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I S O P E R I M E T R I C  I N E Q U A L I T I E S  ON 
M I N I M A L  S U B M A N I F O L D S  OF 

S P A C E  F O R M S  

Jaigyoung  Choe* and Robert  Gulliver 

For a domain U on a certain k-dimensional minimal submanifold of S" or 

H" ,  we introduce a "modified volume" M(U) of U and obtain an optimal 

isoperimetric inequality for U kkwk M ( D ) k-I < Vol( O D ) k, where wk is the 

volume of the unit ball of R k. Also, we prove that if D is any domain 

on a minimal surface in S" (or H" respectively), then D satisfies an + 

isoperimetric inequality 27rA _< L 2 + A ~ (2~rA _< L ~ - A 2 respectively). 

Moreover, we show that if U is a k-dimensional minimal submanifold of 

H", then ( k -  1) VoZ(U) <_ Vol(OU). 

Let C be a simple closed curve in the plane, bounding tile domain D. Let the 

length of C be L and the area of D be A. Then tile classical isoperimetric inequality 

states that  

47rA < L ~ 

with equality if and only if C is a circle. If D is a domain on the sphere, the sharp 

isoperimetric inequality for D was given by F. Bernstein [2]: 

47rA <_ L ~ + KL 2, 

where K is the Gauss curvature of the sphere. In fact, in this form it is valid both 

for the sphere and for the plane, where K = 0. One might guess that it would hold 

equally for the hyperbolic plane H ~, where K -= - 1 .  Schmidt [9] showed that this 

turns out to be the case. 

*Supported in part by KME and GARC 
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Considering that minimal surfaces are viewed as generalized planes, it is tempting 

to conjecture that these sharp isoperimetric inequalities should still hold for domains 

on any immersed minimal surfaces in space forms, R ", S ", H". The truth of this 

conjecture is not yet known, except in special cases. For example, it was shown for 

minimal surfaces in R" with radially connected boundary in [4] and later for analogous 

minimal surfaces in H" in our companion paper [5]. 

In this paper we introduce a modified volume M(D) of a domain D and obtain 

an isoperimetric inequality without the additional term that Bernstein and Schmidt 

had: 

kkwkM(D) k-x <_ Volume(OD) k, 

where wk is the volume of the unit ball of R k, and D is n domain on a certain 

k-dimensional minimal submanifold of a space form. This modified isoperimetric 

inequality is proved under any of the following conditions: (Theorem 4) OD lies on a 

geodesic sphere of the space form; (Theorem 2) k = 2, D C S~_ (the hemisphere) and 

OD is weakly connected; (Theorem 1) k = 2, D C S~ and OD is radially connected 

about a point of D. Observe that D is not assumed to have minimum volume. The 

inequality is sharp for a geodesic ball in a totally geodesic submanifold E, and appears 

to be a plausible conjecture for any minimal submanifold of S~. or R". 

While we need an assumption of radial connectivity for a partial solution of the 

above conjectures, L. Simon (see [3, p.318], [8, Theorem 5.3]) made no connectedness 

assumption and obtained a weaker isoperimetric inequality 

27rA _< L 2 

for any minimal surface in R". In the second part of this paper we extend his method 

and derive (Theorem 5) 

2rA _< L ~ + A s 

for a minimal surface in S", and 

2,rA <_ L 2 - A 2 

for a minimal surface in H ~. We further extend this method and show (Theorem 6) 

that if E is a k-dinmnsional minimal submanifold of H ", then 

( k -  1) Volume(E)< Volume(ON). 
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This is an exact extension of Yau's result for a domain in H k [10]. More isoperimet- 

ric inequalities of this kind are proved. Finally, to each isoperimetric inequality of 

these types, we obtain corresponding Sobolev-type inequalities for smooth nonnega- 

rive functions with compact support on minimal surfaces (see Corollaries 1, 2, and 

3). 

We would like to thank Walter Wei for bringing Simon's work to our attention. 

1 M o d i f i e d  v o l u m e  

We assume throughout this paper that D and E are differentiable up to its boundary, 

and that their closures are compact. 

Def in i t ion  1 Let p be a point in the n-dimensional sphere S" and let r(x) be the 

distance from p to x in S ~. Given a k-dimensional submanifold E in S ", the modified 

volume of ~ with center at p is defined to be 

f~ cos r. M~(~) 

Similarly for ~ in tile n-dimensional hyperbolic space H ~, we define the modified 

volume of E by 
# 1  

Mp(r,) = / cosh r .  
J r  

Obviously we have in S" 

and in H" 

Mp(E) < Volume(~), 

Mp(E) >_ Volume(E). 

L e m m a  1 (a) Suppose that S" is embedded in R "+1 with p the north pole ( 0 , . . . ,  0, 1). 

Then the modified volume of a domain U C S" is the Euclidean volume of the orthog- 

oaal projection of U into the horizontal hyperplane x,+l = O, counting orientation. 

(b) In case U is a domain in H n, embed H n isometrically onto the hypersurface 

~ 2 -1 ,  > O, of R "+1 with the Minkowski metric S,  z~ + . . .  + z .  - z . + l  = z . + l  

d.s 2 = dx~ + . . .  + dx~ - dz~+ 1 such that p becomes the point ( 0 , . . . , 0 , 1 )  E S. 

Then Mr(U ) equals the Euclidean volume of the projection of U onto the hyperplane 

Za+l = 0. 
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Proof. Par t  (a) follows from the fact that  cos r is the Jacobian of the projection of S" 

into x ,+ l  = 0. For par t  (b), since the metric on H" and the distance function r are 

rota t ional ly  symmetr ic  about p, it suffices to consider only the case where U C H 1. 

Let x = (Xl,X2) (5 H l, x~ - x] = - 1 .  Then z~dxl = x2dx2 and hence 

r ( ~ )  = d~ = d~I  - d ~  = v /~  - ( ~ , / ~ 1  ~ d ~  

= / i - 7 - - ~ d x l  = log zl  + �9 
~/1 + ~  

Hence xl = sinh r. Therefore 

dxl = Gosh rdr, 

which gives the desired rcsult. 

In the following lemma, as usual, the notation V f ,  a vector (field) V followed by 

a function f ,  implies the directional derivative of f in the direction V. 

L e m m a  2 Let f be a smooth function on an n-dimensional Riemannian manifold 

M and ~ a k-dimensional submanifold of M. Let V and A be the connection and 

Laplacian on M respectively, and A the Laplacian on )2. I f  H is the mean curvature 

vector o f t  in M,then 

zx (fig) = (~/) J~ + t f :  - ~ V~f(eo, e.), 
a=k+l 

where ek+ l , . - - ,  ~n are orthonormal vectors which arc perpendicular to ~. 

Proof. Let e l , . . . ,  ek be orthonormal vector fields on a neighborhood of a point of E. 

These vector fields can be smoothly extended to orthonormal vector fields ~1 , . . . ,  ~, 

on M such that  ei = ei, 1 < i < k, on E. Then E~=x V~,gl = H + E/k=l  V e i e i ,  and  

hence we have 

k 

A f = E (eiel f  - V~,eif) 
i=1 
n n n n 

i=1 a=k-I-1 i=1 o--~k-I-1 

a=k+l  
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L e m m a  3 Let V and g be the connection and metric tensor respectively of  S" or 

Ha. On S n, V2 cos t  = - ( cos r )g .  On II n, V2coshr  = (cosh r)9. 

Proof. Let p be the point from which the distance r is measured. Let o ,  V1,. . . ,  Vn-x 

be perpendicular vector fields on a neighborhood of q fi S n such that [Vii = sin r, that 
0 Vv, Vj(q) is parallel to ~ ,  and that V~ are Jacobi fields along any geodesic through p. 

- -  0 Clearly Vv~ ~ is parallel to Vi and [Vii, ~ ]  = 0. Itence 

(V~ o ,  v,) = (Vo/o~v~, v,) = 1 o v, v. ~ (  ,, j = s i n r c o s r ,  

and Vv~ ~ = cot rVi. So 

- 0 -<vj'Vv'a)<o~ <v~,v~, ~) = = ~3 si~ ~ COS ~ 

where 6 0 is the Kronecker delta, llence Vv, Vj(q) = -6~j sin r cos r ~  Therefore 

- - 2  
V cosr(Vi, Vj)(q) 

Moreover, 

0 
V 2 cos r ( ~ ,  VA(q) 

Also, 

= ViV~ c o s  r - V v , ~  c o s  r 

= - 6 , j  sin ~ r cos r = - cos rg(V~, VA. 

- -  0 
= OV0r , cos r -- V ~  Vj cos ~ v , ,  ~ cos r 

= s i n r r  ( ~ r , V .  0 . 

r O ,  0 v ~ cos ( ~  ~ )  
d 2 0 

= dr ~ c o s t -  Vo/or-~-~cosr 

0 0 
= - cos r = - cos r a t = ,  =~." 

Or" 

Thus we have the proof for S". A similar proof holds for Ha. 

L e m m a  4 (a) I f  E C S" is a k-dimensional minimal submanifold or a cone, and r 

is the distance in S" from a fized point, then 

A c o s r  = - k c o s r ,  

where A is the Laplacian on the submanifold E and, in case E is a cone, r is the 

distance from the center of E. 

(b) Suppose E is a k-dimensional minimal submanifold or a cone in H".  Then 

A cosh r = k cosh r. 

Itere again ' in case of a cone E, r is the distance from the center of E. 
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Proof. The proof for a minimal submanifold follows from Lemma 2 and Lemma 3. 

On a cone Z C H a, we see from Lemma 2 that  

A c o s h r  = A c o s h r + H c o s h r -  V coshr(g~,,g~,) 
a=k+l  

= n c o s h r  + s i n h r H r -  ( n -  k) coshr  = kcosh r ,  

since H is perpendicular  to 0 / 0 r  on the cone; similarly for a cone Z C S". 

Given a (k - 1)-dimensional submanifold M of S" or H" and a point p in S" 

or H" ,  the k-dimensional cone px<M with center at p is defined to be the set of all 

minimizing geodesics from p to the points of M. 

P r o p o s i t i o n  1 For any minimal submanifold E with boundary in S" or H", and any 

point p E S" or H", 

M.(~) <_ M.(p~Og). 

Proof. Let v and q be the unit conormals to 0E on E and px<OE C S" respectively. 

Then it is easy to see, as in [4, Proposition I], that  

Or Or < 
Ov - 071" 

I tence 

1 1 sin r ~ v  v < ~ sin r ~  

1 ~  A c o s r  Mp(pxxOE). 
~ 0 g  

The same argument applies to E C H". 

L e m m a  5 (a) On S",  V2r  = cot r(g - dr | dr).  On H",  V2r = coth r(g - dr | dr). 

(b) Let ~ be a k-dimensional minimal submanifold or a cone from p in S" or H a. 

Then A r  = cot r(k - IVrl 2) for ~ C S", and A r  = coth r (k  - [Vr[ 2) for E C g " .  

Proof. (a) Using Lemma 3, we compute . 

- ( c o s  r)g = ~2 cos r = - cos r V r  @ V r  - sin rV2r, 

(cosh ~)g = V ' r r = cosh rYr  | V~ + sinh rV"r, 
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on S" and H" respectively. The results follow immediately. 

(b) From Lemma 4, we have 

- - k  COS r = A cos r = d i v ( -  sin rVr )  

= - cos rlVr] 2 - sin rAt ,  

which gives tile result; similarly for ~ C H". 

L e m m a  6 Let G(x)  be Green's function orS  k ( H k respectively), whose derivative is 

sin 1-k x for  0 < x < lr ( sinh 1-k x forO < x < (x~ respectively). IfF~ is a k-dimensional 

minimal submanifold of S" (I1" respectively}, then Go r is subharmonic on Z - {+p} 

C S" (on E - {p} C H ~ respectively}. (Note:  When k = 2, G(r) = G o r = log tan ~, 

and when k = 3, G(r) = - c o t r  on E C S".)  

Proos 

at(r) = div(sin 1-k rVr )  

= (1 - k) sin - k r . c o s r l V r l  z + sin - k r .  c o s t ( k -  [Vrl 2) 

= ksin-k r .  cosr(1 - I V r l  2) _> 0. 

The proof for Z C H" is similar. 

Def in i t ion  2 Let C C S" be a k-dimensional rectifiable set and p a point in S" 

such that  dist(p, q) < ~r for all q E C. The k-dimensional angle Ak(G,p) of C viewed 

from p is defined by setting 

a~(C,p) = sin -k t . Volume[(px~C) I"1S(p, t)], 

where S(p,  t) is the geodesic sphere of radius t < dist(p, C) centered at p, and the 

volume is measured counting multiplicity. Clearly the angle does not depend on t. 

There is obviously an analogous definition for tim angle of C C H"  viewed from 

p E H  n. 

Note that 

A~(C, p) = (k + 1)w~+l 0 k+l (p>~ C, p), 

where | (p>~ C, p) is the (k + 1)-dimensional density of p ~< C at p. 
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P r o p o s i t i o n  2 Let E be a k-dimensional compact minimal submanifold with bound- 

ary in S ~ or H ~, and let p be an interior point of E. In case of E C S ~, we assume 

that dist(p, q) < ~ for all q E E. Then 

Ak-l(OF~,p) >_ kwk. 

Equality holds if and only if E is a domain on a totally geodesic submanifold that is 

star-shaped with respect to p. 

Proof. Let B'(p,  t) C S" be the geodesic ball of radius t centered at  p, t < d~st(p, OZ), 

Z, = Z ..~ B"(p,t) ,  and C, = E n S(p, t). Lemma 6 says that G(r) ,  r = dist(p, .), i~ 

subharmonic.  Hence 

<_ j f  AG(r) = jfE div(sinl-k rVr)  

/o ~ = - sin 1 - k r .  ~uu + sin 1 - k r .  Ouu' 
Et I; 

where u on 0E, is the unit normal to 0Et away from p on E N B"(p, t). Since 0r ~ 1  

and sint ~ -  ~ 1 on 0Zt as t --* 0, we have 

kwk = l i m f  sina_kr Or fo Or t---,o J o z  " ~ u u  - < ~; sin 1-k r .  --Ov 

< sin 1-~ r .  = A~-I(OE,p), - ~ ~ 

where r I is the  same as in Proposition 1. Equality holds if and only if A G ( r )  = O, 

Ok(E,p) = 1, and u = t I if and only if E is a star-shaped minimal cone with density at 

the center equal to 1. Since S k-I is the only ( k -  1)-dimensional minimal submanifold 

in S ') with volume kwk, we conclude that  E lies in a total ly geodesic submanifold of 

S ~. A similar proof holds for E C H ~. 

2 I s o p e r i m e t r i c  i n e q u a l i t y  for  m o d i f i e d  v o l u m e  

For a minimal surface E in R ", the isoperimetric inequality 4;rA < L 2 has been proved 

whenever 0 ~  is connected, or more generally, whenever there is a point p E R"  such 

that  no sphere centered at  p separates 0E [4]. We shall prove an analogous result for 

modified area in S~.: 

T h e o r e m  1 Let E be a compact minimal surface with boundary in S ~. Assume that 

r is the distance i n s  n f r o m a p o i n t p  o r e  and thatr  < ~ onE .  I fOE is radially 
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connected from p, that is, {s : s = dist(p,q), q C OE} is a connected interval, then 

4rMp(E) < Length(OE) 2. Equality holds if and only if r~ is a totally geodesic disk 

with center at p. 

Proof. By Proposition I, Mp(E) < Mp(p>xOE). For each geodesic sphere S(p,t) 

centered at p ,  one has a local isometry between the curve S(p,t) f3 (pxuOE) and a 

great circle on S(p,t). Therefore, developing p~OE on a great sphere S 2 C S", one 

can find a curve C (not necessarily closed) in S ~ and a local isometry from p)~OE 

into/5)~C where p is the north pole of S 2. Clearly we have Mp(p~OE) = M~(p>~C), 

Length(OE) = Length(C), and A1(OE,p) = AI(C,p). Moreover, if we let q and 

be the end points of C, then dist(p,(l) = dist(p,~). First, let us assume that p is 

an interior point of E. We see from Proposition 2 that AI(OE,p) > 2r  and that  C 

has a self-intersection point. Now, from Lemma 1, it follows that  M~(pxuC) equals 

the Euclidean area of the standard projection of pxuC onto the plane containing the 

equator of S 2. Let C '  be the image of C under the projection and 0 the origin of 

the plane. Then Mg(px~C) = Area(Ox~C'), A~(C,p) = A~(C',O) and Length(C) > 

Length(C'). The last inequality follows from tim fact that the projection is a length- 

decreasing map. Furthermore, if q' and q" are the end points of C',  then dist(O, q') = 

dist(O, q"). Thus we can apply Lemma I of [4] and conclude that 

47r Area(O)~C') < Length(C') 2, 

and equality holds if and only if C ~ is the boundary of a circle. Therefore 

47rMp(E) _< Length( OE) 2, 

and equality holds if and only if Length(C') = Length(OE) and A~(OE,p) = 2rr, or 

equivalently, E is a totally geodesic disk centered at p. Second, if p is a boundary 

point of E, then we apply Corollary 1 instead of Lemma 1 of [4]. 

R e m a r k  1 The same inequality is false for minimM surfaces in H n. In fact, 

among domains in H 2 with prescribed boundary length, the modified area has no 

upper bound. Our proof fails in H"  because the projcction in Minkowski space R "+1 

from H "  onto the hyperplane x,+l  = 0 is a length-increasing map. In Theorem 

below, however, we shall prove the inequality in the special case that  0E lies in a 

sphere of H "  centered at p. 

Li, Schoen and Yau [7] have proved tile isoperimetric inequality for a minimal 

surface E in R" ,  provided that  0E is weakly connected, that  is, no coordinate hy- 
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perplane separates ON. The analogous hypothesis for ~2 in S" suffices to prove an 

isoperimetric inequality for modified area: 

T h e o r e m  2 Let P. be a compact minimal surface with boundary in S" C R n+l and r 

the distance in S" from the north pole p = (0 , . . . ,  0, 1) E S". Assume without loss of 

generality that the center of mass of OE in R "+1 lies on the line l = { ( x l , . . . ,  x ,+l)  : 

xl . . . . .  x ,  = 0}. Assume also that ON is weakly connected : there exists a 

rectangular cooT~linate system {yl , . . - ,Y,}  in the hyperplane x,+l = 0 .such that, 

R "+1 being equipped with the coordinate system {Yx,.-., Y,, X,+l}, no hyperplanes of 

R "+1 Yi = const, 1 < i < n, ever separate OE. Then 4rMp(E)  < Length(ON) 2. 

Proof. Let us modify Li,Schoen and Yau's argument in [7]. Assume x~ = yi (1 < i < 

n). For any fixed 1 < i < n, it follows from the weak connectedness of 0E that  each 

component  of 0Z can be translated in a proper direction perpendicular to O/Oxi, 

so that  after translation, their union forms a connected one-dimensional simplicial 

complex Ci. Observe here that 

Xi "~ Xi~ X i ~ X i ,  
r. ~ ~. , ~ \ ds ] , \ ds,] ' 

and Length(OZ) = Length(Ci). 

By hypothesis, 

~0 x i = O '  i = l , . . . , n .  

Hence the Poincard inequality applied to Ci says that 

, - aTr~ Jc, \ ds ] ' 

where s is the arclength parameter  of Ci. Thus 

f l 1 ]" . Or 
M,(]C) = - ~A cos r = -2 .]or." sm r--ou 

< 1  1 

[ 1  ~-'~Length(Ci)'/ (dz"~=] ' ' '  1Length(ON),~ 2 ~ i=, Jc. \ ds J J < 

- ,= ,  \ d s ]  ] 
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< 1Lcngth(OE)3/2Lcngth(Proj (OZ)) ' /2  
- 4rr 

<_ 1Leng th (OZ)2 .  

Closely related to isoperimetric inequalities on a minimal submanifold ~ is the 

monotonicity property: the volume of E f-I B(p,r) ,  dividcd by the corrcsponding 

volulne for a totally geodesic manifold of tile same dimension, is a nondecreasing 

function of r. This property has been proved for R" and for H" [1], but not for 

S" (see however [6], p.353). Our next result shows that modified volume enjoys the 

monotonicity property in all three cases. 

The o r e m 3 Let ~ be a k-dimensional minimal submanifold in S" ( H" respectively) 

and r the distance in S" ( t t"  respectively) from p. Then sin -k r .M,(E N Bn(p,r) )  

(sinh-k r .Mp( Ef-I Bn(p, r) ) respectively) is a ntonotonically nondecreasing function of 

r for 0 < r < min(~,dist(p, OF~)) (0 < r <dist(p, OZ) respectively). 

Proof. Define Zr = F, f3 B"(p, r) C S". Then 

1 f~ Acosr  Mp(r.r) = - ~  r 

f0 Or 1 .  / 1 sin r~--~ ~ sm r [Vr[. 
k zr JOF,~ 

Denote the volume forms on Z and 0Z, by dv and dS,. Then we have dv = iv~ldS, dr. 

So 

Z  ZZ / d c o s  r l V r l ~ d ~  = T ~  ~, ~0~., d--~ , cosrlVrldS, dr = cost IVrl. 

Therefore 

Xsiur / l s i n r  d f~ 
- -  c o s  r I V r l  - c o s  ~ l V r l  ~ 

Mp(~)  - kcosr  J0~ : ,  k co s rd r  , 
1 sinr d [ 1 sin r d 

< k c o s r d r ] z  c o s t -  kcosrdrMp(E~) .  
r 

In the above inequality we used the fact that r < ~ and [Vr[ 2 < 1 on E. Ilence 

~rrd log [sin -k r .  Mp(Z~)] _> O. 

Titus sin -k r .  Mp(~r) is nondecreasing; similarly for F~ C H ". 

A very special case of the hypothesis of radially connected boundary occurs when 

/)E lies on a geodesic sphere. In this case, tile conclusion of Theorem 1 may be 

extended to hyperbolic space, and the minimal submanifold may have any dimension. 
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Theorem 4 Let N be a k-dimensional minimal submanifold in S ~ or H".  Assume 

that ON lies on a geodesic sphere centered at a point p of ~ and that r is the distance 

in S ~ or H ~ from p. Furthermore, in case o r e  C S", assume r < ~ on E. Then 

k~wkMp(N) k-I < Volume(ON) k. 

Equality holds if and only if N is a totally geodesic ball centered at p. 

Proof. Assume N C H" and let R be the radius of the geodesic sphere in which 02 

lies. Then 

l f ~  l f o  sintl r 0~__ ~ M,(E) = ~ A c o s h r = ~ .  

1 f Or 1 
= ~ s i n h R [  - - < ~ s i n h R .  Volume(ON). 

Jo~ Or, - 

Since lim~...o sinh -k r .  Mp(E N B"(p, r)) = wk, we obtain from Theorem 3, 

Hence 

sinh -k R" Mp(E) _> Wk. 

1 
M~(r~) < ~.~o;'/~M.(r0 '/k Volume(Or.) 

and so the desired inequality follows. Obviously equality holds if and only if N is a 

cone with density at the center equal to 1, or equivalently, N is a totally geodesic ball. 

A similar proof holds for E C S". 

3 Isoperimetric inequalities via Fubini's theorem 

All the theorems of preceding section require that ON satisfy some hypotheses related 

to connectivity. Without such hypotheses in R", the strongest inequality known 

for minimal surfaces is due to Leon Simon. Simon used Fubini's theorem to obtain 

a weaker isoperimetric inequality for a minimal surface in R" (see [3, p.318], [8, 

Theorem 5.3]) : 

2r Area(N) <. Length(ON) 2. 

The key idea, rephrased in our setting, is to integrate the angle of 0~ from the points 

all over Y:.. In this section we extend his method from R" to S" and H", and derive 

various isoperimetric inequalities in space forms. Let us first reprove Simon's theorem. ' 

1 8 0  
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L e m m a  7 (a) Let D and g be the Euclidean connection and the metric respectively, 

and let r be the distance in R" from a fixed point p. Then 

= ! ( g  - dr | dr). D2r 

(b) D~r 2 = 2g. 

(c) Let E be a k-dimensional minimal submanifold of R ~. Then 

At" = ar"-2( /~  + ( ~  - 2 ) l V r l 2 ) .  

(d) Alogr = ~ ( k -  21vr12). 

Proof. Conclusions (a) and (b) are standard computations in orthogonal coordinates 

of R". Conclusions (c) and (d) follow from Lemma 2 and straightforward computa- 

tions. 

Proof of Simon's theorem. By the above lemma, log r is subharmonic on a min- 

imal surface E. From [4, Proposition 2], or by following the same argument as in 

Proposition 2 of this paper, we have 

2~r <_ A1(OE, p), 

where p is an interior point of E. 

More precisely, 

2~r < - - - -  < - - ,  
- -  ]C r p 0 / . ]  - -  ~ r p  

where rp indicates that the distance r is measured from a fixed p. Letting p range 

over all points of E and integrating the above inequality over E, we get 

1 
2~rArea(E) < f~ ~os r= 

Then by Fubini's theorem, 

1 
2rrArea(E) <_ for. f~ r-~" 

Now by Lemma 7 (e) with a = 1, 

1 
A r  > - .  

r 

ttence 
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which completes  the proof. 

T h e  key point  in this proof is the nice relationship between the gradient  of logr 

and the  Laplacian of r. In order to apply this method  to a min imal  surface in a space 

form, we need to choose sui table  functions of r and compute  their  Laplacians.  

L e m m a  8 Let ~ be a k-dimensional minimal submanifold in S". 

(a) A l o g s i n r  = k c o t 2 r -  . v ~ ( 1  ,i." r-  + c~ r).  

(b) A log cos r = - k  - IV,'I ~ tan ~,-. 

Assume ~ C H". 

(c) A log sinh r = k coth 2 r - v-T-r~-fl *lab" rx" + c~ r) .  

(d) A log cosh r = k - I W l  = t anh  2 r. 

Proof. (a) 

A log sin r 
COS r x) 

= div \ sin r ~Trj 

COS P 
- ~ J w l  ~ +  . t,~ 

sin 2 r sin r 

s,n r c~ (k - W r l  2) = - - ~ l V r l 2  + sin ~r  

= ~cos ~r IVrl2 (1 + c o s  2r)  
sin ~ r sin 2 r 

Here we used Lemma 5 (b) for A t .  

(b) 

/ s i n  \ T 
A l o g c o s r  = d i v (  V r  / = -  

k -  cos r / 

- -  

A similar  proof holds for ~ C H" .  

1 [Vv[ 2 _  s i n r  A r  
COS 2 r COS r 

L e m m a  9 

Proof. 

On a k-dimensional minimal submanifold E of S", 

1 
A sin r = sin r (k cos 2 r - Ix7~l*). 

A s i n r  = div(cos rVr)  = - sin r[Vr] 2 + cos r A r  

sin ~ r + cos 2 r kCOS 2 r 
= sin r IVrl~ + " s l n  r 

- s i ! ; ( k c o s ~ - t W l ~ ) .  
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T h e o r e m  5 (a) Let E be a minimal surface in S" with diam(E) <_ ~. Let A = 

Area(E) and L = Length(OZ). Then 

2rrA < L 2 + A 2. 

(b) For a minimal surface E in H", 

2 r A  < L 2 - A 2. 

Proof. From Lemma 8 (a) we have 

A l o g s i n r  = 2 c ~  Ix7---~l-~(l+cos2r) 
sin * r sin ~ r 

cos2r 1 -  s in~r  IWl;(z + cos~) 
sin 2 r  t- sin 2r  sin 2r  
1 - I V r ? .  

- 7 - ~  (1+cos  ~ ) - l > _ - L  

Therefore, if we choose r = rp where p E ~,  we find 

- Z  = f - l _ < f ~ A l o g s i n r  

~0 c ~  ~o c ~  = - l i r a  - - - -  + 
t-~0 r., sin r Ou ~. sin r Ou' 

where u on 0Et  is the outer  conormal on E f3 B"(p, t). Note that  on 0Zt ,  

COS T" Or 
r --oZ and - - ~ Z  a s t ~ O .  

sin r Ov 

Hence for r < ~, 

~0 COS rp - A  < -27r + 
- ~ sin rv 

where rp is the dis tance from a fixed point  p. Let p range over r. and in tegra te  both  

sides of the inequal i ty  over E : 

- A  2 < -2~r + = - 2 r r A  + 
- r. sin rp r. sin rp" 

By Lemma 5 (b), 

A r  > cot r. 

tIence 

2rrA-A2 <- f o ~ f  A r =  for. f o r~u  <-L2" 

(b) Lemma 8 (c) states tha t  

~logsinhr - 2c~ IVrl~(z+cosh2r) 
sinh 2 r sinh 2 r 

2 cosh 2 r - 1 - cosh 2 r 
> = 1 .  
- sinh ~ r 
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Hence 

and 
J(• f0 cosh r A < A log sinh r < - 2 r  + 

- - r~ sinh r 

R e m a r k  2 

in a single form 

- ~: sinh r r. sinh r 

- ~ ~ ~-< 
Evidently, one can rewrite Simon's theorem and Theorem5 (a), (b) 

27rA <_ L 2 + K A  ~, 

where K is the sectional curvature of the space form that  the minimal surface ~ sits 

in. 

Due to the analytic nature of the proof of Theorem 5, we can derive, applying the 

same argument,  the Sobolcv-type inequalities corresponding to the above isoperi- 

metric inequalities. As is well known, one can recover the isoperimetric inequalities 

from the Sobolev-type inequalities, using smoothed characteristic functions as test 

functions. 

C o r o l l a r y  1 Let f be a compactly supported smooth nonnegative function on a min- 

imal surface ~ in S" or H".  In case ~. C S", assume also that the diameter in S" of 

the support of f is <_ ~. Then 

where K = 1 or - 1  depending on whether Z C S" or ~ C H".  

Proof. For ~] C S", we have 

d i v ( f V  log sin r) >_ (V f ,  cot rVr)  - f .  

Integrating both sides, we see that  for a fixed y E Z, 

27rf(y) _< f~ IVf (z ) [ .  cotr , (x)dA~ + f(x)dA~,  

where ru(x ) = dist(x ,y) .  Moreover 

d i v ( f V r )  >_ (Vf ,  Vr)  + f c o t  r. 
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So 

Therefore 

2r f~ f2 

~ f(y) cot r,:(y)dA u < L IVf(y)ldAv. 

< f~ f ( y ) ( f~  ]V f(x)l.cotr~(x)dA=+ f~ f(x)dA~)dA v 

A similar proof is valid for E C H". 

The inequality of part (b) of the following theorem was proved for domains in H k 

by Yau [10, p.498]. Although it is not sharp, it may be observed that the inequality 

is asymptotically sharp, by considering geodesic balls in H k of large radius. 

Theorem 6 (a) Let E be a domain in S ~ or a k-dimensional minimal submanifold 

of S". Assume diam(E) < d < ~ . Then 

k. Volume(E) < rand. Volume(OE). 

(b) Let E be a domain in H k or a k-dimensional minimal submanifold of H". Then 

(k - 1) Volume(E) < Volume(OE). 

Proof. (a) Lemma 8 (b) says that 

-Alogcos r--k- IWI~ (1- r 
Therefore 

k. Volume/El _< [-alogcos _  [ rand--rand. Votume/OE/. 
dE dO 

(6) From gemma 8 (d), 

A log cosh r = k + IVrl 2 cos--h 2 r 

So 

( k - l )V~176176  - zcoshSinhr < f  0 r -  ~ l =  Volume(OE). 
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C o r o l l a r y  2 (a) Let f be a nonnegative smooth function with compact support on a 

k-dimensional minimal submanifold E in S". l f  diam(spt f )  < d < ~, then 

k f f <_ t a n d f l V f l .  

(b) If E k C It", then 

(k-1)ff < f 'Vfl. 
Proof. (b) From Lemma 5(b), we have 

div( fVr)  > (V f ,  Vr) + (k - 1)f. 

Integrating both sides over E gives the desired inequality. For (a), we obscrve 

d iv ( fV  log cos r) _< - ( V  f ,  tan rVr)  - kf. 

T h e o r e m  7 Let E be a minimal surface in S". 

(a) I f  diam(E) < d < ~ and c = cosd, then 

2rrcA < L 2. 

(b) If  diam(E) < ~, then 

27rA < 2AL + L 2. 

Proof. In the proof of Proposition 2, we obtained 

fo 1 Or fo 1 2 r r<  - - - - <  
- z s i n r 0 v -  zs in r '  

if dist(p, OE) < ~. From Lemma 5 (b), we have for r < d 

C 
Ar > - -  

- s i n  r '  

Hence, if diam(E) < ~, 

- -  ~ .  sin r r. sin r 

- -  I;  C - -  Z r . c  c "  

This proves (a). For (b), we use Lemma 9 and obtain 

A s i n r >  2 c o s  ~ r - 1  1 1 = - 2 s i n r  > . . . . .  2. 
- sin r sin r - sin r 
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Therefore 

2~r A 
' 

sinr < for. L (  2+ Asinr) 

< for.(2A+forcosr) <2AL+fa~.forl 
= 2AL + L ~. 

Corollary 3 Assume that E is a minimal surface in S" and that f E C~(E) and 
f>O. 

(a) If diam(sptf) < d < ~ and c = cos d, then 

2rrc fEfl < ( ~  lVfl) ~ 

(b) If diam(sptf) < ~, then 

2rrf f 2 < ( f l V f l ) 2 + 2 ( f l V f l ) ' ( f  f )  " 

Proof. (a) From Lemma 5(b) it follows that 

= sin r + 2 f ~ ( 1  - IVr?) 

_> (V f, .1 Vr>. 
s i n  r 

Hence 

Similarly, 

and hence 

Thus 

f IVf(x)l dA~. 2rf(y) _< sin rv(x) 

cf 
div(fVr) >_ (V f, Vr) + sin---~' 

f c f (y )dA < sinr=(y) v f~ [Vf(y)ldAr 

2~ f~ f~ 

(b) Since 

< f~ f(y)(f~ IV f(x)[ dA~'~ dAv 
- sinru(x) ) 

f~ (f~ f(Y) dA~ da~ <_1 ( ~  )2 = [Vf(x)[ sin,'~(y) ) c IV f[ 

1 _21, div(fVsinr) > (Vf, cosrVr) + f 
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we obtain 

f~ f(Y-------~) dA~ <_ sin r (y) IVf(y)I A  + 2 f(y)dA . 

Therefore as in (a), 

2r f~ f2 / ( [  f(Y) dA~ < f~ Ivf(x)l \j~ ~ ) dZ= 

< f~ IVf(x)l ( f~  IVf(y)IdAu+2 f~ f(y)dZu)dZ~ 
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