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ISOPERIMETRIC INEQUALITIES ON
MINIMAL SUBMANIFOLDS OF
SPACE FORMS

Jaigyoung Choe* and Robert Gulliver

For a domain U on a certain k-dimensional minimal submanifold of S™ or
H™, we introduce a “modified volume” M(U) of U and obtain an optimal
isoperimetric inequality for U k*w, M (D)*~! < Vol(8D)*, where wy is the
volume of the unit ball of R*. Also, we prove that if D is any domain
on a minimal surface in S} (or H™ respectively), then D satisfies an
isoperimetric inequality 2r A < L% + A? (2rA < L? — A? respectively).
Moreover, we show that if U is a k-dimensional minimal submanifold of

H™, then (k — 1) Vol(U) < Vol(aU).

Let C be a simple closed curve in the plane, bounding the domain D. Let the
length of C be L and the area of D be A. Then the classical isoperimetric inequality
states that

irA < I?

with equality if and only if C is a circle. If D is a domain on the sphere, the sharp

isoperimetric inequality for D was given by F. Bernstein [2]:
AmAS P+ KL,

where K is the Gauss curvature of the sphere. In fact, in this form it is valid both
for the sphere and for the plane, where K = 0. One might guess that it would hold
equally for the hyperbolic plane H?, where K = —1. Schmidt [9] showed that this
turns out to be the case.

*Supported in part by KME and GARC
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Considering that minimal surfaces are viewed as generalized planes, it is tempting
to conjecture that these sharp isoperimetric inequalities should still hold for domains
on any immersed minimal surfaces in space forms, R"®,S" H". The truth of this
conjecture is not yet known, except in special cases. For example, it was shown for
minimal surfaces in R™ with radially connected boundary in [4] and later for analogous

minimal surfaces in H" in our companion paper [5].

In this paper we introduce a modified volume M(D) of a domain D and obtain
an isoperimetric inequality without the additional term that Bernstein and Schmidt
had:

k"wkM(D)k'1 < Volume(aD)k,

where w; is the volume of the unit ball of R, and D is a domain on a certain
k-dimensional minimal submanifold of a space form. This modified isoperimetric
inequality is proved under any of the following conditions: (Theorem 4) 9D lies on a
geodesic sphere of the space form; (Theorem 2) k = 2, D C S} (the hemisphere) and
0D is weakly connected; (Theorem 1) k = 2, D C S} and @D is radially connected
about a point of D. Observe that D is not assumed to have minimum volume. The
inequality is sharp for a geodesic ball in a totally geodesic submanifold £, and appears

to be a plausible conjecture for any minimal submanifold of S} or R™.

While we need an assumption of radial connectivity for a partial solution of the
above conjectures, L. Simon (see [3, p.318], [8, Theorem 5.3}) made no connectedness

assumption and obtained a weaker isoperimetric inequality
A< L?

for any minimal surface in R". In the second part of this paper we extend his method
and derive (Theorem 5)
A< LP 4 A?

for a minimal surface in S*, and
A< LY — A?

for a minimal surface in H". We further extend this method and show (Theorem 6)

that if ¥ is a k-dimensional minimal submanifold of H", then

(k = 1) Volume(X) < Volume(3L).
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This is an exact extension of Yau’s result for a domain in H* [10]. More isoperimet-
ric inequalities of this kind are proved. Finally, to each isoperimetric inequality of
these types, we obtain corresponding Sobolev-type inequalities for smooth nonnega-
tive functions with compact support on minimal surfaces (see Corollaries 1, 2, and

3).

We would like to thank Walter Wei for bringing Sitnon’s work to our attention.

1 Modified volume

We assume throughout this paper that D and ¥ are differentiable up to its boundary,

and that their closures are compact.

Definition 1 Let p be a point in the n-dimensional sphere S" and let r(x) be the
distance from p to z in S™. Given a k-dimensional submanifold ¥ in S", the modified

volume of L with center at p is defined to be

h[,,(E):/cosr.
z

Similarly for ¥ in the n-dimensional hyperbolic space H™, we define the madified

volume of ¥ by
M,(%) =/cosh T,
b

Obviously we have in S™
M,(%) < Volume(X),

and in H"
M,(Z) > Volume(X).

Lemma 1 (a) Suppose that S™ is embedded in R™+! with p the north pole 0, ...,0,1).
Then the modified volume of a domain U C S™ is the Euclidean volume of the orthog-
onal projection of U into the horizontal hyperplane z,4; = 0, counting orientation.

(%) In case U is a domain in H™, embed H™ isomelrically onto the hypersurface
S, a2l =2l = =1, Tap > 0, of R with the Minkowski metric
ds? = dz} + .-+ + dz? — da2,, such that p becomes the point (0,...,0,1) € S.
Then M,(U) equals the Euclidean volume of the projection of U onto the hyperplane

Tagy = 0.
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Proof. Part (a) follows from the fact that cos r is the Jacobian of the projection of S
into 2,41 = 0. For part (b), since the metric on H™ and the distance function r are
rotationally symmetric about p, it suffices to consider only the case where U C H!,

Let z = (z1,7;) € H', 22 — 22 = —1. Then z,dz; = z,dz; and hence

z T Ty
ds=/ dmz—dx":/ 1—(z,/x2)? dz
/ \ dxi 2= |V (x1/22)? dzy
———dz; = log ($1+ 1+xf).
[ 7=

Hence z; = sinhr. Therelore

r(z)

dz, = cosh rdr,
which gives the desired result.

In the following lemma, as usual, the notation V f, a vector (field) V followed by

a function f, implies the directional derivative of f in the direction V.

Lemma 2 Let f be a smooth function en an n-dimensional Riemannian manifold
M and ¥ a k-dimensional submanifold of M. Let V and O be the connection and
Laplacian on M respectively, and A the Laplacian on X, If H is the mean curvature
vector of & in M,then

A(fIS) = BNIS+HS = Y T fleata),

a=k+1
where €xy1, ..., €, are orthonormal vectors which are perpendicular to L.
Proof. Let ey,...,ex be orthonormal vector fields on a neighborhood of a point of X.
These vector fields can be smoothly extended to orthonormal vector fields €;,...,&s

on M such that & =¢;,1 <i <k, on E. Then Zf:x Ve = H + Zf.;l Ve ei, and

hence we have

k
Af = Y (eweif = Veef)

i-—l
— Zeef E eaeaf ZV e.f+Hf+ Z Veaeaf
a—‘k+1 o=k+1
= Af+Hf- Z V' f(eara)
a=k+41
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Lemma 3 Let V and g be the connection and metric tensor respectively of S™ or

H". On S™, Vcosr = —(cosr)g. On I, T’ coshr = (coshr)g.

Proof. Let p be the point from which the distance r is measured. Let ;—r, Viy. ooy Vo
be perpendicular vector fields on a neighborhood of ¢ € S™ such that |V;| = sinr, that
Vv,Vj(q) is parallel to 2, and that V; are Jacobi fields along any geodesic through p.
Clearly vv'.% is parallel to V; and [Vi, %] = (. Hence

= 0 = 10 .
(VV.' 5’7':, ‘/l) - <V6/6rviv Vx) = EE(VH vx) =sinrcosr,
and Wg’; = cotrV;. So
- d = 0 .
(VV,VJ»,;,)—T) = “<V"’V"‘?’j?) = —§;;sinr cosr,
where §;; is the Kronecker delta. Hence Vy,V;(g) = —6;;sin r cos rga;. Therefore

V cos r(Vi,Vi)(q) = ViVicosr —Vy,Vcosr

= —b;sin’rcosr = —cosrg(V;,V;).
Moreover,
= d J = = 0
v cosr(-a—? Villg) = 5;‘/, cost — V a Vj cos rVVJE-;cosr
= sinrcosrV;(cosr) =0 = —cosrg (g—,VJ) .
r
Also,
=2 a d d? =
v COST(E;’E;) = d—r,‘;cosr-—va/a,b—;cosr
J
= —cosr= —cosrg(E,—a—r).

Thus we have the proof for S™. A similar proof holds for H".

Lemma 4 (a) If £ C S™ is a k-dimensional minimal submanifold or a cone, and r
is the distance in S™ from a fized point, then

Acosr = —kcosr,

where A is the Laplacian on the submanifold ¥ and, in case & is a cone, r is the
distance from the center of L.

(b) Suppose T is a k-dimensional minimal submanifold or a cone in H*. Then
Acoshr = kcoshr.

Here again, in case of a cone X, 7 is the distance from the center of ¥.
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Proof. The proof for a minimal submanifold follows from Lemma 2 and Lemma 3,

On a cone ¥ C H™, we see from Lemma 2 that

Acoshr = Acoshr+ Hcoshr — Z V? cosh (E0s €a)
a=k+1
= ncoshr +sinhrHr — (n — k) coshr = kcoshr,

since H is perpendicular to d/9r on the cone; similarly for a cone & C S™.

Given a (k — 1)-dimensional submanifold M of S* or ™ and a point p in S
or I{*, the k-dimensional cone p>x M with center at p is defined to be the set of all

minimizing geodesics from p to the points of M.

Proposition 1 For any minimal submanifold & with boundary in S™ or H™, and any
point p € S™ or H*,
M,(E) < My(pxIL).

Proof. Let v and n be the unit conormals to d on ¥ and pxJL C S™ respectively.

Then it is easy to see, as in [4, Proposition 1}, that

or _or
b il
dv — Oy
Hence
1 1 ar 1 or
= —— = — 1 —_ < - 1 —_—
M, (L) k/EACOST 5 axsmray_ : azsmraq
= -1 Acosr = My(px0L).
k pXKOL

The same argument applies to ¥ C H".

Lemma 5 {a) On S", Vr = cot (g —dr®dr). On H", V’r = coth r(g —dr @dr).
(b) Let & be a k-dimensional minimal submanifold or a cone from p in S™ or H".
Then Ar = cot r(k — |Vr|?) for T C S*, and Ar = cothr(k ~ |Vr|?) for & C H™.

Proof. (a) Using Lemma 3, we compute -

~(cosr)g = V’ cosr = —cosrVr @ Vr —sinrVor,

{coshr)g = V? coshr = cosh rVr ® Vr + sinh r_V‘Qr,
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on S™ and H™ respectively. The results follow immediately.

(6) From Lemma 4, we have

—kcosr = Acosr =div(—sinrVr)

—cosr{Vr|?* — sinrAr,

which gives the result; similarly for ¥ € H"™.

Lemma 68 Let G(z) be Green’s function of S* ( H* respectively), whose derivative is
sin'*z for0 < z < 7 (sinh* %z for0 < x < oo respectively). If T is a k-dimensional
minimal submanifold of S™ (H™ respectively), then Gor is subharmonic on ¥ — {£p}
C 8" (on X —{p} C H" respectively). (Note : When k =2, G(r) = Gor = log tan 7,
and when k=3, G(r) = —cotr on £ C S™.)

Proof.

AG(r) = div(sin'*rVr)
= (1 —k)sin™*r . cosr|Vr|? +sin7* r . cos r(k — |Vr{®)

= ksin™*r. cosr(l —|Vr]?) > 0.
The proof for & C H™ is similar.

Definition 2 Let C C S™ be a k-dimensional rectifiable set and p a point in S”
such that dist(p,q) < 7 for all ¢ € C. The k-dimensional angle A¥(C,p) of C viewed
from p is defined by setting

A¥(C,p) = sin™*t - Volume[(pxC) N S(p, t)],

where S(p,t) is the geodesic sphere of radius ¢ < dist(p,C) centered at p, and the
volume is measured counting multiplicity. Clearly the angle does not depend on ¢.
There is obviously an analogous definition for the angle of C C H™ viewed from
peH™
Note that
AXC,p) = (k + 1w 0 (pxC, p),

where ©%+(psx C, p) is the (k + 1)-dimensional density of pxC at p.
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Proposition 2 Let ¥ be a k-dimensional compact minimal submanifold with bound.
ary in S™ or H™, and let p be an interior point of X. In case of & C S™, we assume

that dist(p,q) < % for allq € X. Then
AFYOE, p) > kwy.

Equality holds if and only if & is a domain on a totally geodesic submanifold that is

star-shaped with respect to p.

Proof. Let B™(p,t) C S™ be the geodesic ball of radius ¢ centered at p, t < dist(p, 0%),
L, =% ~ B*p,t), and C; = LN S(p,t). Lemma 6 says that G(r), r = dist(p,-), is

subharmonic. Hence

o
IA

AG(r) = | div(sin'™*rVr)
Eg Et

) ar ) ar
-/ sin'~*r.— 4 sin'~*r. —
3T¢ v ) dv

where v on 9%, is the unit normal to 9, away from p on £ B*(p,t). Since & — 1

and % — 1 on 0% as t — 0, we have

) ) oar . or
hm/ sin'*r. =~ < sin!*r. —
t—0 £ 61/ ) (?I/

< / sin'~kr. o = A¥1(0%, p),
2> an

kw;.

where 7 is the same as in Proposition 1. Bqualitly holds if and only if AG(r) =0,
©*(Z,p) =1, and v = n if and only if T is a star-shaped minimal cone with density at
the center equal to 1. Since $¥~! is the only (k — 1)-dimensional minimal submanifold
in S™ with volume kwy, we conclude that X lies in a totally geodesic submanifold of

S™. A similar proof holds for ¥ C H™.

2 Isoperimetric inequality for modified volume

For a minimal surface £ in R, the isoperimetric inequality 47 A < L? has been proved
whenever 9% is connected, or more generally, whenever there is a point p € R" such
that no sphere centered at p separates 3% [4]. We shall prove an analogous result for

modified area in 5}:

Theorem 1 Let L be a compact minimal surface with boundary in S™. Assume that

r is the distance in S* from a point p of ¥ and that r < 5 on . If 0L is radially
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connected from p, that is, {s : s = dist(p,q), ¢ € L} is a connected interval, then
4rMy(Z) < Length(0%)?. Equality holds if and only if £ is a tolally geodesic disk

with center at p.

Proof. By Proposition 1, M,(2) < M,(px0L). For each geodesic sphere S(p,t)
centered at p , one has a local isometry between the curve S(p,t) N (px3dL) and a
great circle on S(p,t). Therelore, developing p JdE on a great sphere S? C S™, one
can find a curve C (not necessarily closed) in S? and a local isometry {rom pxdX
into pC where p is the north pole of §2. Clearly we have M,(px %) = Mz(pC),
Length(9L) = Length(C), and AY(JL,p) = AY(C,p). Moreover, if we let § and §
be the end points of C, then dist(p,q) = dist(p,q). First, let us assume that p is
an interior point of L. We see from Proposition 2 that A1(dZ,p) > 27 and that C
has a self-intersection point. Now, from Lemma 1, it follows that Mz(pxC) equals
the Euclidean area of the standard projection of p»C onto the plane containing the
equator of S%. Let C’ be the image of C under the projection and 0 the origin of
the plane. Then Ms(pxC) = Area(0xC"), A}(C,p) = AY(C",0) and Length(C) >
Length(C"). The last inequality follows from the fact that the projection is a length-
decreasing map. Furthermore, if ¢’ and ¢” are the end points of C’, then dist(0,¢') =

dist(0,¢"). Thus we can apply Lemma I of [4] and conclude that
4r Area(0xC') < Length(C')?,
and equality holds if and only if C’ is the boundary of a circle. Therefore
dnM,(L) < Length(9X)?,

and equality holds if and only if Length(C') = Length(d%) and A'(9L,p) = 2, or
equivalently, ¥ is a totally geodesic disk centered at p. Second, if p is a boundary
point of X, then we apply Corollary 1 instead of Lemma I of {4].

Remark 1 The same inequality is false for minimal surfaces in H*. In fact,
among domains in H? with prescribed boundary length, the modified area has no
upper bound. Qur proof fails in II™ because the projection in Minkowski space R™*!
from H™ onto the hyperplane z,4; = 0 is a length-increasing map. In Theorem 4
below, however, we shall prove the inequality in the special case that 9% lies in a

sphere of H™ centered at p.

Li, Schoen and Yau {7] have proved the isoperimetric inequality for a minimal

surface £ in R™, provided that 8L is weakly connected, that is, no coordinate hy-
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perplane separates dX. The analogous hypothesis for £? in S™ suffices to prove an

isoperimetric inequality for modified area:

Theorem 2 Let ¥ be a compact minimal surface with boundary in S™ C R"*! and r
the distance in S™ from the north pole p = (0,...,0,1) € S". Assume without loss of
generality that the center of mass of 8L in R™*! lies on the line ! = {(z1,...,Tny1):
zy =+ =z, = 0}. Assume also that 0L is weakly connccled : there exisls a
rectangular coordinate system {yi,...,yn} in the hyperplane z,4y = 0 such that,
R™! being equipped with the coordinate system {yi,...,¥n, Tus1}, no hyperplanes of
R y; = const, 1 <i < n, ever separate L. Then 4w M,(X) < Length(9T)?.

Proof. Let us modify Li,Schoen and Yau’s argument in [7]. Assume z; = y; (1 <1<
n). For any fixed 1 < i < n, it follows from the weak connectedness of ¥ that each
component of d% can be translated in a proper direction perpendicular to 9/dz;,
so that after translation, their union forms a connected one-dimensional simplicial

complex C;. Observe here that

for= Lo L= [ (&)= L(2)

and Length(0L) = Length(C;).

By hypothesis,
/ =0, i= 1,...,n.
E}>

Hence the Poincaré inequality applied to C; says that

/ 2? < —— Length(C)? / dei)”
C. P 47('2 ng ! c, dS ’

where s is the arclength parameter of C;. Thus

1 1 . Or
M%) = —/2Acosr——2—/‘92smr%
1/2 1/2
< /lsmr|< [/ ] [/ sinzr}
B}
| 1/2
= —~Length(d%)"? / z?
5 Length(9%) [azg

N2
—Length ax)'? [ ZLength / %ﬂ) ]
_ds

__Length oz [/ }: (ds )2]1/2

1/2

IA

IN
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IA

:1—1;Length(BZ)S/zLength(Proj((')E))‘lz

IA

1 2
4—7r-Length(aE) .

Closely related to isoperimetric inequalities on a minimal submanifold L is the
monotonicity property: the volume of £ N B(p,r), divided by the corresponding
volume for a tolally geodesic maniflold of the same dimension, is a nondecreasing
function of r. This property has been proved for R" and for H™ [1], but not for
§" (see however [6], p.353). Our next result shows that modified volume enjoys the

monotonicity property in all three cases.

Theorem 3 Let L be a k-dimensional minimal submanifold in S™ ( H™ respectively)
and v the distance in S™ ( H™ respectively) from p. Then sin™* r-M,(X N B™(p,r))
(sinh ™% r .M, (5N B"(p,r)) respectively) is a monotonically nondecreasing function of
r for 0 < r < min(3,dist(p,0%)) (0 < r <dist(p,0L) respectively).

Proof. Define ¥, = XN B"(p,r) C S*. Then

My(Z,) = —— [ Acosr

-1 sinr—a—rz—l—sinr/ [Vr|.
k LT, al/ k 9L,

Denote the volume forms on ¥ and 0%, by dv and dS,. Then we have dv = '—‘—};idS,dr.

So
d ) d [T
— | cosr|Vr|’dv = — cosr|Vr|dS,dr = cosr [Vr|.
dr Jg, dr Jo Jos, 9L,

Therefore

1si Isinr d
My(%,) = ST cosr/ [Vr| = —nr cos r|Vr|?

kcosr 9%, k cost dr £
lsinr d Isinr d
< - —_— :————M rje
- kcosrdr/);rcosr kcosrdr o(Zr)

In the above inequality we used the fact that r < I and |[Vr|> <1 on E. Hence

d -
. log [sin kp. M,(Z,)] 2 0.

Thus sin™ r - M,(Z,) is nondecreasing; similarly for & C H™.

A very special case of the hypothesis of radially connected boundary occurs when
d% lies on a geodesic sphere. In this case, the conclusion of Theorem ! may be

extended to hyperbolic space, and the minimal submanifold may have any dimension.
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Theorem 4 Let X be a k-dimensional minimal submanifold in S™ or H™. Assume
that O lies on a geodesic sphere centered al a point p of & and thai r is the distance

in §® or H™ from p. Furthermore, in case of & C 5", assumer < 5 on X. Then
K M, (Z)¥! < Volume (L)
Equality holds if and only if ¥ is a lotally geodesic ball centered at p.

Proof. Assume ¥ C H™ and let R be the radius of the geodesic sphere in which 0%

lies. Then
1 1 . ar
E/EACOSIW = E/azsmhrm

1 ar 1
—_— el — < g . .
= 7 sinh 2 00 S F sinh R - Volume(9L)

M,(Z)

Since lim, g sinh™* r - M,(£ N B™(p,r)) = wx, we obtain from Theorem 3,
sinh™ B - M,(Z) > wy.

Hence

M,(Z) < %w;’/"Mp(Z)‘/" Volume (0X)

and so the desired inequality follows. Obviously equality holds if and only if £ is a
cone with density at the center equal to 1, or equivalently, L is a totally geodesic ball.

A similar proof holds for £ C S™.

3 Isoperimetric inequalities via Fubini’s theorem

All the theorems of preceding section require that 9% satisfy some hypotheses related
to connectivity. Without such hypotheses in R"®, the strongest inequality known
for minimal surfaces is due to Leon Simon. Simon used Fubini’s theorem to obtain
a weaker isoperimetric inequality for a minimal surface in R™ (see (3, p.318], [8,
Theorem 5.9]) :

21 Area(Z) < Length(9%)%.

The key idea, rephrased in our setting, is to integrate the angle of ¥ from the points
all over E. In this section we extend his method from R™ to S™ and H", and derive

various isoperimetric inequalities in space forms. Let us first reprove Simon’s theorem.
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Lemma 7 (a) Let D and g be the Euclidean connection and the metric respectively,

and let 7 be the distance in R™ from a fized point p. Then
Dr = %(g —dr ®dr).

(b) D*r? = 2g.
(c) Let & be a k-dimensional minimal submanifold of R*. Then

Ar® = ar* Hk + (a — 2)|Vr{).
(d) Alogr = %(k —2|Vr[?).

Proof. Conclusions (a) and (b) are standard computations in orthogonal coordinates
of R*. Conclusions (c) and (d) follow from Lemma 2 and straightforward computa-

tions.

Proof of Stmon’s theorem. By the above lemma, logr is subharmonic on a min-
imal surface X. From [4, Proposition 2], or by following the same argument as in

Proposition 2 of this paper, we have
27 < AY9,p),

where p is an interior point of I.

10 1
we [ Lof L
£ Tp OV ar Tp
where r,, indicates that the distance r is measured from a fixed p. Letting p range

More precisely,

over all points of £ and integrating the above inequality over X, we get

2w Area( /
EM) ’”p

Then by Fubini’s theorem,

27 Area(X /
anJE Tp

Now by Lemma 7 (c) with a = 1,

>
=
v
N | -

Hence

2rArea(X) < / /Ar-—/ / / / 1 = Length(9Z)?,
3L ar Jax o = ax Jax
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which completes the proof.

The key point in this proof is the nice relationship between the gradient of logr
and the Laplacian of r. In order to apply this method to a minimal surface in a space

form, we need to choose suitable functions of r and compute their Laplacians.

Lemma 8 Let T be a k-dimensional minimal submanifold in S™.
(a) Alogsinr = kcot?r — E;l;(l + cos?r).

(b} Alogcosr = —k — |Vr|*tan?r.

Assume ¥ C H".

(c) Alogsinhr = kcoth?r — J——4—(1 4 cosh?r).

(d) Alogcoshr = k — |Vr|? tanh?®r,

Proof. (a)

Alogsinr = dwv (Coerr)

sinr

T‘l2 Cos rAT

sin T sin r

cos’r
sm r[Vr]’ (k |Vr| )

= k——-—-—cos L __|V72" (1 + cos? r) .

sin’r  sin?r

Here we used Lemma 5 (b) for Ar.

(b)

Alogcosr = diwv (—serr) - 1 |Vr? — st

cosr cos?r cosr

_k+|Vr|’(1— L )
cosr

A similar proof holds for ¥ C H™.

Lemma 9 On a k-dimensional minimal submanifold & of S™,

Asinr = —I—(kcos r—|Vr?).

sinr
Proof.
Asinr = div(cosrVr) = —sinr|{Vr|* 4 cosrAr
. 2
sin?r + cos®r cos?r
- S
sinr sinr

= = (kcos r—|Vrf).
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Theorem 5 (a) Let ¥ be a minimal surface in S™ with diam(X) < Z. Let A =
Area(X) and L = Length(0X). Then

A< L+ A%
(b) For a minimal surface & in H™,
2rA< [P - A%

Proof. From Lemma 8 (a) we have

. 2cos?r |Vr|*
Alogsinr = ——p— - | 2| (1 + cos®r)
sin®r  sin‘r

cos’r 1—sin’r |Vr?

sin®r sinr sin®r (1+ cos® )
1—|Vr)?

= __|2_7"|_(1 +cos?r)y—1> —1.

sin‘r

Therefore, if we choose r = r, where p € X, we find

/—1S/Alogsinr
z z

cosr Or / cosr Or
F

—A

Il

—lim — — —_—
=0 Jog, sinr Jv g sinr v’
where v on 0%, is the outer conormal on ¥ N B"(p,t). Note that on 9L,,

cosr

T — and Qz—»l ast — 0.
dv

sinr

Hence for r < £,
cos Ty

~A<L -2rn +/ - ,
ay SinTy

where r, is the distance from a fixed point p. Let p range over & and integrate both

sides of the inequality over I :

—Azs/—2w+// Cf)sr"z—27rA-{~/ /c?sr,,.
b x Jor SINTp ar Jg SITy

By Lemma 5 (b),

Ar > cotr.

27rA—-A2S/ /Ar:/ / ?15142.
Iz JE ot Jag OV

(b) Lemma 8 (c) states that

Hence

2cosh®r  |Vr|?
Alogsinhr = - 1 + cosh?
B SIAT sinh?r sinhzr( cosh™r)
2 2
> 2cosh®r — 1 — cosh®r _L

sinh?r
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Hence
coshr

AS/AlogsinhrS—Qw-{-/
b

sg Sinhr’

coshr coshr
< =
A(A+2m) < /;/;E sinhr /32/2 sinhr
[Jo=[ [Tcr
oL Jg ox Jox OV

Remark 2 Evidently, one can rewrite Simon’s theorem and Theorem' 5 (a), (b)

and

IA

in a single form
2rA < L + KA,

where K is the sectional curvature of the space form that the minimal surface ¥ sits

in.

Due to the analytic nature of the proof of Theorem 5, we can derive, applying the
same argument, the Sobolev-type inequalities corresponding to the above isoperi-
metric inequalities. As is well known, one can recover the isoperimetric inequalities
from the Sobolev-type inequalities, using smoothed characteristic functions as test

functions.

Corollary 1 Let f be a compactly supporied smooth nonnegative function on a min-
imal surface £ in S™ or H. In case £ C S™, assume also that the diameter in S™ of

the support of f is < %. Then
2 2
w [ < ([ron) +x([r).
z o L

where K = 1 or —1 depending on whether ¥ C S™ or £ C H"™.
Proof. For & C S™, we have

div(fVlogsinr) 2 (Vf,cotrVr) — f.
Integrating both sides, we see that for a fixed y € &,

22() < [ IVf@I- cotr(addac+ [ f)dn,
b L

where r,(z) = dist(z,y). Moreover

div(fVr) 2 (Vf,Vr) + fcotr.
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? Lt tria, < [ 191,
Therefore
27r/2f2 < /f (/|Vf z)| - cot my(x)dA, +/f(.1: )
- /]Vf 2)| (/fy)cotrz( )dA)dA +(/f)
) |

(o) + ()

A similar proof is valid for ¥ C H".

The inequality of part (b) of the following theorem was proved for domains in H*
by Yau [10, p.498]. Although it is not sharp, it may be observed that the inequality

is asymptotically sharp, by considering geodesic balls in H* of large radius.

Theorem 6 (a) Let £ be a domain in S* or a k-dimensional minimal submanifold

of §". Assume diam(X) < d <} . Then
k- Volume(X) < tand - Volume(9L).
(b) Let X be a domain in H* or a k-dimensional minimal submanifold of H". Then
(k — 1) Volume(X) < Volume(0X).

Proof. (a) Lemma 8 (b) says that

cos?r

—Alogcosr =k — |Vr]? (1 _ ) > k.
Therefore
k-« Volume(X) < / —Alogcosr < / tand = tand - Volume(9Z).
> oz

(b) From Lemma & (d),

Alogcoshr=k+|Vr|2( 12 —1>2k—]Vr122k—1.
cosh®r

So

(k — 1) Volume(XL) < /Alogcoshr 5/ sinh 7 S/ 1 = Volume(9%).
> 8 3>

g coshr
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Corollary 2 (a) Let f be a nonnegative smooth function with compact support on q

k-dimensional minimal submanifold T in S™. If diam(sptf) < d < 3, then

k/s:f < ta.nd/S|Vf|.
k-1 [r< [0

Proof. (b) From Lemma 5(b), we have

(b) If £ C H™, then

div(fVr)y > (V. Vry + (k=1)f.
Integrating both sides over T gives the desired inequality. For (a), we observe
div(fVlegcosr) £ —(Vf, tanrVr) — kf.
Theorem 7 Let L be a minimal surface in S™.
(a) If diam(¥) < d < § and c = cosd, then
orcA < LA

(b) If diam(X) < %, then
2rA < 2AL + L2

Proof. In the proof of Proposition 2, we obtained

N
ax sinr Qv — Jyp sinr

if dist(p,0L) < . From Lemma 5 (b), we have for r < d

Hence, if diam(Z) < 7,

4 3 //32;.-1—=// 1

IN
g\.
o
E

IA
g\.
S~ 3

,_._
]
alb‘

This proves (a). For (b), we use Lemma 9 and obtain

. 2cos’r—1 1 ) 1
Asinr > - = — —2sinr 2 — — 2.
sinr sinr sinr
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Therefore

2rA

IA

[ e v
e e

2AL + L2.

IA

Corollary 3 Assume that T is a minimal surface in S™ and thet f € C§(Z) and
f20.

(a) If diam(sptf) < d < % and ¢ = cosd, then

zme [ 1< (/EIVfl)z-
(0) If diam(sptf) < %, then

e[ () (o) ().

Proof. (a) From Lemma 5(b) it follows that

. 1 1 cosT
div (fa;Vr) (Vf,ﬁv )+2f (1—|Vr| )

1
Hence (e )|
f
2 f(y) < Esmry(m) dAs.
Similarly,
div(fVr) > (Vf,Vr)+;c—nf—r
and hence fy
[558a, < [ 19 sta,
Thus
2 Vi),
< [ ([Ehun)
- SOEHVAOR
/[Vf (zsm1 @ )dA dA; < - /|Vf|
{b) Since

div(fVsinr) > (Vf,cosrVr) + <—1—— - 2)

sir
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we obtain 1)
Y
[ 0sin < [19rwiia,+2 [ swia,.
Therefore as in (a), -
2 S
or /E o< /E IVf(z)l( 2Sinrz(y)dAy) dA,

IN

Lres@n( [iwswlan 2 [ wda,) aa.

(foon) 2 (foon)-(4)
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