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Given the growing interest in noncommutative spaces, and zero-mean-curvature
surfaces having been known for more than 250 years, it is rather astonishing that a
general theory of noncommutative minimal surfaces seems to be lacking. Our note
is a modest attempt to fill this gap.

1. Preliminaries

1.1. POISSON ALGEBRAIC GEOMETRY OF MINIMAL SURFACES

Not long ago, it was shown that the geometry of surfaces (or, in general,
almost Kähler manifolds) can be expressed via Poisson brackets of the functions
x1, . . . , xn which provide an isometric embedding into a given ambient manifold
[2,3]. In noncommutative geometry, as well as quantum mechanics, there is an inti-
mate relationship between an operator corresponding to the (commutative) func-
tion { f, g}, and the commutator of the operators that corresponds to f and g.
Therefore, obtaining knowledge about geometrical quantities, as given in the Pois-
son algebra generated by x1, . . . , xn , provides information about the corresponding
noncommutative geometrical objects, and how to define them.
Assume that � is a 2-dimensional manifold, with local coordinates u = u1, v =

u2, embedded in R
n via the embedding coordinates x1(u, v), x2(u, v), . . . , xn(u, v),

inducing on � the metric
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gab =∂a �x ·∂b �x ≡
n∑

i=1

(
∂ax

i )(∂bxi
)
,

where ∂a = ∂
∂ua . We adopt the convention that indices a,b, p,q take values in {1,2},

and i, j, k, l run from 1 to n. For an arbitrary density ρ, one may introduce a Pois-
son bracket on C∞(�) via

{ f,h}= 1
ρ

εab
(
∂a f

)(
∂bh

)
,

and we define the function γ =√
g/ρ, where g denotes the determinant of the met-

ric gab. Setting θab = 1
ρ
εab (the Poisson bivector) one notes that

θapθbqgpq = 1
ρ2

εapεbqgpq = g

ρ2
gab =γ 2gab (1.1)

since εapεbqgpq is the cofactor expansion of the inverse of the metric. The fact that
the geometry of the submanifold � can be expressed in terms of Poisson brackets
follows from the trivial, but crucial, observation that the projection operator D :
TR

n →T� (where one regards T� as a subspace of TR
n) can be written as

D(X)i = 1
γ 2

n∑

j,k=1

{xi , xk}{x j , xk}X j

for X ∈TR
n . Namely, one obtains

D(X)i = 1
γ 2

n∑

j,k=1

θabθ pq(∂ax
i )(∂bx

k)(∂px
j )(∂q x

k)X j

= 1
γ 2

n∑

j=1

θabθ pqgbq(∂ax
i )(∂px

j )X j =
n∑

j=1

gap(∂ax
i )(∂px

j )X j ,

by using (1.1). From this expression one concludes that D2=D and that D(X)= X
and D(N )=0 if X ∈T� and N ∈T�⊥.
In this paper, we shall foremost be interested in the Laplace–Beltrami operator

on �, defined as

�( f )= 1√
g
∂a

(√
ggab∂b f

)
.

PROPOSITION 1.1. For f ∈C∞(�) it holds that

�( f )=γ −1
n∑

i=1

{γ −1{ f, xi }, xi }

�( f )=γ −1{γ −1{ f,ua}gab,ub}.
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Proof. Let us prove the first formula; the second one is proven in an analogous
way. One computes that

1
γ

n∑

i=1

θab∂a
(
γ −1θ pq(∂p f )(∂q x

i )
)
∂bx

i

= 1
γ

n∑

i=1

θab∂a
(
γ −1θ pq(∂p f )(∂q x

i )(∂bx
i )

)

= 1√
g
∂a

(
γ −1εabθ pqgbq(∂p f )

)= 1√
g
∂a

(
γ −1ρθabθ pqgbq(∂p f )

)

= 1√
g
∂a

(
γ −1ργ 2gap∂p f

)= 1√
g
∂a

(√
ggap∂p f

)=�( f ),

by using (1.1).

On a surface, one may always find conformal coordinates; i.e., coordinates with
respect to which the metric becomes gab = E(u, v)δab for some (strictly positive)
function E . Furthermore, if we choose ρ =1 (giving γ =E), the second formula in
Proposition 1.1 can be written as

�( f )= 1
E {{ f,ua}δab,ub}= 1

E {{ f,u},u}+ 1
E {{ f, v}, v}

if we assume the coordinates u, v to be conformal. For convenience, we shall also
introduce �0( f )={{ f,u},u}+{{ f, v}, v}=E�( f ).
Minimal surfaces can be characterized by the fact that their embedding coordi-

nates x1, . . . , xn are harmonic with respect to the Laplace operator on the surface;
i.e., �(xi ) = 0 for i = 1, . . . ,n. In local conformal coordinates, due to the above
Poisson algebraic formulas, one may formulate this as follows: a surface �x : D ⊂
R
2 →R

n is minimal if

�0(x
i )={{xi ,u},u}+{{xi , v}, v}=0 for i =1, . . . ,n

�xu · �xu = �xv · �xv and �xu · �xv =0,

where �xu and �xv denote the partial derivatives of �x with respect to u and v. Note
that the above choice of Poisson bracket implies that {u, v} = 1. In Section 2 we
will, in analogy with the above formulation, define noncommutative minimal sur-
faces in a (noncommutative) algebra with generators U,V satisfying [U,V ]∼1; the
universal algebra with these properties is commonly known as the Weyl algebra.

1.2. THE WEYL ALGEBRA AND ITS FIELD OF FRACTIONS

As mentioned in the previous section, the Weyl algebra provides us with a natural
setting in which noncommutative minimal surfaces may be defined. In this section
we recall some basic properties of the Weyl algebra (and its field of fractions), as
well as introducing the notation which shall be used later.
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DEFINITION 1.2. (Weyl algebra) Let C 〈U,V 〉 denote the free (associative) uni-
tal algebra generated by U,V . Furthermore, for �>0, let I� denote the two-sided
ideal generated by the relation

UV −VU = i�1.

The Weyl algebra is defined as A� =C 〈U,V 〉 /I�.

The Weyl algebra can be embedded in a skew field by a general procedure [9]. Let
us briefly review the construction for the purposes of this paper.
Consider the Cartesian product A� ×A×

�
, i.e., ordered pairs (A, B) of elements

in A, B∈A� with B 
=0, which in the end will correspond to the expression AB−1.
The Weyl algebra satisfies the Ore condition; i.e., for each pair of elements A, B
there exist β1, β2 ∈A� such that

Aβ1 = Bβ2

(see [6,8] for a proof of this fact and many other properties of the Weyl algebra).
This property allows one to define a relation on A� ×A×

�
. Namely, (A, B)∼ (C, D)

if there exist β1, β2 ∈A� such that

Aβ1 =Cβ2

Bβ1 = Dβ2,

and it is straightforward to check that ∼ is an equivalence relation. The quotient
(A� ×A×

�
)/∼ is denoted by F�. Addition in F� is defined as follows: let β1, β2 ∈

A� be such that Bβ1 = Dβ2. Then one sets

(A, B)+ (C, D)= (Aβ1 +Cβ2, Bβ1).

Likewise, when α1, α2 ∈A� are such that Bα1 =Cα2, one defines

(A, B)(C, D)= (Aα1, Dα2).

It is straightforward (although tedious) to check that these are well-defined oper-
ations in F� (i.e., they respect equivalence classes) and that they do not depend
on the particular choice of β1, β2, α1, α2. Furthermore, both operations are asso-
ciative, and they satisfy the distributive law. The unit element can be represented
by (1,1) and the zero element by (0,1). For every element A∈A� we identify A
with (A,1) and A−1 with (1, A) (for A 
=0), and with this notation it follows that
AB−1 = (A,1)(1, B)= (A, B). One easily checks that (B, A) is the (right and left)
inverse of (A, B) and that (AB)−1 = B−1A−1. Moreover, if [A, B]=0 it holds that
AB−1 = B−1A, i.e., (A, B)= (1, B)(A,1).
The Weyl algebra becomes a ∗-algebra upon setting U∗ =U and V ∗ =V , and as

a consequence of the universal property of the fraction ring, the ∗-operation can
be extended to F�. Thus, F� is a ∗-algebra, and it follows that (A,1)∗ = (A∗,1)
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and (1, A)∗ = (1, A∗) (where the last equality can be written as (A−1)∗ = (A∗)−1)
for all A∈A�. Hence, it holds that

(AB−1)∗ = (A, B)∗ = (
(A,1)(1, B)

)∗ = (1, B∗)(A∗,1)= (B∗)−1A∗.

In the following, we shall drop the (cumbersome) notation (A, B) and simply write
AB−1; moreover, we do not distinguish between an element A∈A� and its corre-
sponding image in F�. An element A∈F� is called hermitian if A∗ = A. The real
and imaginary parts of an element are defined as

Re(A)= 1
2

(
A+ A∗)

Im(A)= 1
2i

(
A− A∗),

and it is convenient to introduce the notation U 1 =U and U 2 =V , as well as the
derivations

∂̂u(A)≡ ∂̂1(A)= 1
i�

[A,V ]

∂̂v(A)≡ ∂̂2(A)=− 1
i�

[A,U ].

PROPOSITION 1.3. For A∈F� and p(x)∈C[x] it holds that

(1) ∂̂a A−1 =−A−1∂̂a(A)A−1,
(2) ∂̂a

(
∂̂b(A)

)= ∂̂b
(
∂̂a(A)

)
,

(3) ∂̂a p(Ua)= p′(Ua) (no sum over a),

for a,b=1,2, where p′(x) denotes the derivative (w.r.t. x) of p(x).

Proof. The first property is an immediate consequence of the fact that ∂̂a(AA−1)

= ∂̂a(1)=0. For the third property, one computes

∂̂u p(U )= 1
i�

n∑

k=0

[akUk,V ]=
n∑

k=1

kakU
k−1 = p′(U ),

and similarly for p(V ). Finally, to show that the derivatives commute, one simply
calculates

∂̂u
(
∂̂v(A)

)= 1
�2

[[A,U ],V ]=− 1
�2

[[U,V ], A]− 1
�2

[[V, A],U]
.

Since [U,V ]= i�1 (and, hence, is in the center of the algebra) it follows that

∂̂u
(
∂̂v(A)

)= 1
�2

[[A,V ],U]= ∂̂v

(
∂̂u(A)

)
,

which proves the statement.
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Furthermore, let us introduce �=U + iV together with the operators

∂(A)= 1
2

(
∂̂u(A)− i ∂̂v(A)

)= 1
2�

[A,�∗]

∂̄(A)= 1
2

(
∂̂u(A)+ i ∂̂v(A)

)=− 1
2�

[A,�],

and it follows from Proposition 1.3 that ∂∂̄A = ∂̄∂A. It is useful to note that
[�,�∗]=2�1.

DEFINITION 1.4. An element A ∈ F� is called r-holomorphic1 if ∂̄A = 0. An r-
holomorphic element A is called holomorphic if A∈A�.

By C[�] we denote the subalgebra of F� generated by � and 1. It turns out that
r-holomorphic elements can be characterized as elements of C[�] and their quo-
tients.

LEMMA 1.5. An element A∈F� is holomorphic if and only if A∈C[�].

Proof. Clearly, if A ∈ C[�] then A ∈A� and ∂̄A= − 1
2�

[A,�] = 0. Now, assume
that ∂̄A=0 and that A∈A�. Every element A∈A� can be written in the following
normal form

A=
∑

k,l≥0

akl�
k(�∗)l ,

and one computes

∂̄A=
∑

k≥0,l≥1

lakl�
k(�∗)l−1.

The fact that ∂̄A=0 implies that akl =0 for l ≥1, which implies that A is a poly-
nomial in �. Hence, A∈C[�].

PROPOSITION 1.6. An element A∈F� is r-holomorphic if and only if there exist
B,C ∈C[�] such that A= BC−1.

Proof. Clearly, if A= BC−1 with B,C ∈C[�], then
∂̄A= (∂̄B)C−1 − BC−1(∂̄C

)
C−1 =0,

by Lemma 1.5. Now, assume that A= BC−1, with B 
= 0, and that ∂̄A= 0. From
the above equation it follows that

∂̄B= BC−1(∂̄C
)
,

1“rational”-holomorphic.
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and if ∂̄C =0 then ∂̄B=0 and Lemma 1.5 implies that B,C ∈C[�]. If ∂̄C 
=0 then
∂̄B 
=0 and one obtains

(
∂̄B

)
(∂̄C)−1 = BC−1 = A.

It follows that ∂̄(∂̄B)(∂̄C)−1 = ∂̄A = 0, and one may repeat the argument with
respect to the representation A = (∂̄B)(∂̄C)−1. Thus, as long as ∂̄

n
C 
= 0 (and,

hence, ∂̄
n
B 
=0) one obtains

A= (∂̄
n
B)(∂̄

n
C)−1.

For every non-zero B ∈ A� there exists an integer n0 such that ∂̄
n0B 
= 0 and

∂̄
n0+1

B=0, since B can be written as a polynomial in � and �∗. The above argu-
ment implies that one can always find B̃ (= ∂̄

n0B) and C̃ (= ∂̄
n0C) such that A=

B̃C̃−1, fulfilling ∂̄B̃= ∂̄C̃ =0. From Lemma 1.5 it follows that B̃, C̃ ∈C[�].

Note that r-holomorphic elements are the analogues of meromorphic functions in
complex analysis. However, since there is no immediate concept of point in the
noncommutative algebra, it holds that ∂̄A is identically 0 for a r-holomorphic ele-
ment, and not only at points where the derivative exists. This distinction becomes
important if one represents the Weyl algebra on a vector space, as in Section 3.3,
where there are elements that are not invertible.
Let us continue by defining the Laplace operator, as well as harmonic elements

and some of their properties.

DEFINITION 1.7. The noncommutative Laplace operator �0 :F� →F� is defined
as

�0(A)= ∂̂
2
u(A)+ ∂̂

2
v(A)=− 1

�2

[[A,V ],V ]− 1
�2

[[A,U ],U]
.

An element A∈F� is called harmonic if �0(A)=0.

PROPOSITION 1.8. For A∈F� it holds that �0(A)=4∂∂̄(A)=4∂̄∂(A).

Proof. Let us prove that �0(A) = 4∂
(
∂̄(A)

)
; the second equality then follows

from the fact that ∂∂̄= ∂̄∂. One computes

4∂
(
∂̄(A)

)= ∂̂u
(
∂̂u(A)+ i ∂̂v(A)

)− i ∂̂v

(
∂̂u(A)+ i ∂̂v(A)

)

= ∂̂
2
u(A)+ ∂̂

2
v(A)+ i ∂̂u

(
∂̂v(A)

)− i ∂̂v

(
∂̂u(A)

)

= ∂̂
2
u(A)+ ∂̂

2
v(A)=�0(A),

by using Proposition 1.3.
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PROPOSITION 1.9. Let A∈F� be r-holomorphic. Then Re A and Im A fulfill

∂̂u Re A= ∂̂v Im A and ∂̂v Re A=−∂̂u Im A,

and it follows that Re A and Im A are harmonic.

Proof. Since A is r-holomorphic, it holds that ∂̄A=0, which is equivalent to

0= (
∂̂u + i ∂̂v

)(
Re A+ i Im A

)= ∂̂u Re A− ∂̂v Im A+ i
(
∂̂u Im A+ ∂̂v Re A

)
.

Since Re A and Im A are hermitian, it follows that

∂̂u Re A− ∂̂v Im A=0

∂̂v Re A+ ∂̂u Im A=0,

which proves the first statement. Moreover, it is then easy to see that

∂̂
2
u Re A+ ∂̂

2
v Re A= ∂̂u ∂̂v Im A− ∂̂v ∂̂u Im A=0,

since ∂̂u and ∂̂v commute, by Proposition 1.3. A similar computation is done to
show that Im A is harmonic.

Integration of r-holomorphic elements is introduced as the inverse of the operator
∂; namely, if A and B are r-holomorphic elements, such that ∂B= A, then we call
B a primitive element of A. Furthermore, we introduce the notation

∫
Ad�

to denote an arbitrary primitive element of A. Such r-holomorphic elements A,
which have at least one primitive element, are called integrable. Clearly, holomor-
phic elements, being polynomials in �, are integrable, and primitive elements may
readily be found.

2. Noncommutative Minimal Surfaces

We shall consider the free module Fn
�
together with its canonical basis

ek = (0, . . . ,0︸ ︷︷ ︸
k−1

,1,0, . . . ,0)

and one extends the action of ∂̂a as

∂̂a( �X)= ∂̂a(X
i )ei

for �X = Xiei and a = 1,2. An element �X ∈ Fn
�

is called hermitian if Xi is her-
mitian for i = 1, . . . ,n, and an element �X ∈ Fn

�
is called (r-)holomorphic if Xi is



NONCOMMUTATIVE MINIMAL SURFACES 1117

(r-)holomorphic for i =1, . . . ,n. Moreover, for �X , �Y ∈Fn
�
one introduces a symmet-

ric bi-C-linear form

〈 �X , �Y 〉=
n∑

i=1

〈Xi ,Y i 〉≡ 1
2

n∑

i=1

(
XiY i +Y i Xi ).

The above form fulfills the following derivation property, with respect to ∂̂1 and
∂̂2:

PROPOSITION 2.1. For �X , �Y ∈Fn
�
, with �X = Xiei and �Y =Y i ei , it holds that

[〈 �X , �Y 〉, A]= 〈[Xi , A]ei , �Y 〉+〈 �X , [Y i , A]ei 〉

for any A∈F�. In particular, it holds that

∂̂a〈 �X , �Y 〉=〈∂̂a �X , �Y 〉+〈 �X , ∂̂a �Y 〉,

for a=1,2.

Proof. From the derivation property of the commutator it follows that

[AB+ BA,C]= A[B,C]+ [B,C]A+ B[A,C]+ [A,C]B,

which may be written as

[〈A, B〉,C]= 〈A, [B,C]〉+〈B, [A,C]〉. (2.1)

Since (2.1) is linear in A and B, the desired result follows.

We will now introduce noncommutative minimal surfaces in Fn
�
; this is done in

analogy with the formulation in conformal coordinates, as given in Section 1.1. It
turns out that most of the classical theory can be transferred to the noncommuta-
tive setting with essentially no, or only small, modifications.

DEFINITION 2.2. A hermitian element �X ∈Fn
�
is called a noncommutative mini-

mal surface if

�0(X
i )=0 for i =1,2, . . . ,n

E =G and F =0,

where

E =〈∂̂u �X , ∂̂u �X〉, G=〈∂̂v
�X , ∂̂v

�X〉, F =〈∂̂u �X , ∂̂v
�X〉.



1118 JOAKIM ARNLIND ET AL.

Remark 2.3. Note that the above definition does, in principle, not rely on the frac-
tion field F�, and is also valid in the Weyl algebra A�. In fact, several results, in
what follows, remain true in the Weyl algebra when r-holomorphic elements are
replaced by holomorphic elements. We shall comment on this possibility as we pro-
ceed and develop the theory.

Remark 2.4. Let us also remark that the concept of noncommutative minimal sur-
face is invariant with respect to automorphisms of F�, in analogy with coordi-
nate transformations in classical geometry. Namely, let �X ∈Fn

�
be a noncommuta-

tive minimal surface and let φ :F� →F� be a unital ∗-automorphism. Define

X̃ =φ( �X)= X̃ i ei :=φ(Xi )ei

as well as

Ũ =φ(U ), Ṽ =φ(V ), ∂̂ũ(A)= 1
i�

[A, Ṽ ], ∂̂ṽ(A)=− 1
i�

[A, Ũ ].

It follows immediately that [Ũ , Ṽ ]= i�1 and that

∂̂ũ(A) =φ
(
∂̂uφ

−1(A)
)
, ∂̂ṽ(A)=φ

(
∂̂vφ

−1(A)
)
,

�̃0(A) := ∂̂
2
ũ(A)+ ∂̂

2
ṽ(A)=φ

(
�0φ

−1(A)
)

for A∈F�. Hence, if �X is a minimal surface and X̃ =φ( �X), then

(X̃ i )∗ =φ(Xi )∗ =φ
(
(Xi )∗

)=φ(Xi )= X̃ i

�̃0(X̃
i )= �̃0

(
φ(Xi )

)=φ
(
�0(X

i )
)=0

〈∂̂ũ X̃ , ∂̂ũ X̃〉=φ
(〈∂̂u �X , ∂̂u �X〉)=φ(E)

〈∂̂ṽ X̃ , ∂̂ṽ X̃〉=φ
(〈∂̂v

�X , ∂̂v
�X〉)=φ(G)=φ(E)

〈∂̂ũ X̃ , ∂̂ṽ X̃〉=φ
(〈∂̂u �X , ∂̂v

�X〉)=0,

which shows that X̃ fulfills the definition of a noncommutative minimal surface
with respect to the generators Ũ and Ṽ .

Let us now define 
∈Fn
�
as


=
i ei =2∂(Xi )ei =
(
∂̂u(X

i )− i ∂̂v(X
i )

)
ei

and prove the following:

PROPOSITION 2.5. It holds that

〈
,
〉=E −G−2iF .
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Proof. One computes
(

i )2 = (

∂̂u(X
i )− i ∂̂v(X

i )
)(

∂̂u(X
i )− i ∂̂v(X

i )
)

= ∂̂u(X
i )2 − ∂̂v(X

i )2 − i ∂̂u(X
i )∂̂v(X

i )− i ∂̂v(X
i )∂̂u(X

i ),

which implies that

n∑

i=1

(

i )2 =

n∑

i=1

∂̂u(X
i )2 −

n∑

i=1

∂̂v(X
i )2

−2i
n∑

i=1

1
2

(
∂̂u(X

i )∂̂v(X
i )+ ∂̂v(X

i )∂̂u(X
i )

)

=E −G−2iF ,

which is the desired result.

PROPOSITION 2.6. 〈
,
〉=0 if and only if E =G and F =0.

Proof. Clearly, if E =G and F = 0 then Proposition 2.5 gives 〈
,
〉 = 0. Now,
assume that 〈
,
〉= 0. Since E,F ,G are hermitian, the ∗-conjugate of the equa-
tion 〈
,
〉 = 0 (via Proposition 2.5) gives E − G + 2iF = 0 which, together with
E −G−2iF =0 implies that E =G and F =0.

PROPOSITION 2.7. Assume that �X ∈Fn
�
is hermitian and set 
=2∂( �X). Then the

following are equivalent:

(1) �X is a minimal surface,
(2) 
 is r-holomorphic and 〈
,
〉=0.

Proof. First, assume that �X is a minimal surface (which directly implies, by
Proposition 2.6, that 〈
,
〉= 0). By definition, it holds that �0(Xi )= 0, and one
computes

0=�0(X
i )=4∂̄

(
∂(Xi )

)=2∂̄(
i ),

which proves that 
 is r-holomorphic. For the other implication, assume that 
 is
r-holomorphic and that 〈
,
〉=0. From Proposition 2.6 it follows that E =G and
F =0. Moreover, since 
i is r-holomorphic one gets

0= ∂̄(
i )=2∂̄
(
∂(Xi )

)= 1
2
�0(X

i ).

Hence, �X is a minimal surface.

Note that the theorem remains true if �X ∈An
�
and 
 is a assumed to be holomor-

phic. Hence, the equivalence also holds in the Weyl algebra.
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One may straightforwardly define conjugate minimal surfaces; namely, we will
call a hermitian X̃ ∈Fn

�
conjugate to the minimal surface �X ∈Fn

�
if

∂̂u( �X)= ∂̂v(X̃) and ∂̂v( �X)=−∂̂u(X̃).

PROPOSITION 2.8. Let �X ∈Fn
�
be a minimal surface. If a hermitian X̃ ∈Fn

�
satis-

fies

∂̂u( �X)= ∂̂v(X̃) and ∂̂v( �X)=−∂̂u(X̃),

then X̃ is a minimal surface.

Proof. One computes

�0(X̃
i )= ∂̂u

(
∂̂u(X̃

i )
)+ ∂̂v

(
∂̂v(X̃

i )
)

=−∂̂u
(
∂̂v(X

i )
)+ ∂̂v

(
∂̂u(X

i )
)=0,

by using Proposition 1.3. Moreover, it holds that

Ẽ =
n∑

i=1

∂̂u(X̃
i )2 =

n∑

i=1

∂̂v(X
i )2 =G,

G̃=
n∑

i=1

∂̂v(X̃
i )2 =

n∑

i=1

∂̂u(X
i )2 =E (=G= Ẽ),

F̃ = 1
2

n∑

i=1

(
∂̂u(X̃

i )∂̂v(X̃
i )+ ∂̂v(X̃

i )∂̂u(X̃
i )

)

=−1
2

n∑

i=1

(
∂̂v(X

i )∂̂u(X
i )+ ∂̂u(X

i )∂̂v(X
i )

)
=−F =0,

since �X is assumed to be a minimal surface. Hence, X̃ is a minimal surface.

Note that the presentation of a noncommutative surface as an element of a free
module has also been considered in the context of star products [4], where the
focus lies on metric aspects (which does in principle also apply to our case), but
there is no discussion of minimal embeddings. However, the Riemannian aspects of
noncommutative minimal surfaces are certainly very interesting and deserve further
attention.

2.1. NONCOMMUTATIVE WEIERSTRASS REPRESENTATION

The classical theory of minimal surfaces in R
3 is an old and very rich subject.

For such minimal surfaces, there are several representation formulas available; i.e.,
explicit formulas for the parametrization of an arbitrary minimal surface (see e.g.,
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[5]). It turns out that one can prove analogous statements in the noncommutative
setting.

PROPOSITION 2.9. Assume that 
∈F3
�
is r-holomorphic, fulfilling 〈
,
〉=0 and


1 − i
2 
=0. Then there exist r-holomorphic f, g∈F� such that


1 = 1
2
f
(
1− g2

)
, 
2 = i

2
f
(
1+ g2

)
, 
3 = f g.

Moreover, if 
 is holomorphic then f can be chosen to be holomorphic.

Proof. First, since 
1,
2,
3 are r-holomorphic, they commute; thus, one need
not be careful with the ordering in what follows. If one sets

f =
1 − i
2

g=
3(
1 − i
2)−1

then f and g are r-holomorphic (since 
1 − i
2 
=0), and one computes

− f g2 =−(

3)2(
1 − i
2)−1 =
1 + i
2

where the last equality follows from 〈
,
〉 = 0 (written in the form (
1 +
i
2)(
1 − i
2) + (
3)2 = 0). Now, from f = 
1 − i
2 and − f g2 = 
1 + i
2, the
desired expressions for 
1, 
2 and 
3 follow. Finally, we note that if 
 is holo-
morphic, then clearly f =
1 − i
2 is holomorphic.

As a corollary we get an analogue of the Weierstrass representation theorem.

THEOREM 2.10. Let �X = Xiei ∈ F3
�
be a minimal surface for which it holds that

∂(X1− i X2) 
=0. Then there exist r-holomorphic elements f, g∈F� together with xi ∈
R (for i =1,2,3), such that

X1 = x11+Re
∫ 1

2 f (1− g2)d�

X2 = x21+Re
∫ i

2 f (1+ g2)d�

X3 = x31+Re
∫

f gd�.

(2.2)

Conversely, for any r-holomorphic f and g such that f (1− g2), f (1+ g2) and f g
are integrable, equation (2.2) defines a minimal surface.

Proof. Assume that �X is a minimal surface. Setting 
 = 2∂ �X it follows from
Proposition 2.7 that 
 is r-holomorphic and 〈
,
〉 = 0. The assumption ∂(X1 −
i X2) 
= 0 is equivalent to 
1 − i
2 
= 0. Therefore, Proposition 2.9 gives the exis-
tence of r-holomorphic f and g such that


1 = 1
2
f
(
1− g2

)
, 
2 = i

2
f
(
1+ g2

)
, 
3 = f g.
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These equations may be integrated as in (2.2), and since ∂Re(A)=∂A/2 when A is
r-holomorphic, they satisfy 
=2∂ �X . Now, assume that f and g are r-holomorphic
and that the integrals in (2.2) are defined. It is easy to check that (2.2) gives r-
holomorphic 
 = 2∂ �X such that 〈
,
〉 = 0. From Proposition 2.7 it follows that
�X is a minimal surface.

There is another classical representation formula, which assigns a minimal surface
to an arbitrary holomorphic function F . The theorem below does not rely on r-
holomorphic elements, and therefore also holds in the Weyl algebra when F is cho-
sen to be holomorphic.

THEOREM 2.11. Let F ∈F� be r-holomorphic and assume that


1 = (
1−�2)F, 
2 = i

(
1+�2)F, 
3 =2�F

are integrable. Then �X = Xiei ∈F3
�
, defined by

Xi = xi1+Re
∫


id�,

is a minimal surface for arbitrary x1, x2, x3 ∈R.

Proof. By definition, X is hermitian, and one computes that

2∂(Xi )=∂

∫

id�+∂

((∫

id�

)∗)

=∂

∫

id�=
i ,

since ∂ applied to a quotient of polynomials in �∗ gives zero. Moreover, a simple
computation shows that 〈
,
〉= 0 for every r-holomorphic F ∈F�. Finally, since

i is r-holomorphic, it follows from Proposition 2.7 that �X is a minimal surface.

In the geometric setting, a minimal surface constructed via Theorem 2.11 has a
normal vector given by

N = 1
1+u2 +v2

(
2u,2v,u2 +v2 −1

)
.

Let us show that, with respect to the symmetric form 〈·, ·〉, a noncommutative nor-
mal can be constructed.

PROPOSITION 2.12. Let �X ∈F3
�
be a minimal surface given by an r-holomorphic

element F ∈F�, as in Theorem 2.11. Then �N = Niei ∈F3
�
, given by
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N 1 =�+�∗, N 2 =−i(�−�∗), N 3 = 1
2

(
��∗ +�∗�

)−1

satisfies 〈∂̂u �X , �N 〉=〈∂̂v
�X , �N 〉=0.

Proof. The proof consists of a straightforward computation. The statement that
〈∂̂u �X , �N 〉 = 〈∂̂v

�X , �N 〉 = 0 is equivalent to 〈∂ �X , �N 〉 = 〈∂̄ �X , �N 〉 = 0, which in turn is
equivalent to 〈
, �N 〉=〈
∗, �N 〉=0. Since �N is hermitian, it is enough to prove that
〈
, �N 〉=0. With 
 as in Theorem 2.11, one computes that

N 1
1 + N 2
2 + N 3
3 =��∗�F −�∗�2F

=[�,�∗]�F =2��F,

as well as


1N 1 +
2N 2 +
3N 3 = F��∗�− F�2�∗

= F�[�∗,�]=−2�F�,

which implies that 〈
, �N 〉=0.

Let us end this section by noting that the “mean curvature” of a minimal sur-
face vanishes. As in differential geometry, given a normal element �N ∈F3

�
, one may

define the mean curvature (in conformal coordinates) as

H( �N )=− 1
2E 〈∂̂u �X , ∂̂u �N 〉− 1

2E 〈∂̂v
�X , ∂̂v

�N 〉≡ 1
E H0( �N ).

Hence, if �0( �X)=0 then it follows that

2H0( �N )=〈∂̂2u �X , �N 〉− ∂̂u〈∂̂u �X , �N 〉+〈∂̂2v �X , �N 〉− ∂̂v〈∂̂v
�X , �N 〉

=〈�0( �X), �N 〉=0.

Conversely, if H0( �N )= 0 then 〈�0 �X , �N 〉= 0, and it follows from E =G and F = 0
that

〈∂̂u �X ,�0( �X)〉=〈∂̂v
�X ,�0( �X)〉=0.

However, since 〈·, ·〉 is not F�-linear, these equations do not necessarily imply that
�0( �X)=0.
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3. Examples

3.1. ALGEBRAIC MINIMAL SURFACES

A holomorphic element F may be integrated an arbitrary number of times. Hence,
choosing a holomorphic element F̃ such that ∂3 F̃ = F , the representation formula
in Theorem 2.11 may be integrated (via partial integration) to yield

X1 = x11+Re
(
(1−�2)∂2 F̃ +2�∂F̃ −2F̃

)
≡ x11+Re

(
�1

)

X2 = x21+Re
(
i(1+�2)∂2 F̃ −2i�∂F̃ +2i F̃

)
≡ x21+Re

(
�2

)

X3 = x31+Re
(
2�∂2 F̃ −2∂F̃

)
≡ x31+Re

(
�3

)
.

(3.1)

In other words, every holomorphic F̃(�) gives rise to a minimal surface via (3.1).
As an example, let us choose F̃(�)=�n (with n≥2), which gives

�1 = (n−1)
(
n�n−2 − (n−2)�n

)

�2 = i(n−1)
(
n�n−2 + (n−2)�n

)

�3 =2n(n−2)�n−1.

We note that the real part of �n consists of the total symmetrization of all mono-
mials with an even (total) power of V . That is,

Re(�n)=
� n
2 �∑

k=0

(−1)k Sym(Un−2kV 2k),

where Sym(UkV l) denotes the sum of all terms of different permutations of k U ’s
and l V ’s, and �r� denotes the integer part of r ∈R. Likewise, it holds that

Re(i�n)=
� n+1

2 �∑

k=1

(−1)k Sym
(
Un−2k+1V 2k−1),

and one obtains the following explicit representation formulas

X1 = x11+
� n−2

2 �∑

k=0

(−1)k Sym
(
Un−2(k+1)V 2k)− n−2

n

� n
2 �∑

k=0

(−1)k Sym
(
Un−2kV 2k)

X2 = x21+
� n−1

2 �∑

k=1

(−1)k Sym
(
Un−1−2kV 2k−1)

+ n−2
n

� n+1
2 �∑

k=1

(−1)k Sym
(
Un−2k+1V 2k−1)

X3 = x31+ 2(n−2)
n−1

� n−1
2 �∑

k=0

(−1)k Sym
(
Un−1−2kV 2k).
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Thus, one may construct a noncommutative minimal surface from the classical one
by completely symmetrizing the polynomials. As an illustration, let us consider the
first two non-trivial minimal surfaces arising in this way.
For F̃(�) = �3 (corresponding to F(�) = 6), one obtains the noncommutative

Enneper surface

X1 = x11+U − 1
3
U 3 + 1

3
Sym

(
UV 2)

X2 = x21−V + 1
3
V 3 − 1

3
Sym

(
U 2V

)

X3 = x31+U 2 −V 2

which, using that [U,V ]= i�1, can be written as

X1 = x11+U +UV 2 − 1
3
U 3 − i�V

X2 = x21−V −U 2V + 1
3
V 3 + i�U

X3 = x31+U 2 −V 2.

For F̃(�)=�4 (corresponding to F(�)=24�) one obtains

X1 = x11+U 2 −V 2 − 1
2

(
U 4 +V 4)+ 1

2
Sym

(
U 2V 2)

X2 = x21−UV −VU − 1
2
Sym(U 3V )+ 1

2
Sym(UV 3)

X3 = x31+ 4
3
U 3 − 4

3
Sym(UV 2),

which may be written as

X1 =
(
x1 − 3

2
�
2
)
1+U 2 −V 2 − 1

2

(
U 4 +V 4)+3U 2V 2 −6i�U

X2 = (x2 + i�)1−2UV −2U 3V +2UV 3 −3i�V 2 +3i�U 2

X3 = x31+ 4
3
U 3 −4UV 2 +4i�V .

Algebraic surfaces can also be obtained from Theorem 2.10, some of which cannot
be constructed as in Theorem 2.11. For instance, choosing f =2 and g=�n gives
the higher order Enneper surfaces as

X1 = x11+U − 1
2n+1

n∑

k=0

(−1)k Sym
(
U 2n+1−2kV 2k)

X2 = x21−V + 1
2n+1

n+1∑

k=1

(−1)k Sym
(
U 2n+2−2kV 2k−1)

X3 = x31+ 2
n+1

� n+1
2 �∑

k=0

(−1)k Sym
(
Un+1−2kV 2k),
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which, for n=2, becomes

X1 = x11+U +2U 3V 2 −UV 4 − 1
5
U 5 −6i�U 2V +2i�V 3 −3�2U

X2 = x21−V +2U 2V 3 −U 4V − 1
5
V 5 −6i�UV 2 +2i�U 3 −3�2V

X3 = x31−2UV 2 + 2
3
U 3 +2i�V .

3.2. MINIMAL SURFACES IN F4
�

For two holomorphic functions f (z) and g(z), it is well known (cp. [7]) that one
can construct a minimal surface in R

4 by setting

�x = (Re f (z), Im f (z),Re g(z), Im g(z)).

This extends to noncommutative minimal surfaces:

PROPOSITION 3.1. Let f, g∈F� be r-holomorphic and set �X = Xiei ∈F4
�
with

(
X1, X2, X3, X4)= (

Re f, Im f,Re g, Im g
)
.

Then �X is a minimal surface.

Proof. Defining 
=2∂ �X yields

(

1,
2,
3,
4)= (

∂ f,−i∂ f,∂g,−i∂g
)
,

which implies that 〈
,
〉=0. From Proposition 2.7 it follows that �X is a minimal
surface (since 
i is clearly r-holomorphic).

As an example, let us choose f (�)=�n and g(�)=�m , which implies that

X1 =Re(�n)=
� n
2 �∑

k=0

(−1)k Sym
(
Un−2kV 2k)

X2 = Im(�n)=
� n+1

2 �∑

k=0

(−1)k+1 Sym
(
Un−2k+1V 2k−1)

X3 =Re(�m)=
�m
2 �∑

k=0

(−1)k Sym
(
Um−2kV 2k)

X4 = Im(�m)=
�m+1

2 �∑

k=0

(−1)k+1 Sym
(
Um−2k+1V 2k−1),
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and for f =� and g=�2 one obtains

(X1, X2, X3, X4)= (U,V,U 2 −V 2,2UV − i�1).

3.3. NONCOMMUTATIVE CATENOIDS

The minimal surfaces in the preceding section are algebraic in the sense that
they arise from (finite) polynomials. Several classical minimal surfaces, such as the
catenoid, are constructed in terms of analytic functions, which are, a priori, not
defined in the algebra. However, as we shall see, one may construct particular rep-
resentations in which certain power series are well defined. (A different approach
to the catenoid was taken in [1].)

Let V be the vector space consisting of infinite sequences of complex numbers

V ={(x0, x1, x2, . . .) : xi ∈C for i ∈N0},

and we denote the canonical basis vectors by
∣∣n〉, n∈N0. For convenience, we shall

write an element x = (x0, x1, x2, . . .)∈V as a formal sum

x =
∞∑

k=0

xk
∣∣k〉.

The space of linear operators V →V is denoted by L(V). Moreover, we introduce
the subspace V0 ⊂V of finite linear combinations

V0 ={x ∈V : |i : xi 
=0|<∞},

and denote the set of linear operators with domain V0 by L(V0,V). As is well
known, the Weyl algebra can be represented on V by introducing operators a,a†∈
L(V), defined by

a
∣∣0〉=0

a
∣∣n〉=√

n
∣∣n−1〉 for n≥1

a†
∣∣n〉=√

n+1
∣∣n+1〉,

fulfilling [a,a†]∣∣n〉= ∣∣n〉, and then setting

U =
√

�

2

(
a† +a

)

V = i

√
�

2

(
a† −a

)
,

from which it follows that �=U + iV =√
2�a and �† ≡�∗ =U − iV =√

2�a†. We
note that the operators U and V leave the subspace V0 invariant. Let us recall two
useful formulas:
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LEMMA 3.2.

ak
∣∣n〉=

⎧
⎨

⎩

√
n!

(n−k)!
∣∣n− k〉 if k≤n

0 if k>n
(3.2)

(a†)k
∣∣n〉=

√
(n+ k)!

n!
∣∣n+ k〉. (3.3)

For arbitrary λ∈C, we define linear operators eλa, eλa† ∈ L(V0,V) as

eλa
∣∣n〉=

∞∑

k=0

(λa)k

k!
∣∣n〉=

n∑

k=0

λk

k!

√
n!

(n− k)!
∣∣n− k〉

eλa†
∣∣n〉=

∞∑

k=0

(λa†)k

k!
∣∣n〉=

∞∑

k=0

λk

k!
√

(n+ k)!
n!

∣∣n+ k〉.

Furthermore, let us introduce ∂̂u, ∂̂v,∂, ∂̄,�0 : L(V)→ L(V), defined via commuta-
tors, as in Section 1.2. Since U and V leave V0 invariant, the aforementioned maps
can be considered as maps L(V0,V)→ L(V0,V).

The classical catenoid may be parametrized as (z=u+ iv)

x1(u, v)=Re(cosh z)= cosh u cosv

x2(u, v)=Re(−i sinh z)= cosh u sin v

x3(u, v)=Re(z)=u

arising from the Weierstrass data f (z)=−e−z and g(z)=−ez (cp. Theorem 2.10).2

In analogy, we set

X1 = 1
4

(
e� + e−� + e�† + e−�†

)

X2 =− i

4

(
e� − e−� − e�† + e−�†

)

X3 =U

which implies that X1, X2, X3∈ L(V0,V); we will now show that �0(Xi )=0 for i =
1,2,3.

LEMMA 3.3. For λ∈C, it holds that

[eλa,a†]∣∣n〉=λeλa
∣∣n〉 (3.4)

[eλa† ,a]∣∣n〉=−λeλa†
∣∣n〉. (3.5)

2Note that there exist other possibilities for f and g.
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From the above result, one easily deduces

∂eλ�
∣∣n〉=λeλ�

∣∣n〉 ∂̄eλ�
∣∣n〉=0

∂̄eλ�† ∣∣n〉=λeλ�† ∣∣n〉 ∂eλ�† ∣∣n〉=0

for arbitrary λ∈C. Since �0(Xi )=4∂̄∂Xi one obtains

�0(X
1)

∣∣n〉= ∂̄
(
e� − e−�

)∣∣n〉=0

�0(X
2)

∣∣n〉=−i ∂̄
(
e� + e−�

)∣∣n〉=0

�0(X
3)

∣∣n〉=2∂̄∂
(
�+�†)∣∣n〉=2∂̄(1)

∣∣n〉=0.

Hence, �0Xi , for i =1,2,3, are 0 as operators in L(V0,V).
What about the condition that the parametrization is conformal? That is

〈∂̂u �X , ∂̂u �X〉=〈∂̂v
�X , ∂̂v

�X〉 and 〈∂̂u �X , ∂̂v
�X〉=0.

Since X1 and X2 do not preserve V0, their composition is a priori not well defined.
However, algebraically, the above is equivalent to 〈
,
〉=0 (cp. Proposition 2.6);
with


1∣∣n〉=2∂X1∣∣n〉= 1
2

(
e� − e−�

)∣∣n〉


2∣∣n〉=2∂X2∣∣n〉=− i

2

(
e� + e−�

)∣∣n〉

3∣∣n〉= ∣∣n〉

the expression 〈
,
〉 is well defined, since e±� maps V0 into V0, and one readily
checks that 〈
,
〉=0.
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