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The isoperimetric inequality for minimal surfaces 
in a Riemannian manifold 

By Jaigyoung Choe at Seoul1) 

Abstract. It is proved that every minimal surface with one or two boundary compo¬ 
nents in a simply connected Riemannian manifold with sectional curvature bounded above 
by a nonpositive constant  K satisfies the sharp isoperimetric inequality $. 
Here equality holds if and only if the minimal surface is a geodesic disk in a surface of 
constant Gaussian curvature K. □ 

Let D be a domain in a simply connected surface of constant Gaussian curvature K. 
The area A of D and the perimeter L satisfy the isoperimetric inequality 

(1) $, 

where equality holds if and only if D is a geodesic disk. The case K = 0 was proved by 
Steiner in 1842 [S], K > 0 by Bernstein in 1905 [B], and K < 0 by Schmidt in 1940 [Sc]. 

Let M be a simply connected Riemannian manifold of constant sectional curvature 
K. The isoperimetric inequality (1) holds for any domain on a totally geodesic surface in 
M. Since a totally geodesic surface is minimal in M, it has been naturally conjectured that 
(1) should hold for every minimal surface in M. 

The first result of this nature is due to Carleman [C], who showed in 1921 that (1) 
holds for a simply connected domain on a minimal surface in $. So far (1) has been 
proved only for minimal surfaces with one or two boundary components in $ [LSY], 
[Ch] and in Hn [CG1]. 

In this paper we consider minimal surfaces in a simply connected Riemannian manifold 
N of varying sectional curvature. Suppose the sectional curvature of N is bounded above 
by a constant K. We prove that (1) holds for minimal surfaces with one or two boundary 
components in N when $. Also, with no restrictions on the topology of minimal 
surfaces in N and on the sign of K, we obtain a weaker isoperimetric inequality 

$. 
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206 Choe, Isoperimetric inequality for minimal surfaces in a Riemannian manifold 

The Gauss equation says that the Gaussian curvature of a minimal surface is at most 
the sectional curvature of the ambient space. Accordingly it should be mentioned that for 
the case of simply connected surfaces with Gaussian curvature bounded above by K, (1) 
was proved for K = 0 by Weil [W] in 1926 and by Beckenbach and Radó [BR] in 1933, 
and for $ by Bol [Bo] in 1941. 

1. The Laplacian of functions of distance 

The distance function on a Riemannian manifold M, being the simplest geometric 
function on M, implicitly gives us many pieces of information on the geometry of M. 
Indeed all the results of this paper can be derived from the Laplacians of functions of 
distance. 

Let r(x) be the distance from a fixed point p to x in M and denote the Hessian of r 
by $. Assume that γ is a geodesic from p to q and υ is a vector at q perpendicular to γ. 
Then $ is the second variation of the length of γ associated with the Jacobi field 
X along γ satisfying X(p) = 0 and X(q) = υ. The Jacobi field minimizes the second variation 
among all vector fields along y with the same boundary conditions. Therefore if the sectional 
curvature of Mn is bounded from above by that of a Riemannian manifold $ which has 
a distance function $ with $ and the connection also denoted $, then one 
gets the Hessian comparison 

(2) $, 

where u is a vector at $ with |u| = |υ| and $, which is perpendicular to the 
geodesic $ from $ to $. 

Let Σm be a submanifold of M with the Riemannian connection $ and the mean 
curvature vector H. Given a smooth function f on M, there are two types of Laplacians 
of f on Σ, $ and Δf: for an orthonormal basis {e1,..., em} of Σ define 

$. 

One easily sees that 

(3) $. 

Therefore if Σ is minimal in M, the intrinsic Laplacian Δf can be replaced with $ which 
is more extrinsic and easier to compute. With (2) and (3) we are now ready to compute 
the Laplacians of functions of distance. 

Lemma 1. Let Σ2 be a minimal surface in a simply connected Riemannian manifold 
Mn of nonpositive sectional curvature. Define r(x) = dist(p, x) for a fixed point $. On 
Σ we have 

(a) $; 
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(b) $; 

(c) if $, then $, the Dirac function centered at p. 

Proof. Define a distance function $ on $. $ and g denote the 
Euclidean connection and metric, respectively. Then a straightforward computation in 
orthonormal coordinates of $ gives 

(4) $. 

Since 

$ and $, 

(2) and (4) imply 

(5) $, 

where gM is the metric tensor of M. Hence (a) follows from (3) and (5). For (b) we compute 

$. 

Similarly 

$. 

Near p, however, Σ can be identified with TpΣ, the tangent plane of Σ at p, on which 
Δlogr = 2πδp with respect to the Euclidean metric. Therefore on  Σ, $. 

Lemma 2. Suppose that Σ2 is a minimal surface in a simply connected Riemannian 
manifold Mn with sectional curvature bounded above by a negative constant K = —k2. On Σ 

(a) $; 

(b) $; 

(d) $. 

Proof. Let $ be a complete simply connected Riemannian manifold of constant 
sectional curvature K. Take a point $ and define $. For any 
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circle $ of radius a with center at $, the length of C equals $ sinh ka. So the 

geodesic curvature of C is l′(a)/l(a) = k coth ka. Hence the principal curvature of the 
geodesic sphere $ of radius a with center at $ is k coth ka everywhere on S in any 
direction. Note here that both the tangent space and the normal line to S are the eigenspaces 
of the Hessian of $. Therefore we can see that 

(6) $, 

where g is the metric of $, and hence 

(7) $. 

Thus (2), (3), (7), and the fact that $ is an eigenvector of $ with eigenvalue zero prove 
(a). Then 

$, 

which gives (b). Now we have 

$. 

However, $ is a fundamental solution of Δ on H2(K) since 

$ sinh kr is the length of a Jacobi field. So (c) follows. Adding (b) to (c) gives (d). 

Lemma 3. If Σ2 is a minimal surface in a Riemannian manifold Mn with sectional 
curvature bounded above by a positive constant K= k2, then on Σ we have 

(a) $; 

( b ) $; 

(c) $. 
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Proof. As in the proof of Lemma 2, one can show that in $ of constant sectional 
curvature K 

$ 

and 

$, 

from which (a) follows. And then 

$ 

As in Lemma $ is a fundamental solution of Δ on S2(K) since 

$ sin kr is the length of a Jacobi field. Thus (b) follows. For (c) we compute 

$. 

Note that 

$, 

which proves (c). 

Lemma 4. Let $ be the cone from $ over a curve C  (that is, the union of the 
geodesic segments from $ to the points of C) in a Riemannian manifold $ of nonpositive 
constant sectional curvature K = —k 2 and let $. Then on Γ 

(a) $; 

(b) $, 

where $. 

Proof. On $ is perpendicular to H, the mean curvature vector of Γ; hence (3) 
implies that for any function  f of distance $. Moreover $ on Γ. It follows 
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from (4), (6) that all the inequalities in Lemma 1(a), (c) and Lemma 2(b), (c) become 
equalities. This proves the lemma except for the constant  α. The constant 2π that appears 
in the Laplacian of the fundamental solution on $ and  H2 comes from the limit as  a→0 
of the circumference of the circle of radius  a with center at $ divided by  a. Similarly, if 
$ denotes the geodesic sphere of radius  a with center at $ , α equals 

$, 

which is called the  angle of C viewed from $ and denoted Angle $. 

2. Sharp isoperimetric inequality 

The sharp isoperimetric inequalities for minimal surfaces Σ in $ and Hn have been 
derived in [Ch], [CG1] from the area and angle estimates 

$ and if $. 

Unfortunately for a minimal surface  Σ in a Riemannian manifold M of varying sectional 
curvature $ it is impossible to get these area and angle estimates. In this section, however, 
we will construct in a Riemannian manifold $ of constant sectional curvature  K a suitable 
cone $ associated with Σ and derive similar estimates for Σ and $. 

A curve $ is said to be  radially connected from a point $ 
is a connected interval. 

Theorem 1. Let Σ2 be a minimal surface in a complete simply connected Riemannian 
manifold M with sectional curvature bounded above by a nonpositive constant K. If ∂Σ is 
radially connected from a point $, then Σ satisfies the isoperimetric inequality 

$, 

where equality holds if and only if Σ is a geodesic disk in a surface of constant Gaussian 
curvature K. 

Proof. First let us assume K= —k 2 < 0. Define $. By inte¬ 
grating Lemma 2(b) over Σ we get 

(8) $, 

where v is the outward unit conormal vector to ∂Σ on Σ. Let η be the unit vector normal 
to ∂Σ that makes the smallest angle with $, that is, the unit normal vector to ∂Σ that lies 

in the two-dimensional plane spanned by $ and the tangent line of  ∂Σ such that $. 

Clearly 
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(9 ) $. 

where τ is a unit tangent to ∂Σ. It follows from (8) and (9) that 
(10) $. 

Now the key step in the proof of Theorem 1 is to carry the integral term in (10) over to 
the simply connected space form $ of curvature K. Let C1,...,Cl be the components of 
∂Σ. Fix $, define $, and choose $ for each i = 1,..., l. Then 
choose $ in such a way that $. Suppose each curve Ci is parametrized 
by ci(s) with arclength parameter s such that qi = ci(0) = ci(λi), λi = Length(Ci). Then we 
construct a curve $ in $ starting from $ and parametrized by $ with arclength 
parameter $ and $ such that the unit tangent vector $ makes an angle 
of $ with $. Of course the curve $ is not unique; but given a two-
dimensional infinite cone $ containing $, one can uniquely determine a curve $ on 
$ with the prescribed properties. Note that any two curves Ca, Cb of equal length on 
the geodesic sphere $ of radius $ centered at $ are isometric. Note further that $ 
and $ are also isometric. Thus, by isometrically perturbing $ on $ 
if necessary, one can construct $ in such a way that $ is closed, or equivalently, 
$. Now r on Ci coincides with $ on $ in the sense that 

$ and $. 

Hence (10) becomes 

$. 

Let $ be the outward unit conormal to $ on $. Then 

$. 

Therefore 

(11) $. 
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Also it follows from the definition of $ that 

(12) $. 

On the other hand, integrating Lemma 2(c) over Σ gives 

$. 

Moreover, since r|∂Σ coincides with $ is also radially connected from $. Hence by 
[CG1], Lemma 4, we get 

$. 

Therefore using (11) and (12), we obtain the desired isoperimetric inequality for Σ in case 
K < 0. 

If equality holds in the isoperimetric inequality, then 

$ 

and therefore equality should hold in Lemma 2(b). Consequently equality holds in (2) and 
$ on Σ as we easily see in the proof of Lemma 2(b). It follows that $ 
and, by Index Lemma, Σ is constantly curved and hence totally geodesic. Thus Schmidt’s 
theorem [Sc] completes the proof in case K < 0. 

Now suppose K = 0.  Take $, fix $ and construct $ from $ 
as above. Lemma 1 (a) and Lemma 4 (a) give 

$; 

Lemma 1 (c) and Lemma 4(b) give 

$. 

Thus the desired result follows from [Ch]. 

Remark. If ∂Σ is connected, it is radially connected from any point of Σ. If ∂Σ has 
two components C1 and C2, one can find a point $ with dist(p, C1) = dist(p, C2), and 
then ∂Σ is radially connected from p. Therefore one obtains the above isoperimetric in¬ 
equality for Σ in case ∂Σ has one or two components. 
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3. Weak isoperimetric inequality 

In the preceding section we could not get the sharp isoperimetric inequality for a 
minimal surface whose boundary is not radially connected. But in this section, by contrast, 
we will obtain an isoperimetric inequality which, though not sharp, holds for any minimal 
surface; see also [CG2], Theorem 5. 

Theorem 2. Let Σ2 be a minimal surface in a complete simply connected Riemannian 
manifold with sectional curvature bounded above by a constant K. If $, then 

(13) $. 

If K > 0, (13) holds under the additional assumption $. 

Proof. (i) K = —k2 < 0. Integrating Lemma 2(d) over Σ for fixed $, we get 

(14) $. 

Since (14) holds for all $ we can integrate it over Σ and apply Fubini’s theorem to obtain 

$. 

(ii) K = 0. Integrate Lemma 1 (c) twice and apply Lemma 1 (b) as in (i). 

(iii) K > 0. Integrate Lemma 3(c) twice and apply Lemma 3 (a). 
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