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1. Introduction

Our main issue of this paper is to classify or determine the structure of positively or non-
negatively curved manifolds with isometry groups. An isometry of a connected n-dimensional
manifold with a Riemannian metric g is a transformation of M which leaves the metric g invariant.
It can be shown that the Lie algebra of the isometry group Isom (M, g) is of dimension at most
1
2n(n + 1) (e.g., see [20]). Moreover, if the dimension exactly equals 1

2n(n + 1) then M is a space
of constant curvature. It is a prototype of various rigidity theorems for Riemannian manifolds.
In a similar vein, the concept of the symmetry rank, denoted sym-rank (M), of a Riemannian
manifold (M, g) was first introduced by Grove and Searle in [11] in order to measure the amount of
symmetry of M . Here the symmetry rank is defined as the rank of the isometry group Isom (M, g).
Equivalently, it can be defined as the largest number r such that a r-dimensional torus acts
effectively and isometrically on M .

In [11], Grove and Searle showed that the symmetry rank sym-rank (M) of a positively curved
manifold is less than or equal to

[
dim M+1

2

]
and that the maximal rank case holds if and only if the

manifold M is diffeomorphic to the unit sphere or the complex projective space or a lens space.
In fact, this result seemed to be motivated by the homeomorphism classification of 4-dimensional
positively curved manifold with an isometric effective S1-action by Hsiang and Kleiner in [16]. In
his paper [27], Rong later gave various classification results of positively curved manifolds with
almost maximal symmetry rank case. The first aim of this paper is to show that an orientable
closed positively curved 4-manifold M with an effective isometric S1-action is diffeomorphic to
S4 or CP2.

We also deal with another kind of positively curved manifolds. Namely, a compact quaternionic
Kähler manifold is defined to be a Riemannian manifold of real dimension 4m whose holonomy
group is contained in the Lie group Sp(m)Sp(1) in SO(4m) for m ≥ 2. Such a manifold is
called positive if it has the positive scalar curvature. It is known that every quaternionic Kähler
manifold is Einstein. So it is customary to define a 4-dimensional quaternionic Kähler manifold
to be both Einstein with non-zero scalar curvature and self-dual.

The second aim of this paper is to show that if M is a positive quaternionic Kähler manifold
of dimension 4m with the symmetry rank sym-rank (M) greater than or equal to

[
m
2

]
+ 3, then

M is isometric to HPm or Gr2(Cm+2). This result is very sharp, since the symmetry rank of the
real oriented Grassmannian G̃r4(Rm+4) is m+3

2 and G̃r4(Rm+4) is not on the list.
We organize this paper as follows. In Section 2, we explain our main results in more details.

Some further questions will be addressed in the talk.

2. Main Results

2.1. Diffeomorphism classification of positively curved 4-manifolds with S1-symmetry:
In their paper [16], Hsiang and Kleiner investigated the question which orientable closed positively
curved 4-manifolds admit a positively curved metric with an effective isometric S1-action. They
showed that if M is a compact oriented positively curved 4-manifold with an effective isometric
S1-action, then M is homeomorphic to S4 or CP2. This classification is remarkable and sparked
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off many current research activities in this field. In particular, see the works of Grove–Searle and
B. Wilking in [12] and [28, 29] respectively. However, it is a topological classification rather than
a diffeomorphism one. In fact, Hsiang and Kleiner asked in the same paper whether or not the
following conjecture was true:

Conjecture 2.1. An orientable closed positively curved 4-manifold M with an effective isometric
S1-action is diffeomorphic to S4 or CP2.

In order to explain the main ideas of the proof of Conjecture 2.1, we let F (S1,M) be the fixed
point set of such an S1-action on M . It is well known as in [19] that the Euler characteristic
of F (S1,M) is equal to that of M in the presence of an effective S1-action. Thus the Euler
characteristic of the fixed point set F (S1,M) is greater than or equal to 2. One of the main steps
in the paper of Hsiang and Kleiner is to prove that the Euler characteristic of the fixed point
set F (S1,M) is at most three. Hence, since each component of F (S1,M) is a totally geodesic
submanifold of M , F (S1,M) has the following four possibilities only:

(1) One 2-sphere.
(2) The disjoint union of one 2-sphere and one isolated fixed point.
(3) Two isolated fixed points.
(4) Three isolated fixed points.

Hsiang and Kleiner obtained the above information about the fixed point set F (S1,M) by
essentially using the existence of a positively curved metric with an effective isometric S1-action.
But it seems to need more serious consideration on the topological properties of effective circle
actions on simply connected 4-manifolds. Thus our starting point of this paper is to investigate
all possible topological configurations of effective circle actions on simply connected 4-manifolds.
However, the existence of a positively curved metric with an effective isometric S1-action is also
used crucially. Moreover, we need to use the recent resolution of the Poincaré conjecture by
Perelman as in [24] and [25]. (See also [22], [4, 5] and [18].) So our proof is differential-topological
in nature. We remark that it is inspired by the work [1] of S. Baldridge.

In case that the fixed point set F (S1,M) is either one 2-sphere or the union of one 2-sphere
and one isolated fixed point, the effective isometric S1-action on M has the fixed point set
whose codimension is 2. It then follows from Theorem 1.2 of Grove and Searle in [12] that M
is diffeomorphic to S4 or CP2. So it is enough to consider the remaining two cases: F (S1,M)
consists of either two isolated fixed points or three isolated fixed points. In the present paper, we
prove that even in this case M is diffeomorphic to S4 or CP2.

One of the new ingredients of this paper that is not present in the paper of Hsiang and Kleiner
is to use the classification results of circle actions on simply connected 4-manifolds by R. Fintushel
in [8] and [9]. According to Fintushel, smooth S1-actions on simply connected 4-manifolds can
be classified in terms of their legally weighted orbit spaces. Applying this classification to our
situation, we will have at least four (resp. three) possibilities for legally weighted orbit spaces, if
the fixed point set is three isolated fixed points (resp. two isolated fixed points).

In the proof we also need the “replacement trick” of P. Pao. This trick makes the given 4-
manifold admit many different S1-actions by replacing a weighted arc with a simpler one. To be
precie, we use the following theorem of P. Pao in [23] (or Proposition 13.1 in [9]):

Theorem 2.2. Let X be a closed oriented 4-manifold with an effective S1-action whose weighted
orbit space contains a weighted circle C∗ with exactly two isolated fixed points. Then M admits
a a different S1-action whose weight space is M∗ with C∗ replaced by two isolated fixed points or
M∗ minus the interior of 3-ball with C∗ removed.

This implies that in the second case the orbit space for the new S1-action will have one more
boundary component instead of the weight circle.

Finally we can show the following result by some case-by-case analysis:

Theorem 2.3. An orientable closed positively curved 4-manifold M with an effective isometric
S1-action is diffeomorphic to S4 or CP2.
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This completes the classification of closed oriented positively curved manifolds of dimension 4
with effective isometric S1-actions, up to diffeomorphism. We recently prove that the technique
of this paper answers the following result in [16] (e.g., see [17]):

Theorem 2.4 (jointly with Hee-Kwon Lee). An orientable closed simply connected nonnegatively
curved 4-manifold M with an effective isometric S1-action is diffeomorphic to either S4, CP2,
CP2#±CP2, or S2 × S2.

2.2. Positive quaternionic Kähler manifolds with certain symmetry rank: Recall that a
compact quaternionic Kähler manifold is defined to be a Riemannian manifold of real dimension
4m whose holonomy group is contained in the Lie group Sp(m)Sp(1) in SO(4m) for m ≥ 2.
Hitchin proved in [15] that every positive quaternionic Kähler 4-manifold must be isometric to
CP2 and S4. In case of dimension 8, Poon and Salamon showed in [26] that every positive
quaternionic Kähler manifold should be isometric to HP2, Gr2(C4) or G2/SO(4), i.e., Wolf
spaces. Moreover, in [14] Herrera and Herrera gave the classification of positive quaternionic
Kähler 12-dimensional manifolds. In particular, according to a result of Lebrun and Salamon in
[21], every positive quaternionic Kähler manifold M is simply connected and the second homotopy
group π2 is a finite group with 2-torsion, trivial or Z. More precisely, M is isometric to HPm

(resp. Gr2(Cm+2)) if π2(M) = 0 (resp. π2(M) = Z). (See [6] and the references therein for more
results.)

On the other hand, it is also one of the interesting problems to classify positive quaternionic
Kähler manifolds in terms of the rank of its isometry group. In particular, in [3] Bielawski classified
positive quaternionic Kähler manifolds of dimension 4m with isometry rank equal to m+1. Using
an extension of the connected theorem of Wilking, and independently Fang, Mendonça, and Rong
for positively curved manifolds, in [7] Fang gave an interesting classification result of positive
quaternionic Kähler manifolds with symmetry as follows.

Theorem 2.5. Let M be a positive quaternionic Kähler manifold of dimension 4m. Then the
isometry group Isom(M) has the symmetry rank sym-rank (M) at most m + 1. Moreover, if the
symmetry rank sym-rank (M) is greater than or equal to m+6

2 , then M is isometric to HPm or
Gr2(Cm+2).

If m is even, the theorem is sharp, since the symmetry rank of the oriented real Grassmannian
G̃r4(Rm+4) is m+4

2 and G̃r4(Rm+4) is not on the list of Theorem 2.5. Note also that the symmetry
rank equals m+1 if M is HPm or Gr2(Cm+2). In the same paper Fang conjectured that Theorem
2.5 would be improved a little bit further, if m is odd.

The main strategy for the conjecture is to use the connected theorem in the presence of a Lie
group acting isometrically and fixing a quaternionic Kähler submanifold pointwise. Recall that a
map f : N → M between two manifolds is called h-connected if the induced map f∗ : πi(N) →
πi(M) is an isomorphism for all i < h and an epimorphism for i = h. If f is an imbedding this
is equivalent to saying that up to homotopy M can be obtained from f(N) by attaching cells of
dimension ≥ h + 1.

Theorem 2.6. Let M be a positive quaternionic Kähler manifold of dimension 4m. If N is
a quaternionic Kähler submanifold of dimension 4n, then the inclusion N ↪→ M is (2n − m +
1)-connected. Furthermore, if there is a Lie group G acting isometrically on M and fixing N
pointwise, then the inclusion map is (2n−m + 1 + δ(G))-connected, where δ(G) is the dimension
of the principal orbit of G.

We remark that in [6] Fang has already established the connected theorem for positive quater-
nionic manifolds without the presence of a Lie group action. We extend his connected theorem
to the case that admits a Lie group action, following the line of Wilking in [28].

Next we need to deal with positive quaternionic Kähler manifold M with an effective iso-
metric S1-action. To do so, we need a concept of the moment map on a positive quaternionic
Kähler manifold M with an isometric S1-action. (See [2] for more details.) For the existence of
quaternion-Kähler moment map, see [10].
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Let X be the Killing vector field generated by the S1-action, and let X be its dual 1-form with
respect to the Riemannian metric. Let S2H be the bundle given by the adjoint representation
of Sp(1). Then the bundle S2H has the Lie aglebra sp(1) as the fiber and has the local basis
{I1.I2, I3}, corresponding to the three elements i, j, k ∈ Sp(1), that are three almost complex
structures such that I1I2 = −I2I1 = I3. Let ω1, ω2, and ω3 be the locally defined 2-forms
associated to the three almost complex structures I1, I2, and I3, respectively. Let Ω be the closed
non-degenerate 4-form defined by

Ω =
3∑

i=1

ωi ∧ ωi.

Then the moment map µ on M is defined to be a section of S2H solving the following equation

(2.1) ∇µ =
3∑

i=1

IiX ⊗ Ii (or dµ = ιXΩ),

where ∇ denotes the Levi-Civita connection of the Riemannian metric. Since the moment map
takes its values in a fiber bundle, µ−1(0) means the inverse image of the zero section. Then the
following proposition will play a key role in the proof of Theorem 2.8.

Proposition 2.7. Let M be a positive quaternionic Kähler manifold of dimension 4m with an
effective isometric S1-action (m ≥ 3). Let µ be the moment map defined by (2.1). Let N be
a fixed point component of codimension 4 in M of the S1-action which is contained in µ−1(0).
Then we have the following two cases:

(1) If b2(M) = 0 then M is isometric to HPm.
(2) If b2(M) 6= 0 then M is isometric to Gr2(Cm+2).

Finally, we can prove the following theorem by combining Theorem 2.6 and Proposition 2.7
with the induction arguments on the dimension of the manifold:

Theorem 2.8. Let M be a positive quaternionic Kähler manifold of dimension 4m. If the
symmetry rank sym-rank (M) is greater than or equal to

[
m
2

]
+ 3, then M is isometric to HPm

or Gr2(Cm+2).
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