RAY PRESERVING METRICS AND APPLICATIONS

JAIGYOUNG CHOE

1. INTRODUCTION

Let ¥ be anm-dimensional minimal submanifold &" andp an interior point of:.
Define theconepx 0% over 9% with vertexp as the union of the line segments fragnto
q, over allg € 9%. And for ak-dimensional submanifol& ¢ R™ and a poinyy € R"™,
we define thalensity ofV at ¢ to be the limit

. Volume(N N B,
Q) On(g) := lim ( : (9))
e—0 WEE

)

wherew, is the volume of &-dimensional unit ball. Then we have the following interest-
ing relationships between andpx 9% [C1]:

(2) Ox(p) < O, xox(P)
and
3) Volume(X) < Volume(px93).

In (2) equality holds if and only it is part of anm-plane. (2) and (3) also hold for a
minimal submanifold of n-dimansional hyperbolic spadd™ [CG1]. However, they do
not hold for a minimal submanifold of a general Riemannian manifold.

(2) and (3) played key roles in the proof of the isoperimetric inequality for minimal
surfaces inR™ and H” [C1, CG1]. And (2) was an important estimate when Ekholm-
White-Wienholtz proved the embeddedness of a minimal surfad®”in In this survey
article we introduce a constant curvature metric on the gon@X such that the above two
estimates still hold for a minimal surfaé¢ein a Riemannian manifold/ with sectional
curvature bounded above by a nonpositive constasit. With these estimates we can
obtain the isoperimetric inequality for the minimal surface— M [C2], and with more
estimates on the cone with constant curvature metric, we can prove the embeddedness of
some minimal surfac® ¢ M [CG3].

In order to construct a constant curvature metrigpetvy := C, write 90X = I" and
start with an arc-length parameterlongT'. Letr(s) be the distance ipx 9% from the
corresponding point of' to p. Then choose a poini € H?(—x2), and let a curvd’
locally isometric tol" be traced out ifH?(—~?) so that the distance frof equalsr(s).

Let C = pxT', which may be in a covering dfi(—x2) branched ovep, and finally glue
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C along the geodesic segments frgno the initial and final points (cf. [C2], p. 211.)
Note that the angle between two geodesigs la@comes larger und@r as we shall see in
Proposition 3 below that

Oc(p) < Oa(p).

One can think of’ asC equipped with the constant curvature megic

More precisely, Lefj be a new metric ol = px 9 with constant Gauss curvature
—«2 such that the distance fromremains the same as in the original metficand so
does the arclength element bf In other words, every geodesic frogrunderg remains
a geodesic of equal length undgrthe length of any arc of' remains the same, and the
angles between the tangent vectoi'tand the geodesic fromremain unchanged.

2. COMPARISONS OFDENSITY, AREA AND GEODESICCURVATURE

In this section we derive various estimates similar to (2) and (3xfof andC. As-
sume thatV/ is ann-dimensional complete, simply connected Riemannian manifold with
sectional curvature bounded above by a nonpositive constahtLetI" be aC? immersed
curve inM.

Write G(r) := log tanh(xr/2) for the Green’s function of the two-dimensional hyper-
bolic planeH?(—x?) with Gauss curvaturee —x? < 0, andG(r) := logr for R?, if
k = 0. We computelG/dr = k/sinh kr or dG/dr = 1/r, respectively. Choose a point
p € M, and definep(x) := d(z,p), using the distance functiaf(-, -) of M.
Lemma 1. Let N2 be a two-dimensional manifold immersed in a complete, simply con-
nected Riemannian manifold whose sectional curvature is bounded above-by, « >
0. Then
(a) except ap,

cosh kp dp(H)
ANG(p) > 26" ——5—— (1 = |[Vnp| >0,
NG(p) > 2k SnhZ rp (1—|Vnpl?) + R " in case K
and
2 dp(H
ANG(p) > e (1—|Vnpl®) + o in case k =0,
whereH is the mean curvature vector of.
(b)
Anlog(1 + cosh kp) > k% + ktanh(kp/2) dp(H) in case k > 0,
and

Anp? > 44 2pdp(H) in case k = 0.

Proof. By the Hessian comparison theorem, the Hessian of the distance fupatfoh/
satisfies

4) V’p > keothrplg — Vp® Vp) for & > 0, and V p? > 2g for k = 0,
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whereg is the metric tensor ol (see [SY], p. 4). The trace formula states that

2
ANG = Z?QG(ea,ea) + dG(ﬁ),

a=1
where{e;,e2} is an orthonormal basis for the tangent planeMoThese formulas are
well known (see e. g. [CG2], pp. 172, 174.) Choosirg, e2} with dp(e2) = 0 and
dp(e1) = |Vnp|, we have

cosh kp

V2Gler, e1) > K2 (1 - 2dp(e1)?)

sinh? kp
and
_ h
V2G(62,62) > HQM.
sinh” kp
The conclusion of paifa) follows.

For the proof of parfb), we again use the trace formula and note that

2
v log(1+4-cosh kp) > S [coshrp - g+ (1 — coshkp)Vp @ Vp| forx > 0. O

~ 1+ coshkp
Corollary 1. (a)If ¥2is a branched minimal surface it/, thenG(p) is subharmonic on
3.
(b) If Cis the conepx 0Y. over the polep of the distance functiop in M with the metric
g of Gauss curvatures —x2, thenG(p) is harmonic on, except ap.
(c) Further, onC
Aglog(1 + coshrp) = k? for £ > 0, and
Aapz =4 for k = 0.
Proof.(a) OnX, the mean curvature vector Bfvanishes antVsp| < 1, henceAxG(p) >
0, except ap, according to Lemma(a). If p € 3, then the outward normal derivative of
G(p) on9dB.(p)NX approaches-oco ass — 0, which implies that7 is subharmonic every-
where onx. (b) On the con&’, however, we apply Lemmga&) with M = N = C, so that
H=0 and|V zp| = 1. Moreover constancy of the Gauss curvaturébiorces all the in-
equalities in the proof of Lemmad) to become equality and consequently;, G(p) = 0.
Similarly for part(c). O

Proposition 1. (Density Comparisonjet %2 be a branched minimal surface in an
dimensional simply connected Riemannian manifdldvith sectional curvature< —x?2.
Then

(@) ©x(p) < ©4(p) unlessy is totally geodesic with constant Gauss curvatuie?;

(b) Area(X) < Area(C).

Proof. (a) By Corollary 1, we haveAsG(p) > 0 andAsG(p) = 0, where, as above,
G(p(r)) := logtanh(xp(x)/2) andp(x) := dp(z,p) Or ds(x, p) respectively. For small
e > 0, write C. := C\B.(p) andX. := X\B.(p), whereB.(p) denotes the geodesic
ball in M of radiuse and centep. Then the boundary o, isT' U (£ N 9B.(p)). (The
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component: N 9B, (p) may be empty.) Lets, be the outward unit normal vector tangent
to X, atoX.. Then

0< AEG(p)dA:/ VEﬁGds:/ n”?‘vpdw/n”?'v’)ds
5. 5. $NAB. (p) sinh ke r sinhkp
Along the small boundary componeXitn 9B, (p), ase — 0, vs - Vp — —1 uniformly,

and

L(XN9dB.(p))
orsinhke O (p)-

Let v¢ be the outward unit normal vector tangentialong its boundary. Then it should
be noted that

vs-Vp<wvc-VpalongT.
Thus we find that the inequality above implies
-V,
(5) 270x(p) < / Kju ds
r sinhkp
Note here that, considered as a tangent vectoxXpis also the outward unit normal
vector in the metricj. Along the intrinsic distance sphet#B.(p) c C, —Vp is the

outward unit normal vector tangent(ﬁ. Hence by Corollary 1(b), assumirg\{p} is
immersed, as — 0,

0= /A NeG(p) dA — —277@5(p)+//£
Ce T

Therefore, by equation (5),

ve Vp ds
sinh kp

Vo - Vp
2 = = > 2
1045(p) /F/@' sinh rp ds > 2mOx(p),

which is the desired estimate.

If equality holds, them\y,G = 0, which require§Vsp| = 1 according to Lemma 1.
But this means thall is a cone ovep, as well as being minimal, which can only occur
whenX is totally geodesic. MoreoverAsG = 0 now implies thatAyp = «kcoth kp,
which, along withK's, < —x2, implies that> has constant Gauss curvatutg, = —x2.

(b) Integrate Lemma 1(b) ovet to get
/EAZ log(1 4 cosh kp) = /F %%

ksinhkp Op
/F T+ coshrp 91 = /@Aé log(1 + cosh kp) (by Corollary 1(c))

= k*Area(C). O

w2 Area(X)

IN

Proposition 2. (Geodesic Curvature ComparisaretT be aC? curve inM™, a manifold
with sectional curvatures. —«x2, and letC be the conexT. If C is the coneC' with

the constant curvature metrig; as in Introduction above, the(q) > E(q) for almost all
q € I', wherek and’% denote the inward geodesic curvatured’oh C andC, respectively.
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Proof. We first assume that'\ {p} is immersed. Fop, > 0, letT'y = C' N dB,,(p), and
let ky be the geodesic curvature Bf in C. Also, IetEO be the geodesic curvature Bf
in C. To estimatek, andk let us define/’ (X7, respectively) to be a Jacobi field@‘l((j“,
respectively) along the unit-speed geodesfoom p to ¢ € T', satisfying

(6) Vip) = T7(p) =0andV L4, V L4
For eachy € T', sinceg = g alongI', we may also impose the boundary conditions
(7) V(g) = V(a). [V(a)| = [V(g)] = 1,

thereby determiningy andV uniquely, sincel and K, the Gauss curvatures 6fandC
respectively, are nonpositive. In fadf, = V as vector fields od\{p}. V andV satisfy
the Jacobi equations

8) ViVsV = R(%,V)¥ and V5V5V = R(3, V)4,

whereV, ¥V denote the connections for the metricg respectively, whileRr, R denote the
Riemann curvature tensorsg@éndg, respectively. Writef (t) = ||V (y(t))]|, and similarly
f'(t) = ||[V(~(¢))||, where the norms are measured usinandg, respectively. Since’
andC have dimensior, equations (8) are equivalent to the scalar Jacobi equations

~

9) P10+ K@) f(6) =0, J'(t) + K(v1)](t) = 0.
By the Gauss equation we have
K = Ru (%, V,V,4)/|[V[|* + det(B),

whereR), is the Riemann curvature tensorfaf and B is the second fundamental form of
C'in M. SinceC is a cone, we havéet(B) = 0, and it follows thatC' has Gauss curvature

K < —k2.

We next computek, andEO. ExtendV and V' as normal Jacobi fields along all ra-
dial geodesics fronp. Also, letT be the unit vector field which is tangent to the radial
geodesics. Thefi/, W] = 0 and(V, W) = 0. Similarly, [V, W] = 0 and(V, W) = 0.
Then

IVIPko = =(Vy V. W) = (V,Vy W) = (V,V5V) = 4(|[V[[*)/2 = [ () f (D).
Thusko(y(t)) = f/(t)/f(t). Similarly, we computeky(v(t)) = f'(t)/f(t). As is well
known, the scalar Jacobi equations (9) are equivalent to the Riccati equations

ko(7(1) + ko(7(1))* = =K (7(t)) = &7,
and
ka(v(1)) + ko (1(£)* = =K (7(1) = .

It follows that the difference satisfies a homogeneous linear differential inequality

(ko — ko) + (ko + ko) (ko — ko) = —K + K > 0.
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Meanwhile kg —Eo = (f’f— f’f)/(ff) — 0 ast — 0, as follows from L'Hospital’s rule
using the equations (9). Therefore
(10) F1f=F1f =k =k =0.

We are now in a position to compare the respective inward geodesic curvatanes
kof T. Write T = (V/f)cose — W sin g for the unit tangent vector tb: 7' has unit
length with respect to either metricor g. ThenVyT = —kve and @TT = —k Ve,
whereve = (V/f)sinp + W cos ¢ is the outward unit normal vector 10, with respect
to either metric, andos p > 0. We computeVy W = Vy (V/f) =0, Vy s (V/f) =
—koW andVy W = koV. It follows in a straightforward fashion thatk vo = VT =
—kove cosp —veT(p). Thusk = kg cos o + T'(¢), and similarlyk = kq cos ¢ + T(p).
Hence

kz—g:(kzo—%)cowzo. O
Remark 1. The proof of Proposition 2 holds more generally, for any two metyicg on
a cone which have the same unit-speed geodesics from the vertex, agree at the boundary,
and whose Gaussian curvatures satisfy< K.

Remark 2. The metricg can be calleday preservingin that the geodesics from are
preserved undeg. As a matter of facty can be made ray preserving without having
constant Gaussian curvature. Such a m@tdan be obtained throughray preserving map
h between two surfaces andsS as follows. Letp be a point ofS andI” C S an open curve
parametrized by arclength Let ¢(s) be the angle between the tangent vectdr &1 T'(s)
and the geodesic fromto I'(s) and letr(s) be the distance fromto I'(s). For simplicity
let us assume < ¢(s) < m,i.e.,I'(s) is moving in one direction when viewed frop We
want to find a ray preserving mdp: pxI' C S — S which preserves the distaneés)
from p to I'(s) and the arclength element Bf h can be found by constructing a curl/e
which we want to be the image of underh. Supposef is parametrized by arclength
with distancer(s) from p = h(p), and making an angle QAT(s) with the geodesic from.
In order forh to be ray preservingd; should satisfy-(s) = 7(s). However, it is easier to
requiref to satisfy

(12) 6(s) = 6(s)

because (11) impliegr/ds = dr/ds and hence-(s) = 7(s). (11) gives an ODE oy
andT is its unigue solution. Thereforeis ray preserving, and the pulI—backﬁfunderh
gives a ray preserving metric ¢

Proposition 3. (Density and Area ComparisohgtT’ be aC? curve inM™, and letC =
pxTI', as in Proposition 2. IC is the coneC' with the constant curvature metrig, as
in Introduction above, then the densiti€k(p) < ©4(p) and the areasArea(C) <
Area(C).

Proof. The inequality (10) above implies thﬁ(t)/f(t) is increasing. Recalling the nor-
malizationf = fat eachy e T"'andf = f: 0 atp, we see thaf (t) < f(t) along vy, [ >
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f at ¢, and f' < " at p. Note thatArea(C) andArea(C) may be written as the same
double integral with respective integranﬂandf O

Proposition 4. (Gauss-Bonnetg) For any geodesic coné = pxT',p & T', with constant
curvature—x? over an immersed'? curvel’ in M", n > 2,

2105 (p) + K Area(C) = / k ds,
r

wherek is the geodesic curvature 6fin C.
(b) If p € T, then

2105(p) + K Area(C) = / kds — .
r
Proof.(a) Considerp ¢ T". By the Gauss-Bonnet formula ah = é\Bs(p),
(12) / f{dA+/Eds +/ kds = 2rx(C.) = 0,
C. r EndB.(p)

whereK = —x? is the intrinsic Gauss curvature 61 SinceaE is an immersed annulus,
the Euler numbey (C.) = 0.

The geodesic curvature 6f N dB.(p) is the negative of the curvature 8B, (p) as a
curve inH?(—x?2), namely,—x coth xe. Thus,

lim kds = - lim(kcothre)L(C NOB.(p))
==0.J¢naB. (p) e0
= - gii%(cosh k€)2mO&(p) = —2mO&(p).

SinceArea(@) — Area(@), the Gauss-Bonnet formula (12) now implies
(13) —k2 Area(C) + / kds — 2m04(p) = 0,

r
which proves parfa).

The proof of par{b) is analogous. However, whene T', for smalle, @ is a topologi-
cal disk, so thajs((@) — 1. Also, the boundary of’. consists of the ar€’ N 0B(p) and
the arcl'. := I'\ B:(p). For smalle > 0, these arcs meet at two points forming exterior
anglesx(e) andj3(e). Equation (12) becomes

—/A m2dA+/ Eds—/A k-veds+ ale) + Be) = 2.
Ce . CﬁaBE(p)
Sincel is smoothp(e) — 7/2 andf(e) — /2 ase — 0, which yields

(14) — k2 Area(C) + / kds — 2104(p) =7 O
r
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3. EMBEDDEDNESS OFMINIMAL SURFACES INNEGATIVELY CURVED SPACES

After the formidable problem of Plateau in EuclideRft was settled by Douglas and
Rad in 1930, mathematicians’ attention was drawn to the uniqueness and embeddedness
of their solutions (see [D] and [R1].). The first uniqueness result was obtained iy Rad
([R2], p. 100). He proved that if a simple closed cufve R? has a one-to-one projection
onto the boundary of a convex regidhC R?, thenT" bounds a unique minimal disk. In
fact any minimal surface bounded byis a graph ovelR, and hence is simply connected
and embedded. Later Nitsche [N2] showed that i§ analytic with total curvatures 4,
thenI" bounds exactly one minimal disk.

The embeddedness of the minimal disk bounded by a Jordan Ewras first obtained
by Gulliver and Spruck [GS] under the assumption fidias total curvaturel 47 and is
extreme (thatis, it lies on the boundary of a convex set). In the same paper, they conjectured
that either condition alone would be sufficient for the embeddedness of an area-minimizing
disk. Indeed Tomi-Tromba [TT], Almgren-Simon [AS], and Meeks-Yau [MY] derived the
embeddedness of a minimal disk bounded by an extieniut the sufficiency of the total
curvature condition alone, whdnis not assumed to be extreme, remained open for 25
years.

However, in a very recent paper, Ekholm, White, and Wienholtz [EWW] ingeniously
proved the embeddedness of any minimal surface bounded by alcimvB™ with total
curvature< 4.

In this section we introduce a result of [CG3] which extends the Ekholm-White-Wienholtz
result to minimal surfaces in arrdimensional Riemannian manifold with sectional cur-
vature bounded above by a nonpositive constattt. Itis proved that ifl" is a Jordan curve
in M™ with total curvature

Ciot(I) == / k| ds < 47 4+ k% inf Area(pxT),
r peEM
then every branched minimal surface bounded'liy embedded (Theorem 1.)

Definition 1. Define theminimum cone areaf I" as

AT):= inf Area(pxD).

I et A (pxI)

Theorem 1. Let £2 be a branched minimal surface (of arbitrary topological type) in an
n-dimensional complete, simply connected Riemannian manifoldhose sectional cur-
vature is bounded above by a nonpositive constasit. WriteT' = 9%, which we assume
to be aC? Jordan curve, i. e. @2 embedding of the circl&'. If the total curvature of®
satisfies

(15) Ciot(T) := / k| ds < 47 + k> A(),
r

thenX is an embedding.
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Proof. Let X2 be a branched minimal surface M whose boundargy = T is a C?
Jordan curve satisfying the hypothesis (15):

Cn(D) = [ [Flds < dm + 2A(D),
T

where—x?2 is an upper bound on sectional curvatures of the ambient madifol#ve need
to show that® has no branch points and is embedded. Thus, it will suffice to show that
Ox(p) < 2atallp € M\TI' and tha®x(p) < 3/2 atp € I

Consider anyp € YX\T, and letC = pxT be the geodesic cone ovErwith vertexp.
If 3 is totally geodesic, thek is embedded, since there are no compact totally geodesic
surfaces and no geodesic loopsiih Otherwise, by Proposition 1 and Propositiqia}4
we have

2mOx(p) < 2mO4(p) = /Eds — 12 Area(C).
r
Recall that¥ C H..x(I"). Hence Proposition 3 implies th&t.rea(@) is at least equal
to the minimum cone ared(T'), and sincek < k < |k| almost everywhere alonp by
Proposition 2, we find
2m0%(p) < Ciot(T) — KZA(T).
Therefore, hypothesis (15) impli€ss;(p) < 2. If p € T', apply Proposition @) to show
Ox(p) < 3/2. Then the embedded charactedbfollows. [

Theorem 1 implies a substantial extension of tt&yFMilnor Theorem, which was
proved fork = 0 in [AB] and [S].

Theorem 2. Let I' be aC? Jordan curve in a complete, simply connected Riemannian
3-manifoldM with sectional curvature< —x2. If the total curvature of” satisfies

/ k| ds < 47 + K2 A(D),
I
thenT is unknotted.
The readers are referred to [CG3] for the proof of Theorem 2.

Example 1. This example shows that the hypothesis
Ctot(F) S 47 + K}2A(F)

of Theorems 1 and 2 is sharp.

Let I'y be the double cover of the circle of radidi&in a totally geodesid? c H?.
Here H” is the n-dimensional hyperbolic space of constant sectional curvature =
—1. Given any choice of positive integet, the example is a one-parameter family of
(2,2m + 1)-torus knotd",, in H3, n > 0, with T',, — I’y and with

Ctot(rn) <A+ A(Fn) +n.

In fact, I'y has lengthdr sinh R, curvature\la = coth R, Ciot(Tg) = 4mcosh R, and
A(Ty) = 4m(cosh R — 1). O
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4. |SOPERIMETRICINEQUALITY OF MINIMAL SURFACES IN ANEGATIVELY CURVED
RIEMANNIAN MANIFOLD

Let D be a domain in a simply connected surface of constant Gauss curyaturbe
aread of D and the perimetef satisfy the isoperimetric inequality

(16) 4rA < L? 4+ KA,

where equality holds if and only ib is a geodesic disk. The cagé = 0 was proved by
Steiner in 1842 [S]K > 0 by Bernstein in 1905 [B], an&™ < 0 by Schmidt in 1940 [Sc].

Let M be a simply connected Riemannian manifold of constant sectional curvgture
The isoperimetric inequality (16) holds for any domain on a totally geodesic surfdde in
Since a totally geodesic surface is minimalfif, it has been naturally conjectured that
(16) should hold for every minimal surface id.

The first result of this nature is due to Carleman [C], who showed in 1921 that (16)
holds for a simply connected domain on a minimal surfacRih So far (16) has been
proved only for minimal surfaces with one or two boundary componeri®&ifLSY, C1]
and inH"™ [CG1].

Consider minimal surfaces in a simply connected Riemannian manifolaf varying
sectional curvature. Suppose the sectional curvatuid & bounded above by a constant
K = —&2. In this section we introduce the result of [C2] which proves that (16) holds also
for a minimal surface: with one or two boundary componentsit whenK < 0.

Proposition 1(a) implies that jf € ¥, then

a7 2 < @@(p)

Hence from the cutting and pasting arguments and the approximation argument as in
Lemma 4 of [CG1] it follows that

ArArea(C) < Length(9%)? 4+ KArea(C)2.

Therefore using Proposition 1(b) and the monotonicity of the quadratic fun¢tigh—
K A? of A > 0, we obtain the desired isoperimetric inequality ¥oin caseK < 0.
If equality holds in the isoperimetric inequality, then

~

Area(X) = Area(C)

and therefore equality should hold in Lemma 1(b). Consequently equality holds in (4) and
|Vr| = 1 onX as we easily see in the proof of Lemma 1(b). It follows that px 0%
and, by Index Lemma;. is constantly curved and hence totally geodesic. Thus Schmidt’s
theorem [Sm] completes the proof in case< 0.

The theorem forX’ = 0 follows from (17), Proposition 1(b) and the arguments of [C1].
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