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1. INTRODUCTION

Let Σ be anm-dimensional minimal submanifold ofRn andp an interior point ofΣ.

Define theconep××∂Σ over∂Σ with vertexp as the union of the line segments fromp to

q, over allq ∈ ∂Σ. And for ak-dimensional submanifoldN ⊂ Rn and a pointq ∈ Rn,

we define thedensity ofN at q to be the limit

(1) ΘN (q) := lim
ε→0

Volume(N ∩Bε(q))
ωkεk ,

whereωk is the volume of ak-dimensional unit ball. Then we have the following interest-

ing relationships betweenΣ andp××∂Σ [C1]:

(2) ΘΣ(p) ≤ Θp××∂Σ(p)

and

(3) Volume(Σ) ≤ Volume(p××∂Σ).

In (2) equality holds if and only ifΣ is part of anm-plane. (2) and (3) also hold for a

minimal submanifoldΣ of n-dimansional hyperbolic spaceHn [CG1]. However, they do

not hold for a minimal submanifold of a general Riemannian manifold.

(2) and (3) played key roles in the proof of the isoperimetric inequality for minimal

surfaces inRn andHn [C1, CG1]. And (2) was an important estimate when Ekholm-

White-Wienholtz proved the embeddedness of a minimal surface inRn. In this survey

article we introduce a constant curvature metric on the conep××∂Σ such that the above two

estimates still hold for a minimal surfaceΣ in a Riemannian manifoldM with sectional

curvature bounded above by a nonpositive constant−κ2. With these estimates we can

obtain the isoperimetric inequality for the minimal surfaceΣ ⊂ M [C2], and with more

estimates on the cone with constant curvature metric, we can prove the embeddedness of

some minimal surfaceΣ ⊂ M [CG3].

In order to construct a constant curvature metric onp××∂Σ := C, write ∂Σ = Γ and

start with an arc-length parameters alongΓ. Let r(s) be the distance inp××∂Σ from the

corresponding point ofΓ to p. Then choose a point̂p ∈ H2(−κ2), and let a curvêΓ
locally isometric toΓ be traced out inH2(−κ2) so that the distance from̂p equalsr(s).
Let ̂C = p̂××̂Γ, which may be in a covering ofH2(−κ2) branched over̂p, and finally glue
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̂C along the geodesic segments from̂p to the initial and final points (cf. [C2], p. 211.)

Note that the angle between two geodesics atp becomes larger under̂g, as we shall see in

Proposition 3 below that

ΘC(p) ≤ Θ bC(p).

One can think of̂C asC equipped with the constant curvature metricĝ.

More precisely, Let̂g be a new metric onC = p××∂Σ with constant Gauss curvature

−κ2 such that the distance fromp remains the same as in the original metricg, and so

does the arclength element ofΓ. In other words, every geodesic fromp underg remains

a geodesic of equal length underĝ, the length of any arc ofΓ remains the same, and the

angles between the tangent vector toΓ and the geodesic fromp remain unchanged.

2. COMPARISONS OFDENSITY, AREA AND GEODESICCURVATURE

In this section we derive various estimates similar to (2) and (3) forΣ, C and ̂C. As-

sume thatM is ann-dimensional complete, simply connected Riemannian manifold with

sectional curvature bounded above by a nonpositive constant−κ2. LetΓ be aC2 immersed

curve inM.

Write G(r) := log tanh(κr/2) for the Green’s function of the two-dimensional hyper-

bolic planeH2(−κ2) with Gauss curvature≡ −κ2 < 0, andG(r) := log r for R2, if

κ = 0. We computedG/dr = κ/sinhκr or dG/dr = 1/r, respectively. Choose a point

p ∈ M, and defineρ(x) := d(x, p), using the distance functiond(·, ·) of M.

Lemma 1. Let N2 be a two-dimensional manifold immersed in a complete, simply con-

nected Riemannian manifoldM whose sectional curvature is bounded above by−κ2, κ ≥
0. Then

(a) except atp,

4NG(ρ) ≥ 2κ2 cosh κρ
sinh2 κρ

(

1− |∇Nρ|2
)

+ κ
dρ( ~H)
sinhκρ

in case κ > 0,

and

4NG(ρ) ≥ 2
ρ2

(

1− |∇Nρ|2
)

+
dρ( ~H)

ρ
in case κ = 0,

where ~H is the mean curvature vector ofN.
(b)

4N log(1 + cosh κρ) ≥ κ2 + κ tanh(κρ/2) dρ( ~H) in case κ > 0,

and

4Nρ2 ≥ 4 + 2ρ dρ( ~H) in case κ = 0.

Proof. By the Hessian comparison theorem, the Hessian of the distance functionρ of M
satisfies

(4) ∇2
ρ ≥ κ cothκρ(g −∇ρ⊗∇ρ) for κ > 0, and ∇2

ρ2 ≥ 2g for κ = 0,
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whereg is the metric tensor ofM (see [SY], p. 4). The trace formula states that

4NG =
2

∑

α=1

∇2
G(eα, eα) + dG( ~H),

where{e1, e2} is an orthonormal basis for the tangent plane toN. These formulas are

well known (see e. g. [CG2], pp. 172, 174.) Choosing{e1, e2} with dρ(e2) = 0 and

dρ(e1) = |∇Nρ|, we have

∇2
G(e1, e1) ≥ κ2 cosh κρ

sinh2 κρ
(1− 2 dρ(e1)2)

and

∇2
G(e2, e2) ≥ κ2 cosh κρ

sinh2 κρ
.

The conclusion of part(a) follows.

For the proof of part(b), we again use the trace formula and note that

∇2
log(1+cosh κρ) ≥ κ2

1 + cosh κρ
[

cosh κρ · g + (1− cosh κρ)∇ρ⊗∇ρ
]

for κ > 0. �

Corollary 1. (a) If Σ2 is a branched minimal surface inM, thenG(ρ) is subharmonic on

Σ.
(b) If ̂C is the conep××∂Σ over the polep of the distance functionρ in M with the metric

ĝ of Gauss curvature≡ −κ2, thenG(ρ) is harmonic on̂C, except atp.

(c) Further, on ̂C

4 bC log(1 + cosh κρ) = κ2 for κ > 0, and

4 bCρ2 = 4 for κ = 0.

Proof.(a)OnΣ, the mean curvature vector ofΣ vanishes and|∇Σρ| ≤ 1, hence4ΣG(ρ) ≥
0, except atp, according to Lemma 1(a). If p ∈ Σ, then the outward normal derivative of

G(ρ) on∂Bε(p)∩Σ approaches+∞ asε → 0, which implies thatG is subharmonic every-

where onΣ. (b) On the conêC, however, we apply Lemma 1(a) with M = N = ̂C, so that
~H ≡ 0 and|∇ bCρ| ≡ 1. Moreover constancy of the Gauss curvature on̂C forces all the in-

equalities in the proof of Lemma 1(a) to become equality and consequently4 bCG(ρ) ≡ 0.
Similarly for part(c). �

Proposition 1. (Density Comparison)Let Σ2 be a branched minimal surface in ann-

dimensional simply connected Riemannian manifoldM with sectional curvature≤ −κ2.

Then

(a) ΘΣ(p) < Θ bC(p) unlessΣ is totally geodesic with constant Gauss curvature−κ2;

(b) Area(Σ) ≤ Area( ̂C).

Proof. (a) By Corollary 1, we have4ΣG(ρ) ≥ 0 and4 bCG(ρ) ≡ 0, where, as above,

G(ρ(x)) := log tanh(κρ(x)/2) andρ(x) := dM (x, p) or d bC(x, p) respectively. For small

ε > 0, write ̂Cε := ̂C\Bε(p) andΣε := Σ\Bε(p), whereBε(p) denotes the geodesic

ball in M of radiusε and centerp. Then the boundary ofΣε is Γ ∪ (Σ ∩ ∂Bε(p)) . (The
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componentΣ ∩ ∂Bε(p) may be empty.) LetνΣ be the outward unit normal vector tangent

to Σε at∂Σε. Then

0 ≤
∫

Σε

4ΣG(ρ) dA =
∫

∂Σε

νΣ · ∇Gds =
∫

Σ∩∂Bε(p)
κ

νΣ · ∇ρ
sinh κε

ds +
∫

Γ
κ

νΣ · ∇ρ
sinh κρ

ds.

Along the small boundary componentΣ ∩ ∂Bε(p), asε → 0, νΣ · ∇ρ → −1 uniformly,

and

κ
L(Σ ∩ ∂Bε(p))

2π sinhκε
→ ΘΣ(p).

Let νC be the outward unit normal vector tangent toC along its boundary. Then it should

be noted that

νΣ · ∇ρ ≤ νC · ∇ρ along Γ.

Thus we find that the inequality above implies

(5) 2πΘΣ(p) ≤
∫

Γ
κ

νC · ∇ρ
sinhκρ

ds.

Note here thatνC , considered as a tangent vector toC, is also the outward unit normal

vector in the metriĉg. Along the intrinsic distance sphere∂ ̂Bε(p) ⊂ ̂C, −∇ρ is the

outward unit normal vector tangent tôCε. Hence by Corollary 1(b), assumingC\{p} is

immersed, asε → 0,

0 =
∫

bCε

4 bCG(ρ) dA → −2πΘ bC(p) +
∫

Γ
κ

νC · ∇ρ
sinh κρ

ds.

Therefore, by equation (5),

2πΘ bC(p) =
∫

Γ
κ

νC · ∇ρ
sinhκρ

ds ≥ 2πΘΣ(p),

which is the desired estimate.

If equality holds, then4ΣG ≡ 0, which requires|∇Σρ| ≡ 1 according to Lemma 1.

But this means thatΣ is a cone overp, as well as being minimal, which can only occur

whenΣ is totally geodesic. Moreover,4ΣG ≡ 0 now implies that4Σρ ≡ κ coth κρ,

which, along withKΣ ≤ −κ2, implies thatΣ has constant Gauss curvatureKΣ ≡ −κ2.

(b) Integrate Lemma 1(b) overΣ to get

κ2Area(Σ) ≤
∫

Σ
4Σ log(1 + cosh κρ) =

∫

Γ

κ sinh κρ
1 + cosh κρ

∂ρ
∂ν

≤
∫

Γ

κ sinhκρ
1 + cosh κρ

∂ρ
∂η

=
∫

bC 4 bC log(1 + cosh κρ) (by Corollary 1(c))

= κ2Area( ̂C). �

Proposition 2. (Geodesic Curvature Comparison)LetΓ be aC2 curve inMn, a manifold

with sectional curvatures≤ −κ2, and letC be the conep××Γ. If ̂C is the coneC with

the constant curvature metriĉg, as in Introduction above, thenk(q) ≥ ̂k(q) for almost all

q ∈ Γ, wherek and̂k denote the inward geodesic curvatures ofΓ in C and ̂C, respectively.
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Proof. We first assume thatC\{p} is immersed. Forρ0 > 0, let Γ0 = C ∩ ∂Bρ0(p), and

let k0 be the geodesic curvature ofΓ0 in C. Also, let̂k0 be the geodesic curvature ofΓ0

in ̂C. To estimatek0 and̂k0 let us defineV (̂V , respectively) to be a Jacobi field inC ( ̂C,

respectively) along the unit-speed geodesicγ from p to q ∈ Γ, satisfying

(6) V (p) = ̂V (p) = 0 and V ⊥ γ̇, ̂V ⊥ γ̇.

For eachq ∈ Γ, sinceg = ĝ alongΓ, we may also impose the boundary conditions

(7) V (q) = ̂V (q), |V (q)| = |̂V (q)| = 1,

thereby determiningV and ̂V uniquely, sinceK and ̂K, the Gauss curvatures ofC and ̂C
respectively, are nonpositive. In fact,V = ̂V as vector fields onC\{p}. V and ̂V satisfy

the Jacobi equations

(8) ∇γ̇∇γ̇V = R(γ̇, V )γ̇ and ̂∇γ̇ ̂∇γ̇ ̂V = ̂R(γ̇, ̂V )γ̇,

where∇, ̂∇ denote the connections for the metricsg, ĝ respectively, whileR, ̂R denote the

Riemann curvature tensors ofg andĝ, respectively. Writef(t) = ||V (γ(t))||, and similarly
̂f(t) = ||̂V (γ(t))||, where the norms are measured usingg and ĝ, respectively. SinceC
and ̂C have dimension2, equations (8) are equivalent to the scalar Jacobi equations

(9) f ′′(t) + K(γ(t))f(t) = 0, ̂f ′′(t) + ̂K(γ(t)) ̂f(t) = 0.

By the Gauss equation we have

K = RM (γ̇, V, V, γ̇)/||V ||2 + det(B),

whereRM is the Riemann curvature tensor ofM andB is the second fundamental form of

C in M. SinceC is a cone, we havedet(B) = 0, and it follows thatC has Gauss curvature

K ≤ −κ2.

We next computek0 and̂k0. ExtendV and ̂V as normal Jacobi fields along all ra-

dial geodesics fromp. Also, letW be the unit vector field which is tangent to the radial

geodesics. Then[V, W ] ≡ 0 and〈V, W 〉 ≡ 0. Similarly, [̂V , W ] ≡ 0 and〈̂V ,W 〉 ≡ 0.

Then

||V ||2k0 = −〈∇V V, W 〉 = 〈V,∇V W 〉 = 〈V,∇γ̇V 〉 = γ̇(||V ||2)/2 = f ′(t)f(t).

Thusk0(γ(t)) = f ′(t)/f(t). Similarly, we computêk0(γ(t)) = ̂f ′(t)/ ̂f(t). As is well

known, the scalar Jacobi equations (9) are equivalent to the Riccati equations

k′0(γ(t)) + k0(γ(t))2 = −K(γ(t)) ≥ κ2,

and
̂k′0(γ(t)) + ̂k0(γ(t))2 = − ̂K(γ(t)) = κ2.

It follows that the difference satisfies a homogeneous linear differential inequality

(k0 − ̂k0)′ + (k0 + ̂k0)(k0 − ̂k0) = −K + ̂K ≥ 0.
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Meanwhile,k0−̂k0 = (f ′ ̂f − ̂f ′f)/( ̂ff) → 0 ast → 0, as follows from L’Hospital’s rule

using the equations (9). Therefore

(10) f ′/f − ̂f ′/ ̂f = k0 − ̂k0 ≥ 0.

We are now in a position to compare the respective inward geodesic curvaturesk and
̂k of Γ. Write T = (V/f) cos ϕ − W sin ϕ for the unit tangent vector toΓ: T has unit

length with respect to either metricg or ĝ. Then∇T T = −k νC and ̂∇T T = −̂k νC ,

whereνC = (V/f) sin ϕ + W cosϕ is the outward unit normal vector toΓ, with respect

to either metric, andcos ϕ ≥ 0. We compute∇W W = ∇W (V/f) = 0, ∇V/f (V/f) =
−k0W and∇V W = k0V . It follows in a straightforward fashion that−k νC = ∇T T =
−k0 νC cos ϕ− νCT (ϕ). Thusk = k0 cos ϕ + T (ϕ), and similarlŷk = ̂k0 cos ϕ + T (ϕ).
Hence

k − ̂k = (k0 − ̂k0) cos ϕ ≥ 0. �

Remark 1. The proof of Proposition 2 holds more generally, for any two metricsg, ĝ on

a cone which have the same unit-speed geodesics from the vertex, agree at the boundary,

and whose Gaussian curvatures satisfyK ≤ ̂K.

Remark 2. The metricĝ can be calledray preservingin that the geodesics fromp are

preserved under̂g. As a matter of fact,̂g can be made ray preserving without having

constant Gaussian curvature. Such a metricĝ can be obtained through aray preserving map

h between two surfacesS and̂S as follows. Letp be a point ofS andΓ ⊂ S an open curve

parametrized by arclengths. Let φ(s) be the angle between the tangent vector toΓ atΓ(s)
and the geodesic fromp to Γ(s) and letr(s) be the distance fromp to Γ(s). For simplicity

let us assume0 < φ(s) < π, i.e.,Γ(s) is moving in one direction when viewed fromp. We

want to find a ray preserving maph : p××Γ ⊂ S → ̂S which preserves the distancer(s)
from p to Γ(s) and the arclength element ofΓ. h can be found by constructing a curvêΓ
which we want to be the image ofΓ underh. SupposêΓ is parametrized by arclengths,

with distancêr(s) from p̂ = h(p), and making an angle of̂φ(s) with the geodesic from̂p.

In order forh to be ray preserving,̂Γ should satisfyr(s) = r̂(s). However, it is easier to

requirêΓ to satisfy

(11) φ(s) = ̂φ(s)

because (11) impliesdr/ds = dr̂/ds and hencer(s) = r̂(s). (11) gives an ODE on̂S
and̂Γ is its unique solution. Thereforeh is ray preserving, and the pull-back of̂S underh
gives a ray preserving metric onS.

Proposition 3. (Density and Area Comparison)LetΓ be aC2 curve inMn, and letC =
p××Γ, as in Proposition 2. If̂C is the coneC with the constant curvature metriĉg, as

in Introduction above, then the densitiesΘC(p) ≤ Θ bC(p) and the areasArea(C) ≤
Area( ̂C).

Proof. The inequality (10) above implies thatf(t)/ ̂f(t) is increasing. Recalling the nor-

malizationf = ̂f at eachq ∈ Γ andf = ̂f = 0 atp, we see thatf(t) ≤ ̂f(t) along γ, f ′ ≥
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̂f ′ at q, and f ′ ≤ ̂f ′ at p. Note thatArea(C) andArea( ̂C) may be written as the same

double integral with respective integrandsf and ̂f . �

Proposition 4. (Gauss-Bonnet)(a) For any geodesic conêC = p××Γ, p 6∈ Γ, with constant

curvature−κ2 over an immersedC2 curveΓ in Mn, n ≥ 2,

2πΘ bC(p) + κ2 Area( ̂C) =
∫

Γ

̂k ds,

wherêk is the geodesic curvature ofΓ in ̂C.

(b) If p ∈ Γ, then

2πΘ bC(p) + κ2 Area( ̂C) =
∫

Γ

̂k ds− π.

Proof. (a) Considerp 6∈ Γ. By the Gauss-Bonnet formula on̂Cε := ̂C\Bε(p),

(12)
∫

bCε

̂K dA +
∫

Γ

̂k ds +
∫

bC∩∂Bε(p)

̂k ds = 2πχ( ̂Cε) = 0,

where ̂K ≡ −κ2 is the intrinsic Gauss curvature of̂Cε. SincêCε is an immersed annulus,

the Euler numberχ( ̂Cε) = 0.
The geodesic curvature of̂C ∩ ∂Bε(p) is the negative of the curvature of∂Bε(p) as a

curve inH2(−κ2), namely,−κ coth κε. Thus,

lim
ε→0

∫

bC∩∂Bε(p)

̂k ds = − lim
ε→0

(κ coth κε)L( ̂C ∩ ∂Bε(p))

= − lim
ε→0

(coshκε)2πΘ bC(p) = −2πΘ bC(p).

SinceArea( ̂Cε) → Area( ̂C), the Gauss-Bonnet formula (12) now implies

(13) −κ2 Area( ̂C) +
∫

Γ

̂k ds− 2πΘ bC(p) = 0,

which proves part(a).
The proof of part(b) is analogous. However, whenp ∈ Γ, for smallε, ̂Cε is a topologi-

cal disk, so thatχ( ̂Cε) = 1. Also, the boundary of̂Cε consists of the arĉC ∩ ∂Bε(p) and

the arcΓε := Γ\Bε(p). For smallε > 0, these arcs meet at two points forming exterior

anglesα(ε) andβ(ε). Equation (12) becomes

−
∫

bCε

κ2 dA +
∫

Γε

̂k ds−
∫

bC∩∂Bε(p)

~k · νC ds + α(ε) + β(ε) = 2π.

SinceΓ is smooth,α(ε) → π/2 andβ(ε) → π/2 asε → 0, which yields

(14) −κ2 Area( ̂C) +
∫

Γ

̂k ds− 2πΘ bC(p) = π. �
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3. EMBEDDEDNESS OFM INIMAL SURFACES INNEGATIVELY CURVED SPACES

After the formidable problem of Plateau in EuclideanRn was settled by Douglas and

Rad́o in 1930, mathematicians’ attention was drawn to the uniqueness and embeddedness

of their solutions (see [D] and [R1].). The first uniqueness result was obtained by Radó

([R2], p. 100). He proved that if a simple closed curveΓ ⊂ R3 has a one-to-one projection

onto the boundary of a convex regionR ⊂ R2, thenΓ bounds a unique minimal disk. In

fact any minimal surface bounded byΓ is a graph overR, and hence is simply connected

and embedded. Later Nitsche [N2] showed that ifΓ is analytic with total curvature≤ 4π,

thenΓ bounds exactly one minimal disk.

The embeddedness of the minimal disk bounded by a Jordan curveΓ was first obtained

by Gulliver and Spruck [GS] under the assumption thatΓ has total curvature≤ 4π and is

extreme (that is, it lies on the boundary of a convex set). In the same paper, they conjectured

that either condition alone would be sufficient for the embeddedness of an area-minimizing

disk. Indeed Tomi-Tromba [TT], Almgren-Simon [AS], and Meeks-Yau [MY] derived the

embeddedness of a minimal disk bounded by an extremeΓ. But the sufficiency of the total

curvature condition alone, whenΓ is not assumed to be extreme, remained open for 25

years.

However, in a very recent paper, Ekholm, White, and Wienholtz [EWW] ingeniously

proved the embeddedness of any minimal surface bounded by a curveΓ in Rn with total

curvature≤ 4π.

In this section we introduce a result of [CG3] which extends the Ekholm-White-Wienholtz

result to minimal surfaces in ann-dimensional Riemannian manifoldM with sectional cur-

vature bounded above by a nonpositive constant−κ2. It is proved that ifΓ is a Jordan curve

in Mn with total curvature

Ctot(Γ) :=
∫

Γ
|~k| ds ≤ 4π + κ2 inf

p∈M
Area(p××Γ),

then every branched minimal surface bounded byΓ is embedded (Theorem 1.)

Definition 1. Define theminimum cone areaof Γ as

A(Γ) := inf
p∈Hcvx(Γ)

Area(p××Γ).

Theorem 1. Let Σ2 be a branched minimal surface (of arbitrary topological type) in an

n-dimensional complete, simply connected Riemannian manifoldM whose sectional cur-

vature is bounded above by a nonpositive constant−κ2. WriteΓ = ∂Σ, which we assume

to be aC2 Jordan curve, i. e. aC2 embedding of the circleS1. If the total curvature ofΓ
satisfies

(15) Ctot(Γ) :=
∫

Γ
|~k| ds ≤ 4π + κ2A(Γ),

thenΣ is an embedding.
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Proof. Let Σ2 be a branched minimal surface inM whose boundary∂Σ = Γ is a C2

Jordan curve satisfying the hypothesis (15):

Ctot(Γ) :=
∫

Γ
|~k| ds ≤ 4π + κ2A(Γ),

where−κ2 is an upper bound on sectional curvatures of the ambient manifoldM . We need

to show thatΣ has no branch points and is embedded. Thus, it will suffice to show that

ΘΣ(p) < 2 at allp ∈ M\Γ and thatΘΣ(p) < 3/2 atp ∈ Γ.

Consider anyp ∈ Σ\Γ, and letC = p××Γ be the geodesic cone overΓ with vertexp.

If Σ is totally geodesic, thenΣ is embedded, since there are no compact totally geodesic

surfaces and no geodesic loops inM . Otherwise, by Proposition 1 and Proposition 4(a),
we have

2πΘΣ(p) < 2πΘ bC(p) =
∫

Γ

̂k ds− κ2 Area( ̂C).

Recall thatΣ ⊂ Hcvx(Γ). Hence Proposition 3 implies thatArea( ̂C) is at least equal

to the minimum cone areaA(Γ), and sincêk ≤ k ≤ |~k| almost everywhere alongΓ by

Proposition 2, we find

2πΘΣ(p) < Ctot(Γ)− κ2A(Γ).

Therefore, hypothesis (15) impliesΘΣ(p) < 2. If p ∈ Γ, apply Proposition 4(b) to show

ΘΣ(p) < 3/2. Then the embedded character ofΣ follows. �

Theorem 1 implies a substantial extension of the Fáry-Milnor Theorem, which was

proved forκ = 0 in [AB] and [S].

Theorem 2. Let Γ be aC2 Jordan curve in a complete, simply connected Riemannian

3-manifoldM with sectional curvature≤ −κ2. If the total curvature ofΓ satisfies
∫

Γ
|~k| ds ≤ 4π + κ2A(Γ),

thenΓ is unknotted.

The readers are referred to [CG3] for the proof of Theorem 2.

Example 1. This example shows that the hypothesis

Ctot(Γ) ≤ 4π + κ2A(Γ)

of Theorems 1 and 2 is sharp.

Let Γ0 be the double cover of the circle of radiusR in a totally geodesicH2 ⊂ H3.
HereHn is then-dimensional hyperbolic space of constant sectional curvature−κ2 =
−1. Given any choice of positive integerm, the example is a one-parameter family of

(2, 2m + 1)-torus knotsΓη in H3, η > 0, with Γη → Γ0 and with

Ctot(Γη) < 4π +A(Γη) + η.

In fact, Γ0 has length4π sinh R, curvature|~k| ≡ coth R, Ctot(Γ0) = 4π cosh R, and

A(Γ0) = 4π(coshR− 1). �
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4. ISOPERIMETRICINEQUALITY OF M INIMAL SURFACES IN A NEGATIVELY CURVED

RIEMANNIAN MANIFOLD

Let D be a domain in a simply connected surface of constant Gauss curvatureK. The

areaA of D and the perimeterL satisfy the isoperimetric inequality

(16) 4πA ≤ L2 + KA2,

where equality holds if and only ifD is a geodesic disk. The caseK = 0 was proved by

Steiner in 1842 [S],K > 0 by Bernstein in 1905 [B], andK < 0 by Schmidt in 1940 [Sc].

Let M be a simply connected Riemannian manifold of constant sectional curvatureK.

The isoperimetric inequality (16) holds for any domain on a totally geodesic surface inM .

Since a totally geodesic surface is minimal inM , it has been naturally conjectured that

(16) should hold for every minimal surface inM .

The first result of this nature is due to Carleman [C], who showed in 1921 that (16)

holds for a simply connected domain on a minimal surface inRn. So far (16) has been

proved only for minimal surfaces with one or two boundary components inRn [LSY, C1]

and inHn [CG1].

Consider minimal surfaces in a simply connected Riemannian manifoldM of varying

sectional curvature. Suppose the sectional curvature ofM is bounded above by a constant

K = −κ2. In this section we introduce the result of [C2] which proves that (16) holds also

for a minimal surfaceΣ with one or two boundary components inM whenK ≤ 0.

Proposition 1(a) implies that ifp ∈ Σ, then

(17) 2π ≤ Θ bC(p).

Hence from the cutting and pasting arguments and the approximation argument as in

Lemma 4 of [CG1] it follows that

4πArea( ̂C) ≤ Length(∂Σ)2 + KArea( ̂C)2.

Therefore using Proposition 1(b) and the monotonicity of the quadratic function4πA −
KA2 of A > 0, we obtain the desired isoperimetric inequality forΣ in caseK < 0.

If equality holds in the isoperimetric inequality, then

Area(Σ) = Area( ̂C)

and therefore equality should hold in Lemma 1(b). Consequently equality holds in (4) and

|∇r| ≡ 1 on Σ as we easily see in the proof of Lemma 1(b). It follows thatΣ = p××∂Σ
and, by Index Lemma,Σ is constantly curved and hence totally geodesic. Thus Schmidt’s

theorem [Sm] completes the proof in caseK < 0.

The theorem forK = 0 follows from (17), Proposition 1(b) and the arguments of [C1].
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