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Spheres and the Delaunay surfaces have long been known as surfaces of constant
mean curvature(CMC) in R3. The former is compact and round and the latter
is noncompact and rotational. In 1950’s Alexandrov [Al] showed that a compact
embedded CMC hypersurface in Rn+1 is a round hypersphere, and Hopf [Ho] proved
that an immersed CMC sphere is a round sphere. However, contrary to Hopf’s
conjecture, Wente [We] constructed an immersed CMC torus. Since then many
compact immersed CMC surfaces have been found [Ka], [Ab].

The simplest compact CMC surface with nonempty boundary is a spherical cap.
In fact Nitsche [Ni] showed that an immersed disk-type CMC surface in a ball
which makes a constant contact angle with the boundary sphere is a spherical cap.
Moreover the first-named author [Ch] proved that in a domain D ⊂ R3 bounded
by planes or spheres every immersed disk-type CMC surface in D which makes a
constant contact angle with ∂D and has less than four vertices is part of a round
sphere. The upper bound of three on the number of vertices in this result is critical
in applying the Poincaré-Hopf theorem.

Now one can ask a natural question: When are the capillary surfaces with more
than three vertices in a domain with piecewise umbilic boundary necessarily part of
a sphere? A capillary surface in a domain D is a CMC surface making a constant
contact angle with ∂D, assuming no influence of gravity. In this paper we show
that if S ⊂ Rn+1 is a compact embedded hypersurface with constant higher order
mean curvature in a convex piecewise smooth cone C which is perpendicular to ∂C,
then S is part of a round hypersphere (Theorem 1). Furthermore, if an embedded
capillary surface in a convex polyhedral cone, i.e., a domain bounded by planes
containing a point has nonnegative Gaussian curvature near ∂S and if the number
of faces of C is at most 7, then S is part of a round sphere (Theorem 2).

In the proof of Theorem 1, the Minkowski formula and the Reilly formula are
used as in [Ro]. For Theorem 2 we use the Poincaré-Hopf theorem [Ch] and the
Bonnet transform [Pa].

1. Minkowski formula

In order to prove Theorem 1 for hypersurfaces in Rn+1, we need to extend the
Minkowski formula in this section and introduce the Reilly formula in the next
section.
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Throughout this paper the volume forms in the integrals will be dropped for
notational convenience.

Let S be a compact immersed hypersurface in Rn+1 and A its volume. When S

is embedded, S encloses a domain whose volume is denoted by V . Even when S

has self intersection and nonempty boundary one can naturally define the enclosed
volume V with respect to p ∈ S to be the volume of the cone p××S by counting
multiplicity. If η denotes the outward unit normal to S and X(p) the position
vector of S at p, then we have

(1) (n + 1)V =
∫

S

〈X, η〉.

One can easily get (1) by integrating ∆̄|X|2 = 2(n + 1) on S, where ∆̄ is the
Laplacian on Rn+1. On the other hand, the first variation of S under the homothetic
expansion in Rn+1 gives

(2) A =
∫

S

H〈X, η〉,

where H is the mean curvature of S. (2) can also be obtained by integrating

(3)
1
2n

∆|X|2 = 1−H〈X, η〉

on S, where ∆ is the Laplacian on S.
Minkowski generalized (1) and (2) as follows. Let St be a parallel surface of S,

i.e., the set of all points with distance t from S in η direction. If dS and κ1,...,κn

denote the volume form and the principal curvatures of S, respectively, then the
volume form of St is

(4) dSt = (1 + κ1t) · · · (1 + κnt)dS = Pn(t)dS,

where

Pn(t) := (1 + κ1t) · · · (1 + κnt) = 1 +

(
n

1

)
H1 t + · · ·+

(
n

n

)
Hn tn.

Being the elementary symmetric polynomial of degree k in κ1,...,κn, Hk is called
the k-th order mean curvature of S (H1 = H). Furthermore the mean curvature of
St is

H(t) =
1
n

∑
i

κi

1 + κit
=

Pn
′(t)

nPn(t)
.

Hence, integrating (3) on St with ∂St = φ, we get for all sufficiently small t

(5) 0 =
∫

St

{1−H(t)〈X+tη, η〉} =
∫

S

{Pn(t)− t

n
Pn

′(t)− 1
n

Pn
′(t)〈X, η〉}. (by (4))

Equating the like terms in (5) yeilds the Minkowski formula:

(6)
∫

S

(Hk−1 −Hk〈X, η〉) = 0, k = 1, ..., n, with H0 = 1.
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We now obtain the Minkowski formula for immersed hypersurfaces with nonempty
boundary in the following.

Proposition 1. Let C be a domain in Rn+1 which is a convex cone with piecewise
smooth boundary and with vertex at the origin. Let S be an immersed hypersurface
in Rn+1 with boundary in ∂C such that near ∂S S is inside C and perpendicular
to ∂C. Then we have

(7)
∫

S

(Hk−1 −Hk〈X, η〉) = 0, k = 1, ..., n.

2. Reilly formula

A basic tool in tensor analysis is the Ricci identity: If X, Y, Z are vector fields
on a Riemannian manifold M with curvature tensor R and α is a 1-form on M ,
then

((∇X∇Y −∇Y ∇X)α) (Z) = α(R(X, Y )Z).

Given a smooth function f on M , one can obtain Bochner’s formula by applying
the Ricci identity to df and taking trace:

〈∆df, df〉 = |∇df |2 +
1
2
∆|df |2 + Ric(∇f,∇f).

If we integrate Bochner’s formula on a domain D in Mn+1 and use the Stokes
theorem, we can get the Reilly formula [Re]:∫

D

{(∆̄f)2 − |∇̄2f |2 − Ric(∇̄f, ∇̄f)} =
∫

∂D

{(2∆f + nH
∂f

∂η
)
∂f

∂η
+ II(∇f,∇f)}.

where ∆̄f, ∇̄2f, ∇̄f are the Laplacian, the Hessian, the gradient of f in M and
∆f,∇f,H, η, II are the Laplacian of f , the gradient of f , the mean curvature, the
outward unit normal, and the second fundamental form of ∂D, respectively.

Ros [Ro] used the Reilly formula to prove
∫

S
1/H ≥ (n + 1)V for a compact

embedded hypersurface S ⊂ Rn+1. We extend his result as follows.

Proposition 2. Let C be a domain in Rn+1 which is a convex cone with piecewise
smooth boundary and with vertex at the origin O. Let S ⊂ C be an embedded
hypersurface with boundary in ∂C such that S is perpendicular to ∂C along ∂S.
Let H be the mean curvature of S and V the volume of the domain D enclosed by
S and ∂C. If H > 0 on S, then

(8)
∫

S

1
H

≥ (n + 1)V

and equality holds if and only if S is a spherical cap.
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3. Hypersurfaces with constant H`

With Propositions 1 and 2 we are now ready to prove the second theorem.

Theorem 1. Let C be a domain in Rn+1 which is a convex cone with piecewise
smooth boundary and with vertex at the origin. Let S ⊂ C be an embedded hyper-
surface of constant `-th order mean curvature with boundary in ∂C such that S is
perpendicular to ∂C along ∂S. Then S is a spherical cap.

4. Capillary surfaces in R3

In this section, we give a sufficient condition for a disk type capillary surface
S (with nonzero constant mean curvature) in a convex polyhedral cone C ⊂ R3

to be spherical. Taylor’s boundary regularity theorem for capillary surfaces [T]
implies that S is analytic up to ∂S. In the following, we assume that each analytic
component of ∂S is of C2,α up to the singular points, which are called the vertices.
Let O be the vertex of C. Let us label the faces of C by Wi, i = 1, . . . , n, and
denote the vertex S ∩W i ∩W i+1 by vi. Since the curve Si = S ∩Wi is a curvature
line of Wi, the Joachimstahl’s theorem [Sp] implies that Si is a curvature line of
S. Let κi be the curvature of Si. Then the principal curvature of S in the tangent
direction of Si is κi sin γ.

Theorem 2. Let S be a disk type capillary surface in a convex polyhedral cone C

with contact angle γ < π/2. Suppose that S has only one vertex on each edge and
∂S is C2,α up to the vertices. If the number of faces of C is at most 7, then S is
spherical.

If the contact angle is bigger than π/2, then |X| increases as X moves from the
boundary in the inward conormal direction. Therefore maxX∈S |X| is attained at
an interior point, which implies that the mean curvature vector ~H points inside.
Similarly, if the contact angle is < π/2, then ~H points outside. Let ηH = ~H/H and
let B be the second fundamental form of X. Though the case γ = π/2 was treated
under more general condition in Theorem 1, we include γ = π/2 in the following to
make the arguments simpler and clearer.

First we recall the parallel H-surface, denoted by S̃, of S. The position vector
X̃ for a point of S̃ (corresponding to p ∈ S) is given by

X̃ = HX(p) + ηH(p).

Let us fix a a conformal coordinate w = u + iv on S and let K be the Gaussian
curvature of S. It is straighforward to see that

|X̃u|2 = |X̃v|2 = (H2 −K)|Xu|2, 〈X̃u, X̃v〉 = 0,(9)

X̃u ∧ X̃v = −(H2 −K)Xu ∧Xv,(10)
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For the intrinsic Laplacian ∆S of S, we have

∆SX = 2HηH ,

∆S ηH = −|B|2ηH .

From the above equations, it follows that

∆S̃X̃ = 2
X̃u ∧ X̃v

|X̃u ∧ X̃v|
.(11)

Equation (9) says that S̃ is singular at the image of umbilic points of S. In fact,
S̃ is branched at the singular points. From (10) and (11), we see that S̃ has
mean curvature 1 and the mean curvature vector of S̃ is −ηH . Since S meets Wi

at constant angle γ, S̃i is contatined in a plane Pi, which is parallel to Wi with
distance cos γ. The regularity assumption on S guarantees that S̃ is well-defined
at the vertices of S and ṽi lies on the line Pi ∩ Pi+1. The Pi’s define two special
cones C1 and C2: C1 is a parallel translation of C and C2 is the reflection of C1

about the vertex of C1.
Now we introduce the rotation index for a family of curvature lines on S [Ho].

Let

II = Ldu2 + 2Mdudv + Ndv2

be the second fundamental form of S. The Hopf differential Φdw2 is a quadratic
differential defined by

Φ(w, w̄) = L−N − 2iM.

Since the Hopf differential is holomorphic on cmc surfaces in R3 [Ho], the zeros of
Φ are isolated unless it is identically zero. Let us fix one family F of curvature lines
on S. The rotation index I of F is given by

I = − 1
4π

δ(arg Φ),

where δ denotes the variation along a small curve around p in the positive sense.
The first-named author generalized the ratation index to cmc surfaces with

boundary [Ch]. Lemma 2 of [Ch] says that
i) The rotation index of a nonvertex boundary umbilic point is ≤ −1

4 .
ii) The rotation index of a vertex with angle < π is not bigger than 1

4 . If the
vertex is umbilic, then the rotation index is nonpositive. If the angle of a vertex is
> π, then the rotation index is ≤ − 1

4 .
In the following, we assume that the mean curvature of S is 1.

Lemma 1. Assume that the conditions of Theorem 2 hold. For two consecutive
faces of C, say W1 and W2, it is impossible for the curvatures of κ1 and κ2 of S1

and S2 to satisfy κ1 sin γ < 1 and κ2 sin γ > 1 or κ1 sin γ > 1 and κ2 sin γ < 1.
(The curvatures are computed with respect to ηH .) Therefore there is at least one
umbilic point on S1 or S2.
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