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Abstract. Given a noncompact disconnected periodic curve Γ of infinite length
with two components and no self-intersection in R3, it is proved that there ex-

ists a noncompact simply connected periodic minimal surface spanning Γ. As
an application, it is shown that for any tetrahedron T with dihedral angles

≤ 90◦, there exist four embedded minimal annuli in T , which are perpendicu-

lar to ∂T along their boundary. It is also proved that every Platonic solid of
R3 contains a free boundary embedded minimal surface of genus zero.
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1. introduction

The famous problem of finding a surface of the least area spanning a given Jordan
curve called the Plateau problem, was settled by Douglas and Radó independently
in 1931. Since then, many questions have been raised about the Douglas-Radó
solution: the uniqueness, the embeddedness, the topology of the solution, and the
number of solutions.

In this paper, we are concerned with the Plateau problem for a noncompact
disconnected complete curve Γ with two components in R3, which is periodic. Γ is
said to be periodic if Γ has a fundamental piece γ̄ with two components such that
Γ is the infinite union of the congruent copies of γ̄ obtained in a periodic way. In
particular, Γ is helically periodic if it is the union of images of γ̄ under the cyclic
group ⟨σ⟩ generated by a screw motion σ. Γ is translationally periodic if it is
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invariant under the cyclic group ⟨τ⟩ generated by a translation τ(see Figure 1). The
extensions by screw motions and translations are to be performed infinitely until Γ
becomes complete.

We prove that for every complete noncompact disconnected periodic curve Γ in
R3 there exists a noncompact simply connected minimal surface Σ ⊂ R3 spanning
Γ such that Σ inherits the periodicity of Γ (Theorem 2.2). Furthermore, in case Γ
consists of the x3-axis and a complete connected translationally periodic curve γ1
winding around the x3-axis such that a fundamental piece of γ1 admits a one-to-one
orthogonal projection onto a convex closed curve in the x1x2-plane, we can show
that Σ is unique and embedded (Theorem 3.1). These two theorems have an inter-
esting application. Smyth [8] showed that given a tetrahedron T , there exist three
embedded minimal disks in T which meet ∂T orthogonally along their boundary.
From T , Smyth considered a quadrilateral Γ whose edges are perpendicular to the
faces of T . Γ bounds a unique minimal graph Σ. He then showed that the conjugate
minimal surface of Σ is the desired minimal surface in T .

In this paper, we will first see that the tetrahedron T gives rise to a noncompact,
disconnected, translationally periodic, piecewise linear curve Γ such that the edges
(=line segments) of a fundamental piece γ̄ of Γ are perpendicular to the faces of T .
In fact, γ̄ has two components γ̄0, γ̄1, where γ̄0 has only one edge and γ̄1 has 3 edges.
So one of the two components of Γ is a straight line ℓ. By Theorem 2.2 Γ bounds a
noncompact simply connected translationally periodic minimal surface Σ. Let Σ∗

be its conjugate minimal surface. In Theorem 5.1, we will prove that if ℓ is properly
chosen relative to γ̄1, then Σ∗ is a minimal annulus in T which is perpendicular to
∂T (see Figure 2). One boundary component of Σ∗ is a convex closed curve lying
in one face of T and the other component traces along the remaining three faces.
Since there are four lines perpendicular to a face of T we conclude that there exist
four free boundary minimal annuli in T if the dihedral angles of T are ≤ 90◦. If at
least one dihedral angle of T is > 90◦, there exist four minimal annuli that are not
necessarily inside T but still perpendicular to the planes containing the faces of T
along their boundary.

In general, one cannot generalize Theorem 5.1 to construct a free boundary
minimal annulus in a polyhedron other than a tetrahedron. However, in case Py

is a right pyramid with a regular polygonal base B and apex p (i.e., Py = p××B,
the cone), we can show the existence of a free boundary minimal annulus Σ∗ in
Py(Theorem 6.1). Consequently, it is proved that every Platonic solid Ps bounded
by regular n-gons contains a free boundary embedded minimal surface of genus 0.

2. Periodic Plateau problem

A Jordan curve is simple and closed. So, it has no self-intersection and is home-
omorphic to a circle. If a simple curve Γ ⊂ R3 is not closed but homeomorphic to
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R1 and has infinite length, one cannot, in general, find a minimal surface spanning
Γ. However, if there exists a surface of finite area spanning Γ, one can easily show
the existence of a minimal surface spanning Γ. The same is true if Γ is the union of
simple open curves of infinite length bounding a surface of finite area. If Γ cannot
bound a surface of finite area, one must impose extra conditions on Γ to get a min-
imal surface spanning Γ. This section shows that the periodicity of Γ is a sufficient
condition for this purpose. Our proof for this periodic case follows the standard
proof for a Jordan curve Γ, modifying the arguments in each periodic situation.

Definition 2.1. a) Let Γ ⊂ R3 be the union of two complete rectifiable curves
γ1, γ2 and let U be a convex polyhedral domain in R3. Γ is said to be periodic if Γ
is the infinite union of the congruent copies of γ̄ := Γ∩U . γ̄ is called a fundamental
piece of Γ.

b) Γ is said to be translationally periodic if it is the union of translated funda-
mental pieces τn(γ̄) for the cyclic group ⟨τ⟩ generated by a parallel translation τ . Γ
is invariant under ⟨τ⟩. Moreover, Γ is said to be helically periodic if it is the union
of σn(γ̄) for the cyclic group ⟨σ⟩ generated by a screw motion σ. Assume that the
screw motion σ is the rotation about the x3-axis by angle β composed with the
translation by e, that is,

(2.1) σ(r cos θ, r sin θ, x3) = (r cos(θ + β), r sin(θ + β), x3 + e).

Every translationally periodic Γ can be helically periodic as well with respect to σ
for β = 0.

c) Given a surface Σ spanning Γ, the periodicity of Σ can be defined in the same
way as Γ.

Γ is complete because translations and screw motions are performed infinitely.

Theorem 2.2. Let Γ ⊂ R3 be the union of two complete curves γ1, γ2, which is
helically periodic. Then there exists a simply connected helically periodic minimal
surface Σ spanning Γ. The fundamental region of Σ has the least area among the
fundamental regions of all the simply connected helically periodic surfaces spanning
Γ. The same conclusion holds for the translationally periodic Γ as well.

Proof. Let’s first prove the theorem when Γ is helically periodic. We assume that
Γ is invariant under the σ defined by (2.1). We may further assume that σ maps
the fundamental piece γ̄ of Γ to its adjoining piece, that is, γ̄ is connected to σ(γ̄)
through their common endpoints. Γ uniquely determines the angle β > 0 of (2.1),

which we call the period of Γ. Σ̂ is a fundamental region of Σ if and only if

Σ =
⋃
k∈Z

σk(Σ̂) and Σ̂ ∩ σ(Σ̂) = ∅.

Definition 2.3. To each complete helically periodic curve Γ we associate the class
Ca,Γ of admissible maps φ from the infinite strip Ia := [0, a] × R to R3 with the
following properties:

(1) φ is a piecewise C1 immersion in the interior of Ia and is continuous in Ia;
(2) φ(x, y + kβ) = σk(φ(x, y)), (x, y) ∈ Ia, k : integer, β : fixed > 0;
(3) φ

∣∣
∂Ia

is a monotone map onto Γ, i.e., the set φ−1(p) is connected for each

p ∈ Γ.

To normalize Ca,Γ let’s assume that φ(0, 0) = p for a fixed point p of Γ. φ is said to
be invariant under the screw motion σ with period β if φ satisfies property (2).

Define the area functional A on Ca,Γ by

A(φ) =

∫ ∫
[0,a]×[0,β]

|φx ∧ φy|dx dy
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and the Dirichlet integral D(φ) of φ ∈ Ca,Γ by

D(φ) =

∫ ∫
[0,a]×[0,β]

|∇φ|2dx dy.

Since

|φx ∧ φy| ≤
1

2

(
|φx|2 + |φy|2

)
we have

(2.2) A(φ) ≤ 1

2
D(φ), φ ∈ Ca,Γ

where equality holds if and only if φ is almost conformal. To obtain the equality
case, we must prove the existence of periodic isothermal coordinates invariant under
σ on the surface φ(Ia).

Proposition 2.4. For any φ ∈ Ca,Γ there exist b̄ > 0 and a periodic homeomor-
phism H : Ia → Ib̄ := [0, b̄]×R such that H−1 has period β and the reparametrized
map φ ◦H−1 : Ib̄ → φ(Ia) is a conformal map in Cb̄,Γ.

Proof. Let N be the annulus obtained from [0, a]× [0, β] by identifying the two line
segments [0, a]× {0, β}. Let g be the metric on N which is pulled back by φ from
the metric of φ(Ia). g is well-defined since φ is invariant under the screw motion
σ determined by Γ. Let’s consider the Dirichlet problem on (N, g) for a constant
b > 0:

∆u = 0, u = 0 on {0} × [0, β], u = b on {a} × [0, β].

A unique solution u = hb exists for this problem. The harmonic function hb has
a conjugate harmonic function h∗b which is multi-valued on (N, g). But h∗b is well-

defined on its universal cover Ñ = Ia. Let τ(b) > 0 be the period of h∗b on N . τ(b)
is an increasing function which varies from 0 to ∞ as b does so. Hence there exists
b̄ > 0 such that τ(b̄) = β. Note that hb̄ can also be lifted to hb̄ on Ia. Then the
map H : Ia → Ib̄ defined by H(q) = (hb̄(q), h

∗
b̄
(q)) is a periodic homeomorphism

and yields a conformal map φ ◦ H−1 : Ib̄ → φ(Ia). Note that H−1 has period β
and φ◦H−1 is invariant under the screw motion σ. This completes the proof of the
proposition. □

To prove the existence of an area-minimizing surface spanning Γ, let’s define

aΓ = inf
φ∈Ca,Γ, a>0

A(φ) and dΓ = inf
φ∈Ca,Γ, a>0

D(φ).

Then by (2.2) and the existence of the isothermal coordinates, we have

aΓ =
1

2
dΓ.

Therefore

D(ψ) = dΓ for some ψ ∈ Ca,Γ ⇐⇒ A(ψ) = aΓ and ψ is almost conformal.

Thus, to solve the periodic Plateau problem it suffices to find ā > 0 and a map
ψ ∈ Cā,Γ which minimizes the Dirichlet integral D(φ) on [0, a] × [0, β] among all
φ in Ca,Γ and all a > 0. First we shall fix a > 0 and apply the periodic Dirichlet
principle on Ca,Γ as follows.

Lemma 2.5. For each admissible map φ in Ca,Γ there exists a unique harmonic
admissible map ψ ∈ Ca,Γ with ψ|∂Ia = φ|∂Ia . Moreover, D(ψ) ≤ D(φ).
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Proof. Let x, y be the Euclidean coordinates of R2 and set t = x+ iy. Define

f1(t) = eπit/a and f2(z) =
iz + 1

z + i
.

Then z = f1(t) maps the infinite vertical strip Ia one-to-one onto the upper half
plane {Im z ≥ 0}\{0} and w = f2(z) maps {Im z ≥ 0}\{0} one-to-one onto the unit
disk {|w| ≤ 1}\{i,−i}. Furthermore, we see that f2(f1(∂Ia)) = {|w| = 1}\{i,−i}.
Let’s consider the vector-valued Dirichlet problem for u = (u1, u2, u3) in D := {w :
|w| < 1}:

(2.3) ∆u = 0 in D, u = φ ◦ f1−1 ◦ f−1
2 on ∂D, φ = (φ1, φ2, φ3).

Since φ satisfies φ(x, y+kβ) = σk(φ(x, y)) for the screw motion σ defined by (2.1),
we see that φ1, φ2 are bounded and

(2.4) φ3(x, y + kβ) = φ3(x, y) + ke.

The Dirichlet problem (2.3) has a unique bounded solution for u1, u2 because
of the boundedness of φ1, φ2. Even though φ3 is unbounded, by (2.4) φ3 − e

β y is

bounded and periodic in Ia. So, if the Dirichlet problem

(2.5) ∆v = 0 in Ia, v = φ3 −
e

β
y on ∂Ia

has a bounded solution, it must be unique and periodic with period β. To find its
bounded solution, we convert it to a new Dirichlet problem on D:

(2.6) ∆w = 0 in D, w = (φ3 −
e

β
y) ◦ f1−1 ◦ f−1

2 on ∂D.

The boundedness of (φ3 − e
β y) ◦ f1

−1 ◦ f−1
2 gives the existence of a unique bounded

solution w = h̃3 to (2.6). As e
β y ◦ f

−1
1 ◦ f−1

2 is harmonic in D, it is easy to see that

u3 := h̃3 +
e
β y ◦ f

−1
1 ◦ f−1

2 is the third component of a desired solution to (2.3).

Pulling back (u1, u2, u3) by f2 ◦ f1 to Ia, one can obtain a harmonic map ψ :
Ia → R3 having the same boundary value as φ on ∂Ia. We now show that ψ is
invariant under the screw motion σ, in other words,

ψ(x, y + β) = σ(ψ(x, y)).

Let h1, h2, h3 : Ia → R be the harmonic components of ψ, that is,

ψ(x, y) = (h1(x, y), h2(x, y), h3(x, y)).

(One easily sees that h3 = h̃3 ◦ f2 ◦ f1 + e
β y.) Define

ψA(x, y) = ψ(x, y + β) and ψB(x, y) = σ(ψ(x, y)).

Since h̃3 ◦ f2 ◦ f1 is periodic with period β, we have

h3(x, y + β) = h3(x, y) + e.

So the third component of ψA(x, y) equals that of ψB(x, y). On the other hand,

ψB(x, y) = (cosβ h1(x, y)− sinβ h2(x, y), sinβ h1(x, y)+cosβ h2(x, y), h3(x, y)+e).

Hence ψA, ψB are harmonic maps. As h1, h2 are bounded, so is ψA − ψB . Since
σ(Γ) = Γ, ψA − ψB vanishes on ∂Ia. Then (ψA − ψB) ◦ f−1

1 ◦ f−1
2 is a bounded

harmonic map vanishing on ∂D and so ψA−ψB ≡ 0. Therefore ψ is invariant under
σ. ψ is a unique admissible harmonic map in Ca,Γ having the same boundary values
as φ.

Set Φ = φ− ψ. Then Φ is also invariant under σ and hence

D(φ) = D(Φ) +D(ψ) + 2D(Φ, ψ)
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where

D(Φ, ψ) =

∫ ∫
[0,a]×[0,β]

(
⟨∂Φ
∂x

,
∂ψ

∂x
⟩+ ⟨∂Φ

∂y
,
∂ψ

∂y
⟩
)
dxdy.

Green’s identity implies that

D(Φ, ψ) =

∫
∂([0,a]×[0,β])

⟨Φ, ∂ψ
∂ν

⟩ds−
∫ ∫

[0,a]×[0,β]

⟨Φ,∆ψ⟩dxdy,

where ν is the outward unit normal to ∂([0, a]× [0, β]). But

Φ = 0 on {0, a} × [0, β] and
∂ψ

∂ν

∣∣
[0,a]×{β} = −∂ψ

∂ν

∣∣
[0,a]×{0}

because of the invariance of ψ under σ. Hence D(Φ, ψ) = 0. It then follows that

D(ψ) ≤ D(φ),

which completes the proof of the lemma. □

Define

da,Γ = infφ∈Ca,Γ
D(φ).

We claim here that da,Γ goes to infinity as a→ ∞ and as a→ 0.

D(φ) ≥
∫ a

0

∫ β

0

|φy|2dydx =

∫ a

0

∫ β

0

3∑
i=1

(
∂φi

∂y

)2

dydx

≥ 1

β

∫ a

0

(∫ β

0

∂φ3

∂y
dy

)2

dx =
1

β

∫ a

0

(φ3(x, β)− φ3(x, 0))
2dx

=
ae2

β
.

So lima→∞ da,Γ = ∞. On the other hand,

D(φ) ≥
∫ β

0

∫ a

0

|φx|2dxdy =

∫ β

0

∫ a

0

3∑
i=1

(
∂φi

∂x

)2

dxdy

≥ 1

a

∫ β

0

3∑
i=1

(∫ a

0

∂φi

∂x
dx

)2

dy =
1

a

∫ β

0

3∑
i=1

(φi(a, y)− φi(0, y))
2dy

≥ βd2

a
,

where d is the distance between the two components γ0, γ1 of Γ which are written
as γ0 = φ({0} × R), γ1 = φ({a} × R). Hence lima→0 da,Γ = ∞ as well.

Therefore, we can conclude that there exists a positive constant ā such that

dΓ = dā,Γ.

To finish the proof of Theorem 2.2 we need the following.

Lemma 2.6. Let M be a constant > dΓ. Then, for any a > 0, the family of
functions

Fa = {φ|∂Ia : φ ∈ Ca,Γ, D(φ) ≤M}

is compact in the topology of uniform convergence.
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Proof. For each z ∈ ∂Ia and each r > 0, define Cr to be the intersection of Ia with
the circle of radius r centered at z, and denote by s the arc length parameter of Cr.
Choose any φ ∈ Ca,Γ with D(φ) ≤M . For 0 < δ < min(1, a2), consider the integral

K :=

∫ √
δ

δ

∫
Cr

|φs|2ds dr ≤ D(φ) ≤M.

One can see that

K =

∫ √
δ

δ

f(r) d(log r), f(r) := r

∫
Cr

|φs|2ds.

By the mean value theorem there exists ρ with δ ≤ ρ ≤
√
δ such that

K = f(ρ)

∫ √
δ

δ

d(log r) =
1

2
f(ρ) log(

1

δ
).

Hence ∫
Cρ

|φs|2ds ≤
2M

ρ log( 1δ )
.

Denote the length of the curve φ(Cr) by L(φ(Cr)). Then L(φ(Cρ)) =
∫
Cρ

|φs|ds
and from the Cauchy-Schwarz inequality it follows that

(2.7) L(φ(Cρ))
2 ≤ 2πM

log( 1δ )
.

Given a number ε > 0, by the compactness of Γ/⟨σ⟩ we see that there exists
d > 0 such that for any p, p′ in Γ with 0 < |pp′| < d, the diameter of the bounded
component of Γ\{p, p′} is smaller than ε. Choose δ < min(1, a2) such that 2πM

log( 1
δ )
<

d2. Then for any z ∈ ∂Ia, there exists a number ρ with δ < ρ <
√
δ such that

by (2.7), L(φ(Cρ)) < d. Let Ez be the interval in ∂Ia between z1 and z2, the two
endpoints of Cρ. Then |φ(z1)φ(z2)| < d and hence the diameter of φ(Ez) is smaller
than ε. Therefore for any z, z′ ∈ ∂Ia with |z− z′| < δ and z being the center of Cρ,
we have φ(z), φ(z′) ∈ φ(Ez) and thus

|φ(z)− φ(z′)| < ε.

Since δ was chosen independently of z, z′ and φ, we obtain the equicontinuity of Fa.
In Douglas’s solution for the existence of a conformal harmonic map φ : D → Rn

spanning a Jordan curve Γ, it was essential to prescribe φ(zi) = pi for arbitrarily
chosen points z1, z2, z3 ∈ ∂D and p1, p2, p3 ∈ Γ. This was to derive the equicontinu-
ity in a minimizing sequence. Fortunately, we do not need this prescription for our
compact set Γ/⟨σ⟩ as φ(Ia)/⟨σ⟩ is not a disk. Yet we need to avoid an unwanted
situation resulting from the disconnectedness of Γ: we have to show that φ({a}×R)
does not drift away from φ({0}×R) (recall that φ(0, 0) is fixed). This can be done
by deriving a length bound from a bound on D(φ) as above.

For each y ∈ [0, β] let ℓy denote the line segment [0, a] × {y}. Choose φ ∈ Ca,Γ
and suppose D(φ) ≤M . Consider the integral

K :=

∫ β

0

∫
ℓy

|φx|2dx dy ≤ D(φ) ≤M.

Then

K =

∫ β

0

f̃(y) dy, f̃(y) :=

∫
ℓy

|φx|2dx.

The mean value theorem implies that there exists 0 < ȳ < β such that

K = β f̃(ȳ) ≤M.
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Hence

(2.8) L(φ(ℓȳ))
2 =

(∫
ℓȳ

|φx|dx

)2

≤ a f̃(ȳ) ≤ aM

β
.

We say that φ({a} × R) drifts away from φ({0} × R) if limx→a |φ3(x, y)| = ∞ for
some 0 ≤ y ≤ β. Therefore (2.8) means that no drift occurs under φ if D(φ)
is bounded, as claimed. Thus, by Arzela’s theorem, the equicontinuity yields the
compactness of Fa. This completes the proof of Lemma 2.6. □

Finally, let {φn} be a minimizing sequence in Cā,Γ, that is, limn→∞D(φn) = dΓ.
From Lemma 2.6 it follows that there exists a subsequence {φni} such that {φni |∂Iā}
converges uniformly to φ̄|∂Iā for some φ̄ ∈ Cā,Γ. By Lemma 2.5 there exist harmonic
maps ψi, ψ ∈ Cā,Γ such that

ψi|∂Iā = φni
|∂Iā , D(ψi) ≤ D(φni

), ψ|∂Iā = φ̄|∂Iā , ψ = lim
i→∞

ψi.

Then, Harnack’s principle gives

D(ψ) ≤ lim inf
i
D(ψi) ≤ dΓ.

Consequently, D(ψ) = dΓ and so ψ is almost conformal and harmonic. This com-
pletes the proof of Theorem 2.2 when Γ is helically periodic and, therefore, when it
is also translationally periodic. Since ψ is periodically area minimizing in R3 it has
no interior branch point (see [3]). □

3. Uniqueness and Embeddedness

Under what condition can Γ guarantee the uniqueness and embeddedness of the
periodic Plateau solution Σ? For the Douglas solution with Jordan curve Γ, Nitsche
[4] and Ekholm-White-Wienholtz [2] proved the uniqueness and the embeddedness,
respectively, if the total curvature of Γ ≤ 4π. But even before Douglas, Radó [6]
showed that the Dirichlet solution of the minimal surface equation for any continu-
ous boundary data over the boundary of a convex domain in R2 exists as a graph,
which is unique and embedded. In the same spirit, we have a partial answer for our
periodic Plateau problem.

Theorem 3.1. Let γ0 be the x3-axis and γ1 a complete connected curve winding
around γ0. Define Γ = γ0 ∪ γ1 and let τ be a vertical translation by e. If Γ
is translationally periodic with respect to τ and a fundamental piece of γ1 admits
a one-to-one orthogonal projection onto a convex closed curve in the x1x2-plane,
then the translationally periodic minimal surface Σ spanning Γ has the following
properties:

(a) The Gaussian curvature of Σ is negative at any point p ∈ γ0;
(b) Σ is embedded and its fundamental region (not including γ0) is a graph over

its projection onto the x1x2-plane;
(c) Σ is unique.

Proof. (a) γ0 is parametrized by x3. At any point p(x3) of γ0, Σ has a tangent
half plane Qp(x3). In a neighborhood of p(x3), Σ is divided by Qp(x3), like a half
pie, into m(≥ 2) regions (see Figure 3). Define θ(x3) to be the angle between
Qp(x3) and the positive x1-axis. θ(x3) is a well-defined analytic function satisfying
θ(x3 + e) = θ(x3) + 2π. It is known (to be proved shortly) that

(3.1) m = 2 at p(x3) ⇔ K(x3) < 0 ⇔ θ′(x3) ̸= 0,

where K(x3) is the Gaussian curvature of Σ at p(x3).
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We claim that m ≡ 2 on γ0. Suppose m ≥ 3 at p(x3) so that Qp(x3) ∩ Σ \ γ0 is
the union of at least two analytic curves C1, C2, ..., Ck emanating from p(x3). Since
Qp(x3) intersects γ1, at least one of C1, C2, ..., Ck should reach γ1. So we have two
possibilities: either (i) only one of them, say C1, reaches γ1, or (ii) two of them,
say C1, C2, reach γ1 (see Figure 3). In the first case, since C2 is disjoint from γ1

and translationally periodic, it cannot be unbounded and should be in a fundamental
region of Σ. Hence C2 comes back to γ0. C2 and γ0 should then bound a domain
D ⊂ Σ with ∂D ⊂ Qp(x3) as Σ is simply connected. But this contradicts the
maximum principle because D has a point that attains the maximum distance from
Qp(x3). In case of (ii), set C1 ∩ γ1 = {q1} and C2 ∩ γ1 = {q2}. Denote by π the
projection onto the x1x2-plane. Due to the convexity of π(γ1), Qp(x3) intersects
any fundamental piece of γ1 only at one point. Therefore {q1, q2} should be the
boundary of a fundamental piece of γ1. Hence τ(q1) = q2, interchanging q1 and q2
if necessary. So the two curves τ(C1) and C2 meet at q2. Then τ(C1), C2 and γ0
bound a domain D ⊂ Σ. Again ∂D is a subset of Qp(x3), which contradicts the
maximum principle. Therefore m ≡ 2 on γ0, as claimed.

To give a proof of the equivalences (3.1), let’s view Σ in a neighborhood of
p ∈ γ0 as a graph over Qp, the tangent half plane of Σ at p. Introduce x, y, z as
the coordinates of R3 such that z ≡ 0 on Qp, x ≡ 0 on γ0 and p = (0, 0, 0). Then
Σ is the graph of an analytic function z = f(x, y) and the lowest order term of its
Taylor series is fm(x, y) = cm Im(x + iy)m,m ≥ 2, when m is an even integer and
fm(x, y) = cm Re(x+ iy)m when m is odd. It follows that Σ is divided by Qp into
m regions in a neighborhood of p and that K(p) = 0 if m ≥ 3 and K(p) < 0 if
m = 2, which is the first equivalence in (3.1). Hence K < 0 on γ0 by the claim
above and this proves (a). The second equivalence follows from the expression for
the Gaussian curvature in terms of the Weierstrass data on Σ, a 1-form fdz and
the Gauss map g:

(3.2) K = − 16|g′|2

|f |2(1 + |g|2)4
.

(b) First we show that Σ \ γ0 has no vertical tangent plane. Suppose not; let q
be an interior point of Σ at which the tangent plane P is vertical. Remember that
π(γ1) is convex. Hence, P intersects γ1 only at two points in its fundamental piece.
P ∩Σ is locally the union of at least four curves C1, . . . , Ck, k ≥ 4, emanating from
q, and two of them should reach γ1. If we assume only four curves emanate from q
in P ∩ Σ, two of them will reach γ1, and then either the remaining two will reach
γ0, or they will be connected to each other by the translation τ as in Figure 4: (i)
C1, C2 will intersect γ1 and C3, C4 will intersect γ0; (ii) C1, C2 will intersect γ1 and
C3, C4 will be disjoint from γ0 ∪ γ1 so that C4 will be connected to τ(C3).
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In case of (i), C3 ∪ C4 ∪ γ0 will bound a domain D ⊂ Σ. But this contradicts the
maximum principle since ∂D ⊂ P . In case of (ii), γ0 is disjoint from P . Then γ0 and
P ∩Σ bound an infinite strip S ⊂ Σ lying on one side of P . Since S/⟨τ⟩ is compact,
there exists a point pS ∈ S which has the maximum distance from P among all
points of S. γ0 is a constant distance away from P and the inward unit conormals
to γ0 on Σ wind around it once in its fundamental piece. So there is a point in γ0 at
which the inward unit conormal to γ0 points away from P . Then, in that direction,
the distance from P increases. Hence, pS is not a point of γ0 but an interior point
of S. However, this contradicts the maximum principle. Consequently, no tangent
plane to Σ can be vertical at any point of Σ0. Even if P ∩ Σ consists of six curves
or more, the same argument works.

We now show that the interior of Σ does not intersect γ0. Let ψ : [0, ā]×R → R3

be the periodically area minimizing conformal harmonic map such that ψ([0, ā] ×
R) = Σ, ψ({0} × R) = γ0 and ψ({ā} × R) = γ1. Suppose there exists an interior
point p ∈ (0, ā)×R such that Σ intersects γ0 at ψ(p). Define f(q) = x1(q)

2+x2(q)
2

for q ∈ Σ. Let F be the family of all arcs on Σ connecting γ0 to ψ(p). Find a saddle
point in Σ for the function f . Define

A = minα∈F maxq∈αf(q).

Clearly there exists a saddle point q0 in Σ such that f(q0) = A. Suppose A = 0.
Then there is an arc α̃ ⊂ [0, ā]×R connecting {0}×R to p such that f ≡ 0 on ψ(α̃).
Since Σ periodically minimizes area, it has no interior branch point. Neither does Σ
have a boundary branch point on γ0. Hence ψ is an immersion on [0, ā)×R. But ψ
maps ({0}×R)∪ α̃ onto γ0 if f ≡ 0 on ψ(α̃). This is not possible for the immersion
ψ. Hence, A cannot be equal to 0. Since ∇f = 0 at q0, the tangent plane to Σ at
q0 is parallel to γ0, so it must be vertical. This is a contradiction. Therefore, the
interior of Σ does not intersect γ0.

Henceforth we show that Σ̂ \ γ0 is a graph over the x1x2-plane, where Σ̂ is a
fundamental region of Σ. By (a), we know that m ≡ 2 on γ0. Hence, given a
vertical half plane Q emanating from γ0 and a suitably chosen fundamental region

Σ̂ of Σ, Q ∩ Σ̂ \ γ0 is a single smooth curve joining γ0 to γ1. Since the interior of Σ
does not intersect γ0, the projection map π|Q∩Σ̂\γ0

is one-to-one near γ0. As π(γ1)

is convex and π|Σ̂∩γ1
is one-to-one, π(Σ) lies inside π(γ1) and π|Σ̂ is one-to-one near

γ1. Suppose the curve Q ∩ Σ̂ \ γ0 contains a point p at which its tangent line is
vertical. Then, the tangent plane to Σ at p is also vertical, which is a contradiction.
Hence Q∩ Σ̂ \ γ0 admits a one-to-one projection into π(Q) for all Q. It follows that

Σ̂ \ γ0 is a 2-dimensional graph over π(Σ̂ \ γ0). Hence, Σ is embedded.
(c) Suppose there exist two periodic Plateau solutions Σ1,Σ2 spanning Γ. Assume

that their fundamental regions Σ̂1, Σ̂2 are the graphs of analytic functions f1, f2 :
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D ⊂ x1x2-plane → R, D := π(Σ1 \ γ0) = π(Σ2 \ γ0). Assume also that f1 ≥ f2.
If there exists an interior point p ∈ D such that (f1 − f2)(p) = maxq∈D(f1 −
f2)(q), we have a contradiction to the maximum principle. Hence, f1 − f2 has no
interior maximum in D. Since f1 − f2 ≡ 0 on π(γ1), it can have a maximum only
at π(γ0) = (0, 0). However, the maximum is attained anglewise as follows. Let
M = supq∈D(f1 − f2)(q). Given a half plane Q emanating from γ0, let MQ =
supq∈Q∩D(f1 − f2)(q). Then M = maxQMQ. Hence there exists a half-plane Q1

emanating from γ0 such that

M = lim
q∈ℓ, q→(0,0)

(f1 − f2)(q), where ℓ = Q1 ∩D.

Then the parallel translate of Σ2 by M , denoted as Σ2 +M , still contains γ0 as
Σ1 does, lies on one side of Σ1 (above Σ1) and is tangent to Σ1 at x3 = q1 :=
limq∈ℓ, q→(0,0) f1(q). Hence, by the boundary maximum principle(boundary point
lemma), f2 +M ≡ f1, that is, Σ2 +M = Σ1. Since Σ2 +M spans Γ +M and Σ1

does Γ, M must equal 0 and thus follows the uniqueness of Σ. □

4. Smyth’s Theorem

It was H.A. Schwarz [7] who first constructed a triply periodic minimal surface
in R3. He started from a regular tetrahedron, four edges forming a Jordan curve,
generating a unique minimal disk. Schwarz found this surface using specific Weier-
strass data. By applying his reflection principle, he was able to extend the minimal
disk across its linear boundary to obtain the D-surface. Then Schwarz introduced
its conjugate surface, which he called the P -surface. This surface is embedded and
triply periodic, just like the D-surface. Moreover, part of it is a free boundary
minimal surface in a cube.

It is interesting to notice that both D-surface and P -surface have fundamental
regions which are free boundary minimal disks in two specific tetrahedra, respec-
tively. However, this is not an accident; B. Smyth [8] showed surprisingly that
any tetrahedron contains as many as three free boundary minimal disks. In the
remainder of the paper, we want to apply Smyth’s method to the periodic Plateau
solutions. To do so, we shall first review Smyth’s theorem in this section.

Given a tetrahedron T in R3, let F1, F2, F3, F4 be its faces and ν1, ν2, ν3, ν4 the
outward unit normals to the faces, respectively. Then, any three of ν1, ν2, ν3, ν4
are linearly independent, but all four are not. Hence there should exist positive
numbers c1, c2, c3, c4 such that

(4.1) c1ν1 + c2ν2 + c3ν3 + c4ν4 = 0.

We may assume
ci = Area(Fi), i = 1, 2, 3, 4.

This is due to the divergence theorem applied on the domain T to the gradients of
the harmonic functions x1, x2, x3, the Euclidean coordinates of R3.

By (4.1) we see that there exists an oriented skew quadrilateral Γ whose edges
(as vectors) are c1ν1, c2ν2, c3ν3, c4ν4. The Jordan curve Γ bounds a unique minimal
disk Σ, which is the image X(D) of a conformal harmonic map X := (x1, x2, x3).
It is well known that x1, x2, x3 are also harmonic on Σ. Hence, there exist their
conjugate harmonic functions x∗1, x

∗
2, x

∗
3 on Σ. Then X∗ := (x∗1, x

∗
2, x

∗
3) defines a

conformal harmonic map from D onto Σ∗ in R3. X∗ ◦ X−1 : Σ → Σ∗ is a local
isometry because of the Cauchy-Riemann equations. Therefore, Σ∗ is a minimal
surface locally isometric to Σ.

Let yi = b1ix1 + b2ix2 + b3ix3 be a linear function in R3 such that ∇yi = ciνi, i =
1, 2, 3, 4. Then yi is constant(= di) on the face Fi. Suppose u, v are isothermal
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coordinates on Σ such that v is constant along the edge ciνi. Then dX( ∂
∂v ) is

perpendicular to the vector ciνi on the edge ciνi. Hence ∂yi

∂v = 0, and by Cauchy-

Riemann
∂y∗

i

∂u = 0 on ciνi as well, where y∗i := b1ix
∗
1 + b2ix

∗
2 + b3ix

∗
3. Therefore y∗i

is constant along the edge ciνi, meaning that the image X∗(ciνi) lies on the plane
{y∗i = d∗i } for some constant d∗i .
dX( ∂

∂u ) is parallel to ∇yi along the edge ciνi. By Cauchy-Riemann, there exists
a number c(p) at p ∈ ciνi such that

(4.2) c(p)(b1i , b
2
i , b

3
i ) = dX(

∂

∂u
) = dX∗(

∂

∂v
).

Hence dX∗( ∂
∂v ) is parallel to (b1i , b

2
i , b

3
i ). Therefore Σ

∗ is perpendicular to the plane
{y∗i = d∗i } along X∗(ciνi). In conclusion, Σ∗ is locally isometric to Σ and is a free
boundary minimal surface in a tetrahedron T ′ similar to T . Thus T contains a free
boundary minimal surface which is a homothetic expansion of Σ∗.

The skew quadrilateral Γ depends on the order of c1ν1, c2ν2, c3ν3, c4ν4. Any edge
of the four can be chosen to be the first in a quadrilateral. Hence, there are 6 = 3!
orderings of the four edges. But they can be paired off into three quadrilaterals
with two opposite orientations. To be precise, for example, if the quadrilateral Γ1

determined by four ordered vectors (u, v, w, x) is reversely traversed, we get the
quadrilateral −Γ1 for the ordering (−u,−x,−w,−v). Define an orthogonal map
ξ(p) = −p, p ∈ R3, then ξ(−Γ1) is the quadrilateral determined by (u, x, w, v).
ξ(−Γ1) cannot be obtained from Γ1 by a Euclidean motion. Even so, the two mini-
mal disks spanning Γ1 and ξ(−Γ1) are intrinsically isometric. Moreover, their conju-
gate surfaces are extrinsically isometric, i.e., they are identical modulo a Euclidean
motion. Therefore, the six orderings of the four edges yield three geometrically dis-
tinct conjugate minimal disks, which, if properly expanded, will be free boundary
minimal surfaces in T .

5. Free boundary minimal annulus

By generalizing Smyth’s method to a translationally periodic solution of the
periodic Plateau problem, we will construct four free boundary minimal annuli in
a tetrahedron.

Theorem 5.1. Let T be a tetrahedron with faces F1, F2, F3, F4 in R3 and let πi be
the orthogonal projection onto the plane Pi containing Fi, i = 1, 2, 3, 4.

(a) If every dihedral angle of T is ≤ 90◦, there exist four free boundary minimal
annuli A1, A2, A3, A4 in T .

(b) If at least one dihedral angle of T is > 90◦, there exist four minimal annuli
A1, A2, A3, A4 which are perpendicular to ∪4

j=1Pj along ∂Ai. Part of Ai

may lie outside T if a dihedral angle is nearer to 180◦. (See Figure 5, right.)
Near ∂Ai, however, Ai lies in the same side of Pj as T does. Moreover,
∂Ai equals Γ1

i ∪ Γ2
i , where Γ1

i is a closed convex curve in Pi and Γ2
i is a

closed, piecewise planar curve in Pj ∪ Pk ∪ Pl with {i, j, k, l} = {1, 2, 3, 4}.
(c) If the three dihedral angles along ∂Fi are ≤ 90◦, then Ai lies inside T . Γ1

i

is a closed convex curve in Fi and Γ2
i is a closed, piecewise planar curve in

∂T \ Fi. (See Figure 5, left.)
(d) Each planar curve in Γ2

i is convex and is perpendicular to the lines contain-
ing the edges of T at its endpoints.

(e) Ai is an embedded graph over πi(Ai).
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Proof. As in the preceding section, νi denotes the outward unit normal to Fi. Again,
there are positive constants ci = Area(Fi) such that c1ν1 + c2ν2 + c3ν3 + c4ν4 = 0.
Assume that ν4 is parallel to the x3-axis so that F4 is contained in the x1x2-plane.
Denote the x1x2-plane by P4 and recall that π4 denotes the orthogonal projection
onto P4. Since

π4(c1ν1) + π4(c2ν2) + π4(c3ν3) = 0,

π4(c1ν1), π4(c2ν2), π4(c3ν3) determine the boundary of a triangle ∆4 ⊂ P4, that is,
π4(ciνi) is the ith oriented edge of ∆4, i = 1, 2, 3. π4(ciνi) is perpendicular to the
boundary edge Fi ∩ F4 of F4. Also π4(ciνi) is perpendicular to the corresponding
edge of J(∆4), where J denotes the counterclockwise 90◦ rotation on P4. Therefore
∆4 is similar to F4.

Choose a point q from the interior ∆̌4 of ∆4 and let γ̄q be the vertical line
segment starting from q and corresponding to (i.e., having the same length and
direction as) −c4ν4. Let γ̄1 be a connected piecewise linear open curve starting from
a vertex of ∆4 that is the starting point of the oriented edge π4(c1ν1) such that γ̄1 is
the union of the three oriented line segments corresponding to the ordered vectors
c1ν1, c2ν2, c3ν3. Then π4(γ̄1) = ∂∆4. Also the endpoints of γ̄1 and γ̄q are in ∆4

and in its parallel translate. One can extend γ̄q ∪ γ̄1 into a complete translationally
periodic curve Γq := γq ∪ γ1 such that γ̄q ∪ γ̄1, γ̄q, γ̄1 become fundamental pieces of
Γq, γq, γ1, respectively. By Theorem 2.2 and Theorem 3.1, there uniquely exists a
simply connected minimal surface Σq spanning Γq. Σq has the same translational
periodicity as Γq does. (See Figure 6.)

Let Σ∗
q be the conjugate minimal surface of Σq and denote by Y ∗

q = X∗
q ◦ X−1

q

the local isometry from Σq to Σ∗
q . By Smyth’s arguments in the preceding section,

we see that the image Y ∗
q (ciνi) of the edge ciνi is in a plane parallel to the face Fi.

More precisely, Y ∗
q (ciνi) lies in the plane {y∗i = d∗i }, where ∇y∗i = ciνi. However,

Y ∗
q (γ̄q) is not closed in general because Y ∗

q may have nonzero period along γ̄q. But
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note that by Cauchy-Riemann the period of Y ∗
q along Y ∗

q (γ̄q) equals the flux of Σq

along γ̄q. Therefore, to make Σ∗
q a well-defined compact minimal annulus, we need

to find a suitable point q in ∆̌4 for which the flux of Σq along γ̄q becomes the zero
vector. Note here that the flux of Σq along γ̄1 vanishes if and only if the flux of Σq

along γ̄q does.
Let n(p) be the inward unit conormal to γ̄q on Σq at p ∈ γ̄q and define

f(q) =

∫
p∈γ̄q

n(p).

Then f(q) is the flux of Σq along γ̄q and f is a map from the interior ∆̌4 to the
set N of vectors parallel to the plane P4. f is a smooth map and can be extended
continuously to the closed triangle ∆4. Let ∆4 × R be the vertical prism over ∆4.
Obviously Σq lies inside ∆4 × R. Since γ̄1 winds around γ̄q once, so does n(p) as p
moves along γ̄q. But as q approaches a point q̃ ∈ ∂∆4, Γq converges to a complete
translationally periodic curve Γq̃ := γq̃ ∪ γ1 of which γ̄q̃ ∪ γ̄1 is a fundamental piece.
Let τ be the translation defined by τ(p̄) = p̄− c4ν4, p̄ ∈ R3. Since γ̄q̃ intersects γ̄1,
Γq̃ is a periodic union of Jordan curves, or more precisely, Γq̃ = ∪nτ

n(γ1q̃), where
γ1q̃ is a Jordan curve which is a subset of (γ̄q̃ ∪ γ̄1) ∪ τ(γ̄q̃ ∪ γ̄1). γ1q̃ consists of
five (or four if γ̄q̃ passes through a vertex of γ̄1) line segments. It is known that
the total curvature of γ1q̃ equals the length of its tangent indicatrix T1q̃. T1q̃ is
comprised of (i) a geodesic triangle and a geodesic with multiplicity 2 in case γ1q̃
consists of five line segments or (ii) four geodesics connecting the four points in S2
that correspond to ν1, ν2, ν3, ν4. Since the length of a geodesic triangle is less than
2π and the length of a geodesic is less than π, the total length of T1q̃ is smaller
than 4π in either case. Thus by [4] there exists a unique minimal disk spanning γ1q̃
. We can easily extend the proof of Theorem 3.1 (c) to the limiting case where γ̄1
intersects γ̄0. So we can see that γ1q̃ bounds a unique minimal surface Σ̂q̃ ⊂ ∆4×R
regardless of its topology. As q → q̃ ∈ ∂∆4, a fundamental region of Σq converges

to Σ̂q̃. Hence, by continuity of the extended map f : ∆4 → N , f(q) converges to

f(q̃) =
∫
p∈γ̄q̃

n(p) which is the flux of Σ̂q̃ along γ̄q̃ ⊂ ∂∆4 × R. Therefore, as n(p)

points into the interior of ∆4 at any p ∈ γ̄q̃, f(q̃) is a nonzero horizontal vector
pointing toward the interior of ∆4.

Now, we are ready to show a point q in the interior ∆̌4 at which the flux f(q)

vanishes. Suppose f(q) ̸= 0 for all q ∈ ∆̌4 and define a map f̃ : ∆4 → S1 by

f̃(q) =
f(q)

|f(q)|
.

Then f̃ is continuous and f̃
∣∣
∂∆4

has winding number 1 because the nonzero hor-

izontal vector f(q̃) points toward the interior ∆̌4 at any q̃ ∈ ∂∆4. But this is a

contradiction since the induced homomorphism f̃∗ : π1(∆4) → π1(S1) must then be
surjective. Therefore there should exist q4 ∈ ∆̌4, and a minimal surface Σq4 which
has zero flux f(q4) = 0 along γ̄q4 . Thus the conjugate surface Σ∗

q4 is a well-defined
minimal annulus. (See Figure 6.)

It remains to show that a homothetic expansion of Σ∗
q4 is in T and perpendicular

to ∂T along its boundary. According to the arguments of Smyth’s theorem, there
exist constants d∗1, d

∗
2, d

∗
3, d

∗
4 such that the curve Y ∗

q4(ciνi) is in the plane {y∗i = d∗i }
and Σ∗

q4 is perpendicular to that plane along Y ∗
q4(ciνi). Moreover, the outward unit

conormal to Y ∗
q4(ciνi) on Σ∗

q4 is νi and hence near Y ∗
q4(ciνi), Σ

∗
q4 lies in the same side

of the plane {y∗i = d∗i } as T ′ does. Remember that the four planes ∪4
i=1{yi = di}

enclose the tetrahedron T and ∪4
i=1{y∗i = d∗i } enclose the tetrahedron T ′. Since
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yi = b1ix1 + b2ix2 + b3ix3 and y∗i = b1ix
∗
1 + b2ix

∗
2 + b3ix

∗
3, T

′ is similar to T . As ν4 is
assumed to be parallel to the x3 axis, y∗4 = b∗4x

∗
3.

Obviously a homothetic expansion of Σ∗
q4 will give a minimal annulus A4 which is

perpendicular to ∪4
i=1{yi = di} along ∂A4. Working with a new plane Pj containing

Fj , j = 1, 2, 3, instead of F4 and using the triangles ∆j ⊂ Pj , obtained from the
relation for the projection πj into Pj :(

4∑
i=1

π(ciνi)

)
− πj(cjνj) = 0, j = 1, 2 or 3,

one can similarly find minimal annuli A1, A2, A3 which are homothetic expansions
of Σ∗

qj for some qj ∈ ∆j , j = 1, 2, 3. This proves (b) except for the convexity of the
closed curve.

Let’s denote by F ′
j the face of T ′, similar to the face Fj of T , j = 1, 2, 3, 4. Is

it true that ∂Σ∗
qj ⊂ ∂T ′? Here we have to be careful because Y ∗

qj (γ̄qj ) and Y
∗
qj (γ̄1)

are disconnected. (Notice that ∂Σ∗ is connected in Smyth’s case.) Consequently,
for j = 4, Y ∗

q4(γ̄1) is not necessarily a subset of ∂T ′ \ {y∗4 = d∗4} and it may intersect
the plane {y∗4 = d∗4}(= {x∗3 = 0}) as in Figure 5, right. To get some information
about the location of ∂Σ∗

q4 , let’s first assume that (d) and (e) are true. Since near
Y ∗
q4(ciνi), i = 1, 2, 3, Σ∗

q4 lies in the same side of the plane {y∗i = d∗i } as T ′ does and
since Y ∗

q4(ciνi) are convex and are perpendicular on their endpoints to the three lines
containing the edges F ′

1 ∩ F ′
2, F

′
2 ∩ F ′

3, F
′
3 ∩ F ′

1, respectively, one can conclude that
(i) Y ∗

q4(γ̄1) lies in the tangent cone TCp′
4
(∂T ′) of ∂T ′ at p′4, the vertex of T ′ opposite

F ′
4. As Σ∗

q4 is a graph over π4(Σ
∗
q4), (ii) Y

∗
q4(γ̄q4) is surrounded by π4(Y

∗
q4(γ̄1)) in

the plane {y∗4 = d∗4}.
Now let’s prove a lemma, which is more general than (c). If the dihedral angles

along ∂F4 are ≤ 90◦, the unit normals ν1, ν2, ν3 are pointing upward and γ̄1 goes
upward. So one can consider the following generalization.

Lemma 5.2. Let Γ = γ0∪γ1 be a translationally periodic curve and γ0 the x3-axis.
Assume that ΣΓ is a translationally periodic Plateau solution spanning Γ. If x3 is
a nondecreasing function on γ1, then the boundary component of Σ∗

Γ corresponding
to γ0 is in the x∗1x

∗
2-plane and Σ∗

Γ is on and above the x∗1x
∗
2-plane.

Proof. ΣΓ has no horizontal tangent plane TpΣΓ at any interior point p ∈ ΣΓ. This
can be verified as follows. Every horizontal plane {x3 = h} intersects Γ either at two
points only or at infinitely many points (the second case occurs when {x3 = h}∩γ1
is a curve of positive length). If TpΣΓ = {x3 = h}, then {x3 = h} ∩ ΣΓ is the set
of at least four curves emanating from p. But then three of them intersect γ1, and
hence there exists a domain D ⊂ ΣΓ with ∂D ⊂ {x3 = h}, which contradicts the
maximum principle. Hence {x3 = h} is transversal to ΣΓ for every h and therefore
x∗3 is an increasing function on every horizontal section {x3 = h}∩ΣΓ. Since x

∗
3 = 0

on γ0, x
∗
3 must be nonnegative on Σ∗

Γ. □

If the dihedral angles along ∂F4 are ≤ 90◦, then by the above lemma Y ∗
q4(γ̄1) ⊂

∂T ′ \ F ′
4. By (e), which will be proved independently, Y ∗

q4(γ̄q4) is surrounded by
π4(Y

∗
q4(γ̄1)) and hence Y ∗

q4(γ̄q4) lies inside F
′
4. This proves (c) (except for convexity)

and (a) as well.
We now derive the convexity of ∂Σ∗

q4 as follows. Henceforth, our proof will
be independent of (a), (b), and (c). It should be mentioned that Σ∗

q4 has been
constructed independently of (d) and (e). Let Q be a vertical half plane emanating
from γ̄q4 , that is, ∂Q ⊃ γ̄q4 . Then Q∩ γ̄1 is a single point unless Q contains the two
boundary points of γ̄1. Let q be a point of γ̄q4 which is the end point ofQ∩(Σq4\γ̄q4).
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Here we claim that in a neighborhood U of q, C := U ∩Q ∩ (Σq4 \ γ̄q4) is a single
curve emanating from q. If not, U ∩Q∩(Σq4 \ γ̄q4) is the union of at least two curves
C1, C2, . . . emanating from q. These curves can be extended up to γ̄q4 ∪ γ̄1. In case
Q∩ ∂γ̄1 = ∅, Q∩ γ̄1 is a single point, then only one of C1, C2, . . ., say C1, can reach
the pointQ∩γ̄1 and C2 can only reach γ̄q4 . Since Σq4 is simply connected, C2 and γ̄q4
bound a domain D ⊂ Σq4 with ∂D ⊂ Q. This contradicts the maximum principle.
In case Q intersects γ̄1 at its boundary points p1, p2, there exist two curves, say
C1, C2 ⊂ Q ∩ Σq4 emanating from q, such that p1 ∈ C1 and p2 ∈ C2. Remember
that γ̄q4 ∪ γ̄1 is a fundamental piece of Γq4 which is translationally periodic under
the vertical translation τ by −c4ν4. Hence τ(p1) = p2 and therefore the two distinct
curves τ(C1), C2 ⊂ Q ∩ Σq4 emanate from p2. But this is not possible since in a
neighborhood of p2, Q ∩Σq4 is a single curve emanating from p2. Hence, the claim
follows.

Note that log g = i arg g on the straight line γq4 containing γ̄q4 because |g| ≡ 1
there. If (d/dx3)arg g = 0 at a point q ∈ γq4 (x3: the parameter of γq4), then for
the vertical half plane Q tangent to Σq4 at q, Q∩ (Σq4 \ γq4) will be the union of at
least two curves emanating from q, contradicting the claim. Hence g′ ̸= 0 on γq4 .
Therefore g′ ̸= 0 on Σ∗

q4 ∩ {y∗4 = d∗4} = Y ∗
q4(γq4) as well and so Σ∗

q4 ∩ {y∗4 = d∗4}
is convex. Similarly, let Qj be a half plane emanating from the line segment L
in γ̄1 corresponding to cjνj , j = 1, 2, 3. Being nonvertical, Qj intersects γq4 only
at one point. Hence Qj ∩ (Σq4 \ L) is a single curve joining a point p ∈ L to
Qj ∩ γq4 and p is a tangent point of Qj and Σq4 . If we rotate Σq4 in such a way
that |g| ≡ 1 on L, we can conclude g′(p) ̸= 0 in the same way as above, as long
as p is an interior point of L. On the other hand, g′ = 0 at the boundary of L
because the interior angle at the boundary of L is < π. Note that any interior
point of L can be a tangent point of Qj and Σq4 for some Qj emanating from L
and that Qj intersects γq4 at one point only. Therefore g′ ̸= 0 in the interior of
L ⊂ Σq4 and hence g′ ̸= 0 in the interior of Σ∗

q4 ∩ {y∗j = d∗j} = Y ∗(L). Thus
Σ∗

q4 ∩ {y∗j = d∗j} is convex, j = 1, 2, 3. Since Σ∗
q4 is perpendicular to {y∗i = d∗i } and

to {y∗j = d∗j} at p = Σ∗
q4 ∩ {y∗i = d∗i } ∩ {y∗j = d∗j}, 1 ≤ i ̸= j ≤ 3, so is ∂Σ∗

q4 to the
edge {y∗i = d∗i } ∩ {y∗j = d∗j} at p. This proves (d).

Remark that Q∩ γ̄1 being a single point is the key to the convexity of Σ∗
q4 ∩{y∗4 =

d∗4}. Therefore, one can easily prove the following generalization, which is dual to
Lemma 5.2.

Lemma 5.3. Let Γ = γ0∪γ1 be a translationally periodic curve and γ0 the x3-axis.
Assume that ΣΓ is a translationally periodic Plateau solution spanning Γ and that
its conjugate surface Σ∗

Γ is a well-defined minimal annulus. If a fundamental piece
γ̄1 of γ1 has a one-to-one projection into the x1x2-plane {x3 = 0}, then the closed
curve Σ∗

Γ ∩ {x∗3 = 0} is convex.

Finally, let’s prove (e). Theorem 3.1 (b) implies that Σ̂q4 \ γq4 is a graph over

π4(Σq4 \γq4). The two boundary curves ∂Σ̂q4 \(γq4∪γ1) are the parallel translates of
one another. Therefore Σq4 is embedded. Now, we are going to use Krust’s argument
(see Section 3.3 of [1]) to prove that Σ∗

q4 is also a graph. Let X = (x1, x2, x3)
be the immersion of [0, a] × [0, β] into Σq4 and X∗ = (x∗1, x

∗
2, x

∗
3) the immersion:

[0, a]× [0, β] → Σ∗
q4 . We can write the orthogonal projections of X and X∗ into the

horizontal plane as, respectively

w(z) := x1(z) + ix2(z), w
∗(z) := x∗1(z) + ix∗2(z), z = x+ iy, (x, y) ∈ [0, a]× [0, β].

Then w is a map from [0, a]× [0, β] onto the triangle ∆4. Given two distinct points
z1, z2 ∈ (0, a] × (0, β], we have w(z1) ̸= w(z2) because X((0, a] × (0, β]) is a graph
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over ∆4 \ {q4}. Let ℓ : [0, 1] → ∆4 be the line segment connecting p1 := w(z1) to

p2 := w(z2) with constant speed, that is, ℓ(0) = p1, ℓ(1) = p2 and |ℓ̇(t)| = |p2 − p1|
for all t ∈ [0, 1].

(1) Choosing a fundamental region Σ̂q4 of Σq4 suitably, we may suppose ℓ is

disjoint from π(∂Σ̂q4). Then there is a smooth curve c : [0, 1] → (0, a]× (0, 2β] such
that ℓ(t) = w(c(t)). Clearly |ċ(t)| > 0 for all 0 ≤ t ≤ 1. Let g : [0, a] × R → C be
the Gauss map of Σq4 . Krust showed that the inner product W of the two vectors
p2 − p1 and i(w∗(z2)− w∗(z1)) of R2 is written as

W := ⟨p2 − p1, i(w
∗(z2)− w∗(z1))⟩ =

∫ 1

0

1

4
|ċ(t)|2

(
|g(c(t))|2 − 1

|g(c(t))|2

)
dt.

Since Σq4 \ γq4 is a multi-graph, we have |g| > 1 on (0, a] × R. Hence W > 0 and
therefore w∗(z1) ̸= w∗(z2).

(2) Suppose ℓ intersects π(∂Σ̂q4) at the point q4. Then c is piecewise smooth
and there exist 0 < d1 < d2 < 1 such that q4 /∈ w(c([0, d1))) ∪ w(c((d2, 1])),
w(c([d1, d2])) = {q4}, and |ċ(t)| > 0 for t ∈ [0, d1) ∪ (d2, 1]. Clearly

|g(c(t))| = 1 for t ∈ [d1, d2], |g(c(t))| > 1 for t ∈ [0, d1) ∪ (d2, 1].

Hence

W =

(∫ d1

0

+

∫ 1

d2

)
1

4
|ċ(t)|2

(
|g(c(t))|2 − 1

|g(c(t))|2

)
dt > 0

and so w∗(z1) ̸= w∗(z2).
Thus we can conclude that X∗((0, a] × (0, β)) is a graph over the x∗1x

∗
2-plane.

Since X∗([0, a]×{0}) coincides with X∗([0, a]×{β}), X∗((0, a]× [0, β]) = Σ∗
q4 \ γq4

is also a graph over its projection into the x∗1x
∗
2-plane. This proves (e). □

6. Pyramid

It has been possible to construct free boundary minimal annuli in a tetrahedron
T because T is the simplest polyhedron in R3. Generally, one cannot find a free
boundary minimal annulus in a polyhedron like a quadrilateral pyramid. However,
if Py is a regular or a rhombic pyramid, we can show that Py has a free boundary
minimal annulus. As a result, we can also show that there exists a genus zero free
boundary minimal surfaces in every Platonic solid.

Theorem 6.1. Let Py be a right pyramid whose base B is a regular n-gon. Then,
there exists a free boundary minimal annulus A in Py, which is a graph over B. A is
invariant under the rotation by 2π/n about the line through the apex and the center
of B. One component of ∂A is convex and closed in B, and the other is convex in
each remaining face of Py.

Proof. Let F1, . . . , Fn be the faces of Py other than the baseB. Denote by ν0, ν1, . . . , νn
the outward unit normals to B,F1, . . . , Fn, respectively. Then, there exists a unique
positive constant c such that

cν0 + ν1 + · · ·+ νn = 0.

Assume that B lies in the x1x2-plane with center at the origin. Let γ̄0 be a vertical
line segment of length c on the x3-axis and let γ̄1 be a connected piecewise linear
curve determined by ν1, . . . , νn(i.e., νi is the i-th oriented line segment of γ̄1) such
that the projection π(γ̄1) of γ̄1 onto the x1x2-plane is a regular n-gon centered at
the origin. Moreover, let’s assume that the two endpoints of γ̄0 and γ̄1 have the
same x3-coordinates: 0 and c. γ̄0∪ γ̄1 determines a complete helically periodic curve



18 J. CHOE

Γ of which γ̄0∪ γ̄1 is a fundamental piece. Γ is translationally periodic as well. Then
Theorem 2.2 guarantees a translationally periodic minimal surface Σ spanning Γ.

Define the screw motion σ by

σ(r cos θ, r sin θ, x3) =

(
r cos(θ +

2π

n
), r sin(θ +

2π

n
), x3 +

c

n

)
.

Obviously Σ is invariant under σn. The point is that Σ is invariant under σ as well.
This is because by Theorem 3.1 the periodic Plateau solution spanning Γ uniquely
exists and σ(Σ) also spans Γ. So evenly divide γ̄0 into n line segments γ̄10 , . . . , γ̄

n
0

such that

γ̄k0 := {p ∈ γ̄0 :
k − 1

n
c ≤ x3(p) ≤

k

n
c}, k = 1 . . . , n.

Similarly, set

Σk = {p ∈ Σ :
k − 1

n
c ≤ x3(p) ≤

k

n
c}, k = 1, . . . , n.

It is clear that

σ(γ̄k0 ) = γ̄k+1
0 , σ(Σk) = Σk+1, k = 1, . . . , n− 1, and σ(Σn) = σn(Σ1).

Denote by fγ(Σ) the flux of Σ along γ ⊂ ∂Σ, that is,

fγ(Σ) =

∫
p∈γ

n(p),

where n(p) is the inward unit conormal to γ on Σ at p ∈ γ. Clearly

fσ(γ)(σ(Σ)) = σ(fγ(Σ)) and fγ̄0
(Σ) =

n∑
k=1

fγ̄k
0
(Σk).

Hence

σ(fγ̄0(Σ)) =

n∑
k=1

σ(fγ̄k
0
(Σk)) =

n∑
k=1

fσ(γ̄k
0 )
(σ(Σk))

=

n−1∑
k=1

fγ̄k+1
0

(Σk+1) + fσn(γ̄1
0)
(σn(Σ1))

=

n∑
k=1

fγ̄k
0
(Σk) = fγ̄0

(Σ).

But σ(fγ̄0(Σ)) = fγ̄0(Σ) holds only when fγ̄0(Σ) = 0. In this case fγ̄1(Σ) also
vanishes. Therefore Σ∗ is a well-defined minimal annulus.

We now show that Σ∗ is in Py with free boundary. Choose a point p ∈ Σk with
coordinates

X(p) = (x1(p), x2(p), x3(p)).

Denote by X∗(p) the point of Σk∗ corresponding to p ∈ Σk,

X∗(p) = (x∗1(p), x
∗
2(p), x

∗
3(p)).

The coordinates of σ(p) are

X(σ(p)) =

(
(x1(p), x2(p)) ·

(
cosα
− sinα

sinα
cosα

)
, x3(p) +

c

n

)
, α =

2π

n
.

Then

X∗(σ(p)) =

(
(x∗1(p), x

∗
2(p)) ·

(
cosα
− sinα

sinα
cosα

)
, x∗3(p) + 0

)
= σ0(X

∗(p)),
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where σ0 is the rotation in R3 defined by

σ0(r cos θ, r sin θ, x3) =

(
r cos(θ +

2π

n
), r sin(θ +

2π

n
), x3

)
.

Hence

(6.1) (Σk+1)∗ = σ0(Σ
k∗), k = 1, . . . , n

and so

σ0(Σ
∗) = σ0(Σ

1∗ ∪ · · · ∪ Σn∗) = Σ2∗ ∪ · · · ∪ Σn∗ ∪ σ0(Σn∗)

= Σ2∗ ∪ · · · ∪ Σn∗ ∪ σn
0 (Σ

1∗) = Σ∗.

Therefore Σ∗ is invariant under the rotation σ0. We know that the curve X∗(ν1)
is in the plane {y∗1 = d∗1} orthogonal to ∇y∗1 = ν1 and Σ∗ is perpendicular to that
plane along X∗(ν1). Therefore (6.1) implies that Σ∗ is a free boundary minimal
surface in the pyramid Pm bounded by a plane perpendicular to νn+1 and by the
n planes ∪n

i=1(σ0)
i({y∗1 = d∗1}). Pm is similar to Py and a homothetic expansion A

of Σ∗ is a free boundary minimal annulus in Py. By the same argument as in the
proof of Theorem 5.1 we see that A is a graph over B and ∂A is convex on each
face of Py. □

Corollary 6.2. Every Platonic solid with regular n-gon faces contains an embedded,
genus zero, free boundary minimal surface.

Proof. Given a Platonic solid Ps, let p be its center and F one of its faces. Then
the cone from p over F is a right pyramid with a regular n-gon base, and hence Ps

is tessellated into congruent pyramids. Each pyramid contains an embedded free
boundary minimal annulus by Theorem 6.1. The union of all those minimal annuli
in the congruent pyramids of the tessellation is the analytic continuation of each
minimal annulus into an embedded, genus zero, free boundary minimal surface Σ1

in Ps. □

Remark 6.3. a) There are four more types of embedded, genus zero, free bound-
ary minimal surfaces Σ2,Σ3,Σ4,Σ5 in every Platonic solid. This fact results from
various ways of tessellating its face into triangles. (See Figure 7.)
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b) If Pr is a right pyramid with rhombic base B, there exists a free boundary
minimal annulus A in Pr which is a graph over B.

We would like to conclude our paper by proposing the following interesting prob-
lems.

Problems.

(1) Let Γ be a Jordan curve in R3 bounding a minimal disk Σ. If the total
curvature of Γ is ≤ 4π, we know that Σ is unique [4]. Show that Σ∗ is the
unique minimal disk spanning ∂Σ∗.

(2) Assume that Γ ⊂ R3 is a Jordan curve with total curvature ≤ 4π. It is
proved that any minimal surface Σ spanning Γ is embedded [2]. If Σ is
simply connected, show that Σ∗ is also embedded.

(3) Let Γ be a complete translationally (or helically) periodic curve with a
fundamental piece γ̄. Assume that a translationally(or helically) periodic
minimal surface ΣΓ spans Γ. What is the maximum total curvature of γ̄
that guarantees the uniqueness of ΣΓ? What about the embeddedness of
ΣΓ?
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