −4π.

Hence χ = 0 and r = 2. Therefore P̃ is an empty set and Σ̃ is an annular surface.
It is here that we should remark that the catenoid is the only complete minimal
surface that has total curvature −4π and is conformal to S2 with two punctures

(Corollary 22, p.140 [7]). It follows that Σ̃ is the catenoid. □

Lemma 5.5 finally gives the following theorem.
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Theorem 5.6. Every embedded free boundary minimal annulus in a ball of R3 is
the critical catenoid.

Remark 5.7. Fernández-Hauswirth-Mira [3] have constructed infinitely many im-
mersed free boundary minimal annuli Σ in a ball and they have shown that each

Σ has a complete analytic extension Σ̃ which has infinitely many ends. By Lemma
5.2, the repeated reflections of their compact immersed minimal annulus Σ will give

rise to exactly Σ̃ and the Gaussian curvature vanishes nowhere in Σ̃. Moreover, the

ends of Σ̃ will correspond to the punctures of Ψ̃.
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