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EVERY STATIONARY POLYHEDRAL SET IN Rn IS AREA
MINIMIZING UNDER DIFFEOMORPHISMS

JAIGYOUNG CHOE

It is shown that every stationary polyhedral set in the Eu-
clidean space is area minimizing under diffeomorphisms leav-
ing the boundary fixed. Similar theorems are also proved for
crystals and immiscible fluids.

There are infinitely many minimal cones in R3. Of these only three are
area minimizing under Lipschitz maps: the plane; the three half planes
meeting along their common boundary line at an angle of 120 degrees; the
cone over the one-skeleton of the regular tetrahedron (see [T]). A recent
work of Lawlor and Morgan [LM] has produced a generalization to higher
dimensional cones in # n . Namely, the hypercone over the (n — 2)-skeleton
of the regular simplex in Rn has the least area among all surfaces separating
the (n — l)-dimensional faces of the simplex. Consequently this cone is area
minimizing under Lipschitz maps. Moreover, Brakke hats proved that the
hypercone over the (n - 2)-skeleton of the cube in Rn is area minimizing
under Lipschitz maps when and only when n > 4 [B].

In this paper we prove that every stationary polyhedral set in Rn is area
minimizing under diffeomorphisms leaving the boundary fixed. Therefore if
we only consider competing surfaces of diffeomorphic images of a minimal
cone C in i?3, C has the least area. Hence in R3 all minimal cones are stable.

We wish to thank Frank Morgan for helpful comments on the extension
of the main theorem.

1. Terminology.

An m-dimensional set C C Rn is said to be polyhedral if there exist
m-dimensional planes {ΓL },ej

 m Rn s u c h that C C UιG/Π» Each
m-dimensional set i*J = ClΊΠi is called a/αce of C. The singular set 5 of C is
the largest ( m - l)-dimensional subset of C which lies inside ( J ^ fΠi ^ Πj)
A singular edge of C is the (m — l)-dimensional subset E of S defined by
E = C D (jli ΠΠj) f°Γ e a c h P a i r hi ε /. So each singular edge of C is the
intersection of two faces of C. For each face F» of C the boundary edge Br
of C in Fi is the closure of dF{ ~ S. The union of all boundary edges of C
is called the boundary dC of C
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A polyhedral set C C Rn is said to be area minimizing under diffeomor-
phisms (Lipschitz maps, respectively) if

Volume(C) < Volume(<^(C))

for any diffeomorphism (Lipschitz map, respectively) φ of Rn leaving the
boundary of C fixed.

A polyhedral set C C Rn is stationary if

for any 1-parameter family of diffeomorphisms {Φt}-i<t<ι of Rn with φQ =
id and leaving dC fixed. A stationary polyhedral set C is said to be stable if

for any {φt} as above.

2. Main theorem.

Theorem 1. Every m-dimensional stationary polyhedral set C in Rn is
area minimizing under diffeomorphisms.

Proof. Let C C Rn be an m-dimensional stationary polyhedral set with faces
{Fi}ieii boundary edges {Bi}ieJ1 and singular edges {Ej}jeJ. Then \JieI Bi
is the boundary of C, Ujej Ej is the singular set S of C, and U»€/ F2 becomes
C itself.

In order to simplify computations we shall frequently classify the singular
edges of C in terms of the faces. For this purpose let us double-index {Ej}jeJ

using two indices: Given a face Fz , define a reindexed set {En, Ei2, , Eim%}
to be the set of all singular edges Ej such that Ej C dFi. Hence

Similarly we classify the faces of C in terms of the singular edges: Given a
singular edge JEJ, define

Then

Ej = Π dFjk.
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Since a face contains at least two singular edges, each face is double-indexed
at least two times. Likewise each singular edge is double-indexed at least
three times because a singular edge is part of the boundary of at least three
faces.

Let φ be a diffeomorphism of Rn leaving dC fixed. Since φ is homotopic
to the identity map in # n , the singular set S is homologous to φ(S). More
precisely, let φt be the homotopy from the identity to φ. For each singular
edge £j , there exists an m-dimensional smooth submanifold Gj of Rn such
that Gj is the set swept out by φt(Ej). Clearly dGj D Ej U φ{Ej). {Gj}jqj
can be double-indexed in the same manner as {Ej}: We write Gj = Gik if
Ej = Eik- Similarly, given a face F, , there exists an (m + l)-dimensional
smooth submanifold Z), swept out by ψt(Fi) such that

φ(Fi) U Gn U - - U Gim%.

Now let us equip submanifolds F, , ¥>(F, ), Gik, and Di with appropriate
orientations in such a way that

(1) dDi = Fi - φ(Fi) + Gix + • - + Gimχ.

One can find a coordinate system {xi, , xn} in Rn such that the coordinate
frame fields djdx\, , d/dxn are orthonormal and d/dxι, , d/dxm are
parallel to F, . Define

u>i = dxi A - Λ ctem.

Then dωi = 0. Reordering {#i, , xm} according to the orientation of i^ ,
if necessary, one sees that

(2) / CJ, = Volume(ίi).
JF

Then

Σ [(3) 0 = / dui = / α;, = Volume(^ ) - / "i + Σ [ ω{.
JDt JdDt Jφ(Fi) k = 1JGtk

Let ξ be the volume form of ψ{Fi) and ^* the m-vector on φ(Fi) with £(£*) =
1. Note that ωf (̂ *) < 1 and

/ ω<= I ω,(ξ*)ξ<
Jψ(F,) Jφ(F.)

Then summing up (3) for all i € / , we have

Volume(C) = X) Volume(^ ) < Volume(^(C)) - Σ Σ / ω<



442 JAIGYOUNG CHOE

Here let us double-index {ω, }t €j such that α;,- = ωjk if F, = Fjk. Then
rearranging the summation in terms of the singular edges gives

3 ί

(4) Volume(C) < Volume(^(C)) ~ΣΣ

In the integral in (4), however, the orientation of Gj is ambiguous since
it depends on the orientation of Fjk for each k subject to (1). But since
fG Ujk = /_G. —ϋθjk, one can fix the orientation of Gj by taking the negative
of ωjk if necessary. Then through (1) the orientation of Gj determines that
of Fjk, which in turn determines ωjk through (2). Now m-formsu^x, , ω j n >

can be expressed more explicitly as follows. Let vk be a unit constant vector
field in Rn parallel to Fjk and perpendicular to Ej. Assume further that
fk I Fjk points inward along Ej. Define θk to be the 1-form in Rn dual to ιsk,
i.e., θk(v) = vk - v for any vector field v. Let ηj be a volume form of Ej for
an appropriate orientation of Ej. Then one can easily check that

ωjk = ηj Λθk.

The stationarity of C states that

5%* = 0 and
k=l

Therefore

Thus it follows from (4) that

Volume(C) < Volume(<^(C)).

D

Corollary l Every stationary cone in R3 is area minimizing under dif-

feomorphisms.

Proof. All stationary cones in R? are polyhedral. D

Corollary 2. Every m-dimensional stationary polyhedral set in Rn is stable.

Remarks, i) In fact, the set of competing surfaces in Theorem 1 can be
enlarged from difFeomorphic images ψ{C) of C to the surfaces homologous
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to C: If C = [Jiei &, C D dC, and if each F, satisfies dA = F{; U F%• U Ga U

• U Gimtl then Volume ( c ) > Volume(C).

ii) There are nonpolyhedral stationary cones that are unstable: e.g. the

cones over S1 (1/V2) X S1 {l/y/ΐ) in R4 and over S2 (1/V2) x 52(1/Λ/2)

in # 6 [S].
iii) B. White has also shown that stationary polyhedral cones are always

stable.
iv) It should be mentioned that not every stationary polyhedral set is a

unique minimizer. Figure below illustrates two diffeomorphic 1-dimensional
stationary polyhedral sets of equal length. However, if we assume that each
face of the m-dimensional stationary polyhedral set C has nonempty in-
tersection with the boundary of C, then Volume(<^(C)) = Volume(C) for a
diffeomorphism φ leaving dC fixed if and only if φ(C) = (C). This is because
Volume(^(C)) = Volume(C) if and only if ω^ξ*) = 1 on φ(Fi) for all i G / if
and only if ψ(Fi) — F{ or ψ(C) = C. But is there an m-dimensional station-
ary polyhedral set which is not a unique minimizer? Indeed it seems to be an
interesting problem to find an m-dimensional (m > 2) stationary polyhedral
set C which has an interior face, i.e., a face disjoint from the boundary of C
(like the edges of the hexagons in the 1-dimensional polyhedral sets of figure
below)

Two diffeomorphic stationary sets of equal length.

3 Extensions to crystals and immiscible fluids.

Crystals tend to minimize the surface energe which is given by an integral
/ 5 Φ(n) in which the weighting of area depends on the unit normal n at each
point. Immiscible fluids try to minimize the total interface energy. This
energy is proportional to area, but the constant of proportionality depends
on a pair of fluids separated by the interface. In this section we extend
Theorem 1 to the stationary polyhedral hypersurfaces (interfaces) of crystals
and immiscible fluids.
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Definition. A norm Φ in Rn is a homogeneous convex function on Z2n,
positive except at 0. The dual norm Φ* is defined by

Φ*(w) = sup{w v : Φ(ι ) = 1}.

It follows immediately that

v w < Φ(v)Φ*(w).

If equality holds, we say that w is dual to υ. One can easily see that w is
dual to a Φ-unit vector υ when w is an outward-pointing normal to the unit
Φ-ball at v.

For a hypersurface S in Rn with a unit normal n, the energy Φ(5) of 5
associated with the norm Φ is defined by

= ί

Theorem 2. Lei Φ 6e a norm in Rn , and let C be an (n — 1)-dimensional
polyhedral set in Rn which is stationary with respect to the Φ-energy. Then
C is energy minimizing under diffeomorphisms, i.e., for any diffeomorphism
ψ leaving dC fixed,

Φ(C) <

Proof. For the faces and edges of C and their "swept-out" sets, we use the
same notations Fi,Fjk,Ej,Dι,Gj,Gik as used in the proof of Theorem 1.
Also we employ the same double-indexing convention as used there. Let n,
be a unit normal to Fj. Extend n, to a constant unit vector field n, in Rn.
Let n* be the Φ*-unit vector field dual to n^, that is,

v - n* < Φ(ϋ)

with equality for υ = Π{. Let dV be the volume form of Rn and define

ωi = n*j dV.

Then dω{ = 0. Hence

l ) = / Φ(n<)=
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where v is a unit normal to φ(Fi). Therefore

(5) / M
Jφ{Ft)

Adding up (5) for all i gives

(6) Φ(C7)<ΦMC))-ΣΣ/ "*•
»€/ kzzlJG*

Now, for a singular edge £ j , the faces FjuFj2^ , ί } n i are assumed to be
indexed in the order they appear around Ej. Also the unit normals njk to
Fjk are chosen in such a way that Ujk points from Fjk to Fj(k+1) (to Fji if
fc = rij). Then the stationarity of C implies that

(See [LM, Theorem 4.2].) Hence we have

Therefore the last term in (6) vanishes by the same reason as in the proof
of Theorem 1. D

Definition. Let 5 be a union of hypersurfaces Si of Rn and α, the mul-
tiplicity constant (interface energy) of 5 t . Given a diffeomorphism φ of Rn,
define the total interface energy M(φ(S)) of φ(S) by

M(φ(S)) = 5>< Volume^-)).

Theorem 3. Given an (n — 1)-dimensional polyhedral set C in Rn with
faces Fi of multiplicity α, , suppose C is stationary with respect to the total
interface energy. Then C is energy minimizing in its diffeomorphism class.

Proof. Employing the same notations as in the proof of Theorem 2, we define
an (n - l)-form ω{ in Rn by

ωi = α, n, j dV.
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Then dωi — 0 and so

JFi JF% Jφ{Ft) k = 1 JGιk

Hence

Since C is stationary, we have

where α^̂  is the multiplicity of the face Fjki and Πjk the unit normal to Fjk.

Hence

and we get

M(C) < M(φ(C)),

for any diffeomorphism ψ leaving dC fixed. D
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