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The 1soperimetric inequality for minimal surfaces
in a Riemannian manifold

By Jaigyoung Choe at Seoul')

Abstract. It is proved that every minimal surface with one or two boundary compo-
nents in a simply connected Riemannian manifold with sectional curvature bounded above
by a nonpositive constant K satisfies the sharp isoperimetric inequality 4n 4 < L? + KA42.
Here equality holds if and only if the minimal surface is a geodesic disk in a surface of
constant Gaussian curvature K. O

Let D be a domain in a simply connected surface of constant Gaussian curvature K.
The area A of D and the perimeter L satisfy the isoperimetric inequality

1 4nAd < L* + KA?,

where equality holds if and only if D is a geodesic disk. The case K = 0 was proved by
Steiner in 1842 [S], K > 0 by Bernstein in 1905 [B], and K < 0 by Schmidt in 1940 [Sc].

Let M be a simply connected Riemannian manifold of constant sectional curvature
K. The isoperimetric inequality (1) holds for any domain on a totally geodesic surface in
M. Since a totally geodesic surface is minimal in M, it has been naturally conjectured that
(1) should hold for every minimal surface in M.

The first result of this nature is due to Carleman [C], who showed in 1921 that (1)
holds for a simply connected domain on a minimal surface in R". So far (1) has been

proved only for minimal surfaces with one or two boundary components in R" [LSY],
[Ch] and in H" [CG1].

In this paper we consider minimal surfaces in a simply connected Riemannian manifold
N of varying sectional curvature. Suppose the sectional curvature of N is bounded above
by a constant K. We prove that (1) holds for minimal surfaces with one or two boundary
components in N when K < 0. Also, with no restrictions on the topology of minimal
surfaces in N and on the sign of K, we obtain a weaker isoperimetric inequality

2nA < L? + KAZ.
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206 Choe, Isoperimetric inequality for minimal surfaces in a Riemannian manifold

The Gauss equation says that the Gaussian curvature of a minimal surface is at most
the sectional curvature of the ambient space. Accordingly it should be mentioned that for
the case of simply connected surfaces with Gaussian curvature bounded above by K, (1)
was proved for K = 0 by Weil [W] in 1926 and by Beckenbach and Rad6 [BR] in 1933,
and for K + 0 by Bol [Bo] in 1941,

1. The Laplacian of functions of distance

The distance function on a Riemannian manifold M, being the simplest geometric
function on M, implicitly gives us many pieces of information on the geometry of M.
Indeed all the results of this paper can be derived from the Laplacians of functions of
distance.

Let r(x) be the distance from a fixed point p to x in M and denote the Hessian of r
by V2r. Assume that y is a geodesic from p to ¢ and v is a vector at ¢ perpendicular to 7.
Then V2r(v, v) is the second variation of the length of y associated with the Jacobi field
X along y satisfying X (p) = 0 and X (g) = v. The Jacobi field minimizes the second variation
among all vector fields along y with the same boundary conditions. Therefore if the sectional
curvature of M" is bounded from above by that of a Riemannian manifold A" which has
a distance function 7 with 7(-) = dist(,) and the connection also denoted V, then one
gets the Hessian comparison

) Vir (v, v) 2 V3 (u, u),

where u is a vector at § € M with |u| = |v| and 7(q) = r(q), which is perpendicular to the
geodesic 7§ = M from p to §.

Let 2™ be a submanifold of M with the Riemannian connection V and the mean

curvature vector H. Given a smooth function f on M, there are two types of Laplacians
of fon X, Afand Af: for an orthonormal basis {e,, ..., e,} of X define

Af = 'il Vifle,e), Af= .'z_":l Vifl(e,e,).

One easily sees that

3) Af=Af— Hf.

Therefore if X is minimal in M, the intrinsic Laplacian Af can be replaced with A f which
is more extrinsic and easier to compute. With (2) and (3) we are now ready to compute
the Laplacians of functions of distance.

Lemma 1. Let 2? be a minimal surface in a simply connected Riemannian manifold
M" of nonpositive sectional curvature. Define r(x) = dist(p, x) for a fixed point pe M. On
2 we have

(a) Ar? z 4;
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Choe, Isoperimetric inequality for minimal surfaces in a Riemannian manifold 207

® Ar2 @ |Vr;

1
(c) ifpe X, then o Alogr 2 6, the Dirac function centered at p.

Proof. Define a distance function 7 on R" by 7(x) = | x|, x € R". V and g denote the
Euclidean connection and metric, respectively. Then a straightforward computation in
orthonormal coordinates of R" gives

4 Vir? = 2g.

Since
Vir2 =2rV2r+2Vr®@ Vr and V3?2 =2F V3 +2Vi ® V7,
(2) and (4) imply
(5) Virt 2 2gy,

where g,, is the metric tensor of M. Hence (a) follows from (3) and (5). For (b) we compute

1

Ar = divV (r®)/? = divi Vr? =
2r 2r

1
Ar? — == (Vr, 2rvry 2 1(2 —|Vr|?.
2r r
Similarly

1 1 1 2
Alogr=div=Vr==-Ar— 5|Vr|* 2 = 1—=|vr®»20.
r r r

Near p, however, 2 can be identified with 7,2, the tangent plane of X at p, on which
Alogr = 2nd, with respect to the Euclidean metric. Therefore on X, Alogr 2 2n4,.

Lemma 2. Suppose that 2* is a minimal surface in a simply connected Riemannian
manifold M™ with sectional curvature bounded above by a negative constant K = —k*. On X

(@) Ar = k(@2 —|Vr|?) cothkr;
(b) Alog(1 +coshkr) =2 —K;

sinhkr

(c) Alog 1 + coshkr

2274, if pel;

(d) Alogsinhkr 2276, — K, if pe Z.

Proof. Let M" be a complete simply connected Riemannian manifold of constant
sectional curvature K. Take a point pe M and define 7(x) = dist(p, x), xe M. For any
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208 Choe, Isoperimetric inequality for minimal surfaces in a Riemannian manifold

_ 2
circle C = M of radius a with center at p, the length of C equals /(a) = ?n sinh ka. So the

geodesic curvature of C is [I'(a)/l (@) = kcothka. Hence the principal curvature of the
geodesic sphere S = M of radius a with center at j is kcothka everywhere on S in any
direction. Note here that both the tangent space and the normal line to S are the eigenspaces
of the Hessian of 7, V7. Therefore we can see that

6) V2cosh k7 = (k% cosh ki) g,

where g is the metric of M, and hence

@) V27 = kcothkr (g — Vi ® VF).
Thus (2), (3), (7), and the fact that Vr is an eigenvector of V2r with eigenvalue zero prove
(a). Then
ksinhkr k? ksinhkr
Alog(1 hkr) = di = 2
og(1 + coshkr) v 1 + coshkr 4 1+ coshkr Vrl 1+ coshkr ¢
2 2 2
> 2k*coshkr 4+ k*|Vr|*(1 — cosh kr) > k2,
- 1+ coshkr -
which gives (b). Now we have
sinhkr k k?coshkr
Al _ = div—— _ 2
81 fcoshkr O sinhkr vr sinh? kr IVri sinhkr ar
2 _ 2
> 2k cosh‘kr(l |Vri9) >0
= sinh? kr =

1 inh k
However, f(r) = 2—1 Smh Ry

— 1+ coshkr
1
Tj{’(_rj =% sinh kr is the length of a Jacobi field. So (¢) follows. Adding (b) to (c) gives (d).

is a fundamental solution of A on H?(K) since

Lemma 3. If X? is a minimal surface in a Riemannian manifold M" with sectional
curvature bounded above by a positive constant K = k?, then on X we have

(@) Ar 2 k(@2 —|Vr|*) cotkr;

sinkr

b) Alog ———
(®) Og1+coskr

2 274, ifpeZandrginz;

() Alogsinkr = 278, — K, if pe Z and r < 5’;—(
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Proof. As in the proof of Lemma 2, one can show that in M" of constant sectional
curvature K

Vicoski = — (k*coskr)g
and
V2F = kcotki(g — Vi ® V7),

from which (a) follows. And then

sinkr k k?coskr k
Alog —2 T _ 4 - _KCSK g2y K A
Og1-+-coskr lvsinkrvr sin? kr Vri®+ sinkr
2k?coskr
> " (1- )= 0.
= sin%kr ( Vi 20

1 .
As in Lemma 2(¢), /() = 51 sin kr

m °8 1+ coskr
1 1
m = sin kr is the length of a Jacobi field. Thus (b) follows. For (c) we compute

is a fundamental solution of A on $?(K) since

Alogsinkr = div (k;::j::r Vr) = —k%csc?kr |Vr|® + kcotkr Ar

> k?csc?kr[2cos?kr — (1 + cos?kr) |Vr|?] = — k2.
Note that
d
p logsinkr

li =1,
rl_{r(} d sinkr

dr 8 1+ coskr

which proves (c).

Lemma 4. Let I = p % C be the cone from p over a curve C (that is, the union of the
geodesic segments from p to the points of C) in a Riemannian manifold M of nonpositive
constant sectional curvature K = —k? and let 7(x) = dist(p, x), x€ M. Then on T

(@) AF2 =4, if K=0; Alog(1 + coshkr) = — K, if K< 0;

sinh k7
o o — 0 — g <
(b) Alog7 = ad;, if K= 0; Alog T4 cosh k7 ad;, if K <0,

where o = Angle(C, p).

Proof. On I' V7 is perpendicular to H, the mean curvature vector of I'; hence (3)
implies that for any function f of distance 7, A f = A f. Moreover |V7| =1 on I'. It follows
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210 Choe, Isoperimetric inequality for minimal surfaces in a Riemannian manifold

from (4), (6) that all the inequalities in Lemma 1(a), (c) and Lemma 2(b), (c) become
equalities. This proves the lemma except for the constant «. The constant 27 that appears
in the Laplacian of the fundamental solution on R? and H? comes from the limit as a — 0
of the circumference of the circle of radius a with center at p divided by a. Similarly, if
S,(p) denotes the geodesic sphere of radius a with center at p, « equals

lim (1—1 Length(I" N S,()),

a—0

which is called the angle of C viewed from p and denoted Angle(C, p).

2. Sharp isoperimetric inequality

The sharp isoperimetric inequalities for minimal surfaces X in R" and H" have been
derived in [Ch], [CG1] from the area and angle estimates

Area(2) £ Area(px 0%) and if peX, Angle(0Z, p) = 2.

Unfortunately for a minimal surface X in a Riemannian manifold M of varying sectional
curvature < Kitis impossible to get these area and angle estimates. In this section, however,
we will construct in a Riemannian manifold M of constant sectional curvature K a suitable
cone p x C associated with ¥ and derive similar estimates for X and p x C.

A curve y < M is said to be radially connected from a point p e M if {dist(p, q) : g€ 7}
is a connected interval.

Theorem 1. Let X2 be a minimal surface in a complete simply connected Riemannian
manifold M with sectional curvature bounded above by a nonpositive constant K. If 0X is
radially connected from a point p € X, then X satisfies the isoperimetric inequality

4n4 £ L* + KA?,

where equality holds if and only if X is a geodesic disk in a surface of constant Gaussian
curvature K.

Proof. First let us assume K = —k? < 0. Define r(x) = dist(p, x), x € M. By inte-
grating Lemma 2(b) over X we get

ksinhkr or
3 —KArea(2) £ [Alog(1 hkr) =) -———— =
(8) rea( )_£ og(1 + cosh kr) (5‘£1+c05hkr0v’

where v is the outward unit conormal vector to 42 on Z. Let 5 be the unit vector normal
to 0Z that makes the smallest angle with Vr, that is, the unit normal vector to 62 that lies
. . . . or

in the two-dimensional plane spanned by Vr and the tangent line of 6% such that % = 0.

Clearly

Brought to you by | Korea Institute for Advanced Study (KIAS) (Korea Institute for Advanced Study (KIAS))
Authenticated | 172.16.1.226
Download Date | 6/14/12 1:39 PM



Choe, Isoperimetric inequality for minimal surfaces in a Riemannian manifold 211

=]}/1—=(Vr, )2,

where 1 is a unit tangent to 02. It follows from (8) and (9) that

ksinh kr 5
(10) —KArea(E)_ j ml/i—(V?’,T> .

®

"<

Q)|QJ
<
g3

Now the key step in the proof of Theorem 1 is to carry the integral term in (10) over to
the simply connected space form M of curvature K. Let C,,...,C, be the components of
0Z. Fix p e M, define F(y) = dist(p, y), y € M, and choose ¢; € C; for each i = 1,...,/. Then
choose G,,...,G, € M in such a way that r(g;) = 7(§,). Suppose each curve C, is parametrized
by c;(s) with arclength parameter s such that ¢, = ¢;(0) = ¢;(4,), 4; = Length(C;). Then we
construct a curve C; in M starting from §; and parametrized by ¢,(s) with arclength
parameter s € [0, 4;] and ¢;(0) = g, such that the unit tangent vector ¢;(s) makes an angle
of cos™'{Vr,c;(s)) with V7. Of course the curve C; is not unique; but given a two-
dimensional infinite cone p % C containing §;, one can uniquely determine a curve C; on
P % C with the prescribed properties. Note that any two curves C,, C, of equal length on
the geodesic sphere S(7, p) of radius 7 centered at p are isometric. Note further that p x C,
and p x G, are also isometric. Thus, by isometrically perturbing (7 x C;) n S(7, p) on S(F, p)
if necessary, one can construct C; in such a way that C; is closed, or equivalently,
¢,(0) = ¢,(4,). Now r on C; coincides with 7 on C; in the sense that

r(ci(®) =7(&(s)) and (Vr,ci(s)> = <VF, &(s)).

Hence (10) becomes

! ksinhkr
< - @ —_ 4 2
—KArea(2) £ i=§1 [;[, [+ cosh &r /1 —=<Vr,ci(s)>

! ksinh k7
- ,-;g 1 + cosh k7

1= (VF, ¢,(s)>2 .

Let 77 be the outward unit conormal to C; on p x C;. Then

VI—vra ey =2
on
Therefore

! ksinhkr or
11) A )= — —_— = ———Al 1 hk
(11) Area(Z) £ — ;ffl+coshkran ;pr»!c. 7 Alog(1 + coshkF)

= ) Area(px C;) (by Lemma 4(a))

!
=Area(pxC), C= | C;.
i=1
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212 Choe, Isoperimetric inequality for minimal surfaces in a Riemannian manifold

Also it follows from the definition of C; that
12) Length(6Y) = Length(C).

On the other hand, integrating Lemma 2(c) over X gives

inh k k 0 k 0
2n < [Alog SIMMAT - _ré f == ar
3 1 +coshkr  jsinhkrodv = 4 sinhkron
kK or sinh k7

= Gonkrar ﬁif 81+ cosh k7

= Angle(C, p) (by Lemma 4(b)).

Moreover, since r|,; coincides with 7|z, C is also radially connected from j. Hence by
[CG1], Lemma 4, we get

4n Area(p x C) £ Length(C)? + K Area(p x C)%.

Therefore using (11) and (12), we obtain the desired isoperimetric inequality for X in case
K<0.

If equality holds in the isoperimetric inequality, then
Area(2) = Area(p x C)
and therefore equality should hold in Lemma 2 (b). Consequently equality holds in (2) and
|Vrl =1 on X as we easily see in the proof of Lemma 2(b). It follows that X = p x 0%

and, by Index Lemma, X is constantly curved and hence totally geodesic. Thus Schmidt’s
theorem [Sc] completes the proof in case K < 0.

Now suppose K = 0. Take M = R3, fix p e R? and construct C = R® from 6 <« M
as above. Lemma 1(a) and Lemma 4(a) give

Area(Z) < Area(p x C);
Lemma 1(c) and Lemma 4(b) give
2n £ Angle(C, p).
Thus the desired result follows from [Ch].

Remark. If 02 is connected, it is radially connected from any point of 2. If ¢X has
two components C, and C,, one can find a point p € 2 with dist(p, C,) = dist(p, C,), and
then 02X is radially connected from p. Therefore one obtains the above isoperimetric in-
equality for X in case 0% has one or two components.
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3. Weak isoperimetric inequality

In the preceding section we could not get the sharp isoperimetric inequality for a

minimal surface whose boundary is not radially connected. But in this section, by contrast,
we will obtain an isoperimetric inequality which, though not sharp, holds for any minimal
surface; see also [CG2], Theorem 5.

Theorem 2. Let 2? be a minimal surface in a complete simply connected Riemannian

manifold with sectional curvature bounded above by a constant K. If K < 0, then

If K> 0, (13) holds under the additional assumption diam (X) <

(13) 2mA < L? + K42,
T
2)/K’

Proof. (i) K= —k?* <0. Integrating Lemma 2(d) over X for fixed pe X, we get

(14) 2n — KA < [ Alogsinhkr £ | kcothkr.
P ox

Since (14) holds for all p € Z we can integrate it over X and apply Fubini’s theorem to obtain

[BR]
(B]
[Bo]

[C]
[(Ch]

2nd4— KA* < | [ kcothkr = | [ kcothkr
3oz orz
< [ [Ar (by Lemma 2(a))
Xz

or
— <12
Lia
(i) K =0. Integrate Lemma 1(c) twice and apply Lemma 1(b) as in (i).

(iii) K> 0. Integrate Lemma 3(c) twice and apply Lemma 3(a).
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