The sharp isoperimetric inequality for minimal surfaces with radially connected boundary in hyperbolic space*

Jaigyoung Choe¹ and Robert Gulliver²

¹ Department of Mathematics, Postech, P.O. Box 125, Pohang, South Korea

² School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA

Oblatum 15-X-1991 & 4-I-1992

Given a plane domain D bounded by a curve C, it has long been known that the area A of D and the length L of C are related by the classical isoperimetric inequality

$$4\pi A \leq L^2$$
,

where equality holds if and only if C is a circle. Many mathematicians have also sought isoperimetric inequalities for a domain in a curved space. An interesting one for a domain in the sphere was obtained by Bernstein in 1905 [B]:

$$4\pi A \le L^2 + A^2 .$$

Then Schmidt [S] proved in 1940 the analogue for the hyperbolic plane:

$$4\pi A \le L^2 - A^2 .$$

In each case, equality holds if and only if the domain is a geodesic disk. In fact, these three isoperimetric inequalities can all be expressed in one inequality as follows:

$$4\pi A \le L^2 + KA^2 ,$$

where K is the Gauss curvature of the simply connected space form in which D lies.

On the other hand, it has been a long-standing conjecture that the classical isoperimetric inequality $4\pi A \le L^2$ should hold for an arbitrary domain in a minimal surface in \mathbb{R}^n . Until now this inequality has been proved only for minimal surfaces with one or two boundary components, or more generally, with weakly or radially connected boundary [C, OS, LSY, Ch]. In view of this conjecture and the work of Bernstein and Schmidt, one may ask whether their inequalities hold for domains on a minimal surface in S^n or H^n . In this paper we show that any two-dimensional minimal surface Σ^2 in H^n such that $\partial \Sigma$ is radially connected from

^{*} Supported in part by GARC

some point p of Σ , i.e. such that $\{r = \operatorname{dist}(p, q), q \in \partial \Sigma\}$ is a connected interval, satisfies the sharp isoperimetric inequality

$$4\pi A \le L^2 - A^2 .$$

But the isoperimetric inequality $4\pi A \le L^2 + A^2$ for a minimal surface in S^n still remains open.

In our companion paper [CG] we obtain two different types of isoperimetric inequalities: First, we introduce a modified area M(D) of a domain D, and show that

$$4\pi M(D) \leq L(\partial D)^2$$
,

where D is a domain on a minimal surface in S_+^n or H^n , whose boundary is radially connected or weakly connected in analogy with [LSY]. Second, weaker isoperimetric inequalities

$$2\pi A \le L^2 + KA^2$$

are obtained for any minimal surface Σ in S_+^n or in H^n , where K=1 or -1 depending on whether Σ is in S_+^n or in H^n . Surprisingly, while the modified-area inequality is valid for S_+^n or for \mathbb{R}^n , the result of this paper is valid for H^n or for \mathbb{R}^n ; compare Remark 1 below.

1 Estimates for the volume and angle of a cone

Every minimal surface considered in this paper is assumed to be differentiable up to its boundary.

Blaschke, earlier than [Ch], pointed out the value of comparing a minimal surface Σ in \mathbb{R}^n with the cone over its boundary [Bl, p. 247]. Estimates for the volume of the cone $p \rtimes \partial \Sigma$ and for the angle of $\partial \Sigma$ viewed from an interior point of Σ play crucial roles in the proof of the sharp isoperimetric inequality for Σ with radially connected boundary in [Ch]. In this section we obtain the analogous estimates for minimal surfaces in H^n . In fact, this will require a more exacting choice of test function: compare Proposition 1 and Proposition 2 of [Ch] with Proposition 2 and Proposition 1 below.

Lemma 1 Suppose $h'(r) = r\varphi(r)$ for some smooth $\varphi: [0, \infty) \to \mathbb{R}$, and write $h(q) = h(r_p(q))$ where $r = r_p(q) = \operatorname{dist}(p, q)$ for a fixed $p \in H^n$. If $\Sigma^k \subset H^n$ is either minimal or a cone over p, then

$$\Delta h = r\varphi' + \varphi Q + (1 - |\nabla r|^2)(r\varphi \coth r - \varphi - r\varphi')$$

where $Q(r) = 1 + (k-1)r \coth r$.

Proof. One shows that the Hessian in H^n ,

$$\bar{\nabla}^2 \cosh r = (\cosh r)g ,$$

from which it follows that the Laplacian on Σ^k ,

$$\Delta r = \coth r(k - |\nabla r|^2)$$

when Σ is either minimal or a cone over p. See Lemma 5(b) of [CG]. Lemma 1 follows by direct computation.

The following lemma addresses the case where h(r) is the solution of $\Delta h \equiv 1$ on the totally geodesic submanifold $\Sigma = H^k \subset H^n$. The conclusions may also be found on p. 483 of [A].

Lemma 2 Let $\varphi(r) = \alpha(r)/(r\alpha'(r))$, where $\alpha(r)$ is the volume of the geodesic ball of radius r in k-dimensional hyperbolic space H^k ; thus $\alpha(0) = 0$ and $\alpha'(r) = k\omega_k \sinh^{k-1} r$. Define Q(r) as in Lemma 1. Then

(a) for all
$$r > 0$$
, $\varphi'(r) < 0$ and $0 < \varphi(r) < \varphi(0) = 1/k$;

and

(b)
$$r\varphi'(r) + \varphi(r)Q(r) \equiv 1$$
.

Proof. Differentiation of $r\varphi(r) = \alpha/\alpha'$ yields

$$r\varphi' + \varphi = 1 + r\varphi\alpha''/\alpha' = 1 - (k-1)\varphi r \coth r,$$

from which (b) follows. Elementary asymptotic analysis shows that $\varphi(0) = 1/k$ and $\varphi'(0) = 0$. Since $\sinh r \cosh r > r$, we find Q'(r) > 0, so that Q(r) > Q(0) = k, for all r > 0. The derivative of (b) now yields $r\varphi'' + (1 + Q)\varphi' < 0$, or $(\varphi'(r)\exp P(r))' < 0$ where P'(r) = (1 + Q)/r. Since $\varphi'(0) = 0$, we conclude that $\varphi'(r) < 0$ for positive r.

Definition. Let $C \subset H^n$ be a (k-1)-dimensional rectifiable set and p a point in H^n . The (k-1)-dimensional angle $A^{k-1}(C,p)$ of C viewed from p is defined by setting

$$A^{k-1}(C, p) = \sinh^{1-k} t \cdot \text{Volume} [(p \times C) \cap S(p, t)],$$

where S(p, t) is the geodesic sphere of radius t < dist(p, C) centered at p, and the volume is measured counting multiplicity. Clearly, the angle does not depend on t.

Note that

$$A^{k-1}(C, p) = k\omega_k \Theta^k(p \times C, p) ,$$

where $\Theta^k(p \times C, p)$ is the k-dimensional density of $p \times C$ at p.

Proposition 1 Let Σ be a k-dimensional compact minimal submanifold with boundary in H^n , and let p be an interior point of Σ . Then

$$A^{k-1}(\partial \Sigma, p) \geqq k\omega_k.$$

Equality holds if and only if Σ is a domain on a totally geodesic H^k that is star-shaped with respect to p.

Proof. We use the Green's function G(r) of H^k : $G'(r) = \sinh^{1-k} r$. Writing $G'(r) = r\varphi(r)$, we see that $r\varphi' + \varphi Q \equiv 0$ and

$$r\varphi \coth r - \varphi - r\varphi' = k \sinh^{-k} r \cosh r > 0$$

for r > 0, where $Q = 1 + (k - 1)r \coth r$. Thus by Lemma 1, G is subharmonic on Σ , and harmonic on the cone $p \times \partial \Sigma$. Let ν be the exterior unit normal vector to Σ and

 η the exterior unit normal vector to the cone along $\partial \Sigma$. Then

$$\frac{\partial r}{\partial v} \leq \frac{\partial r}{\partial n} ,$$

implying

$$k\omega_{k} \leq k\omega_{k} + \lim_{t \to 0} \int_{\Sigma - B(p,t)} \Delta G = \int_{\partial \Sigma} G'(r) \frac{\partial r}{\partial \nu}$$

$$\leq \int_{\partial \Sigma} \sinh^{1-k} r \cdot \frac{\partial r}{\partial \eta} = A^{k-1} (\partial \Sigma, p) .$$

Equality holds if and only if $\Delta G(r) = 0$, $\Theta^k(\Sigma, p) = 1$, and $\nu = \eta$ if and only if Σ is a star-shaped minimal cone with density at the center equal to 1. Since S^{k-1} is the only (k-1)-dimensional minimal submanifold in S^{n-1} with volume $k\omega_k$, we conclude that Σ lies in a totally geodesic H^k .

The next proposition will allow us to replace a minimal submanifold Σ^k in H^n by the cone over its boundary, relying on the monotone dependence of the isoperimetric inequality on the volume of Σ . This proposition and Lemma 2 are closely related to the monotonicity formula of Anderson [A, p. 481].

Proposition 2 Let Σ be a k-dimensional immersed compact minimal submanifold with boundary in hyperbolic space H^n , and let p be any point of H^n . Then

$$Volume(\Sigma) \leq Volume(p \times \partial \Sigma);$$

if equality holds, then $p \in \Sigma$, and Σ must be totally geodesic and star-shaped with respect to p.

Proof. Let $h(q) = h(r_p(q))$, where $h'(r) = \alpha(r)/\alpha'(r)$ as in Lemma 2. Let ν be the outward unit normal vector to $\partial \Sigma$, which is tangent to Σ , and η the unit vector tangent to $p \times \partial \Sigma$; as in the proof of Proposition 1, we have $\partial r/\partial \nu \leq \partial r/\partial \eta$. This implies

$$\int_{\Sigma} \Delta h = \int_{\partial \Sigma} \frac{\partial h}{\partial v} \le \int_{\partial \Sigma} \frac{\partial h}{\partial \eta} = \int_{p \times \partial \Sigma} \Delta h,$$

since h'(r) > 0 for all r > 0. But according to Lemmas 1 and 2,

$$\Delta h = 1 + (1 - |\nabla r|^2) \left[(r \coth r - 1)\varphi - r\varphi' \right]$$

either on Σ or on $p \times \partial \Sigma$, where $\varphi(r) > 0$ and $\varphi'(r) < 0$ for r > 0. In particular, $\Delta h \ge 1$; and further, $\Delta h > 1$ unless $|\nabla r| = 1$ or r = 0. On the cone $p \times \partial \Sigma$, we have $|\nabla r| = 1$. Therefore,

$$Volume(\Sigma) \leq \int_{\Sigma} \Delta h \leq \int_{p \times \partial \Sigma} \Delta h = Volume(p \times \partial \Sigma).$$

Equality would imply $|\nabla r| = 1$ a.e. on Σ , which is to say that Σ coincides with a subset of the cone $p \times \partial \Sigma$. Equality also requires $\partial h/\partial v = \partial h/\partial \eta$, hence for every

 $q \in \partial \Sigma$ the entire geodesic segment from p to q lies in Σ . At p, each such segment is tangent to the tangent plane to Σ . This implies that Σ is totally geodesic.

Remark 1 Proposition 2 is false when H^n is replaced by the hemisphere S_+^n , even for n=3 and k=2. For example, let Σ be half of the Clifford torus:

$$\Sigma = \{(x, y) \in \mathbb{R}^2 \times \mathbb{R}^2 : |x| = |y| = 1/\sqrt{2}, x_1 > 0\},$$

and p = (1, 0, 0, 0). Then $Area(\Sigma) = \pi^2$, which is greater than $Area(p \times \partial \Sigma) = 2\sqrt{2}\pi$. Nonetheless, for domains $\Omega \subset \Sigma$ we have an isoperimetric inequality $L^2 \ge \min\{4\pi A, 8\pi^2\}$ which implies the sharp S^2 -isoperimetric inequality

$$4\pi A \leq L^2 + A^2.$$

It is an interesting question whether this last inequality is valid for every twodimensional minimal surface in the hemisphere S_{+}^{n} .

2 Approximation lemma

In light of Proposition 2 we would like to prove that certain hyperbolic cones satisfy the isoperimetric inequality $4\pi A \le L^2 - A^2$. This inequality was proved in great generality by Bol, namely, for any smooth, simply connected, two-dimensional manifold with Gauss curvature $K \le -1$. The following approximation lemma may be interpreted as stating in a precise way that a hyperbolic cone has generalized Gauss curvature ≤ -1 if the angle at its vertex is at least 2π . It is well known that a two-dimensional hyperbolic cone has Gauss curvature = -1 away from its vertex.

Lemma 3 Let $\Sigma_0 = (\mathbb{R}^2, ds^2)$ be the singular Riemannian 2-manifold (a hyperbolic cone) with metric given in geodesic polar coordinates (r, θ) by

$$ds^2 = dr^2 + (a_0/2\pi)^2 \sinh^2 r \, d\theta^2$$
.

If $a_0 \ge 2\pi$, then ds^2 may be approximated in $C^1_{loc}(\mathbf{R}^2 \setminus \{0\})$ by smooth metrics ds^2_{δ} having Gauss curvature $K_{\delta} \le -1$.

Proof. If $a_0 = 2\pi$, then $ds_{\delta}^2 = ds^2$ suffices. For any angle $a_0 > 2\pi$, we shall construct ds_{δ}^2 in the form

$$ds_{\delta}^2 = dr^2 + g_{\delta}(r)^2 d\theta^2$$

for an appropriate function g_{δ} : $[0, \infty) \rightarrow [0, \infty)$. Similarly, write $g(r) = (a_0/2\pi)\sinh r$. The Gauss curvature K_{δ} of $(\mathbf{R}^2, ds_{\delta}^2)$ is determined by the Jacobi equation

(J)
$$g_{\delta}''(r) + K_{\delta}(r)g_{\delta}(r) = 0.$$

The C^{∞} function g_{δ} will be smooth approximation to a $C^{1,1}$ function g_0 defined by

$$g_0(r) = \beta^{-1} \sinh \beta r$$
, $0 \le r \le r_1$;
 $g_0(r) = g(r - \varepsilon)$, $r \ge r_1$;

500 J. Choe and R. Gulliver

where $\varepsilon > 0$, $r_1 > \varepsilon$, and $\beta > 1$ are appropriately chosen parameters. Continuity of g_0'/g_0 at r_1 is equivalent to

(*)
$$\beta \coth \beta r_1 = \coth (r_1 - \varepsilon).$$

This plus the continuity of g_0 at r_1 imply that

$$(a_0/2\pi)^2 = 1 + (1 - \beta^{-2})\sinh^2\beta r_1 ,$$

which determines r_1 uniquely as a function of $\beta \in (1, \infty)$ since $a_0 > 2\pi$. Now let $\varepsilon = \varepsilon(\beta) < r_1(\beta)$ be defined by Eq. (*). Then the $C^{1,1}$ metric

$$ds_0^2 = dr^2 + g_0(r)^2 d\theta^2$$

has Gauss curvature $K_0 \equiv -\beta^2$ on the disk $B_{r_1}(0)$ and $K_0 \equiv -1$ on $\mathbb{R}^2 \setminus B_{r_1}(0)$. Note also that the mapping given in polar coordinates by $(r,\theta) \mapsto (r-\varepsilon,\theta)$ is an isometry from $\mathbb{R}^2 \setminus \overline{B}_{r_1}(0)$ with the metric ds_0^2 to $\Sigma_0 \setminus \overline{B}_{r_1-\varepsilon}(0)$. Since $\coth \beta r_1 > 1$, it follows from (*) that $r_1(\beta) - \varepsilon(\beta) \to 0$ as $\beta \to \infty$, so that the complement of an arbitrarily small neighborhood of the singularity in Σ_0 is isometric to a subset of (\mathbb{R}^2, ds_0^2) . Further, it may be seen from the definition of $r_1(\beta)$ that $r_1(\beta) \to 0$ as $\beta \to +\infty$, and hence also $\varepsilon(\beta) \to 0$.

We may now construct the smooth approximation g_{δ} by smoothing the Gauss curvature K_0 of ds_0^2 : we choose $K_{\delta} \in C_0^{\infty}([0, \infty))$ with $K_{\delta}(r) \equiv -\beta^2 (0 \leq r \leq r_1 - \delta)$, $K_{\delta}(r) \equiv -1$ ($r \geq r_1 + \delta$) and $K_{\delta}'(r) \geq 0$ for all r. We then solve the Jacobi equation (J) with $g_{\delta}(0) = 0$, $g_{\delta}'(0) = 1$. Since $-\beta^2 \leq K_{\delta}(r) \leq -1$, this initial value problem has a unique solution g_{δ} : $[0, \infty) \to [0, \infty)$ which is moreover positive on $(0, \infty)$. For any exponent $1 , we have <math>K_{\delta} \to K_0$ in $L^p([0, \infty))$. This implies that $g_{\delta} \to g_0$ in $W^{2,p}$ on any bounded interval, and hence also in $C^{1,\alpha}$ for any $\alpha < 1$ on any bounded interval. By choosing β sufficiently large, we make $r_1(\beta)$ and $\varepsilon(\beta)$ as small as desired; choosing also δ sufficiently close to 0 results in a metric ds_{δ}^2 arbitrarily close to ds^2 in $C_{1,\alpha}^{1,\alpha}(\mathbb{R}^2 \setminus \{0\})$.

3 The sharp isoperimetric inequality

As was hinted in the preceding section, we shall prove the sharp isoperimetric inequality for cones in H^n by combining Bol's theorem and the approximation lemma. The analogous result for cones in \mathbb{R}^n was proved in [Ch, Lemma 1] by a substantially different method of developing the cone into a planar domain.

Lemma 4 Choose $p \in H^n$, and let C be a compact 1-dimensional submanifold of H^n such that C is radially connected from p and $A^1(C, p) \ge 2\pi$. Then the length L of C and the area A of the cone $p \times C$ satisfy the sharp isoperimetric inequality of domains in H^2 :

$$4\pi A \le L^2 - A^2 .$$

Proof. Write r(q) = dist(p, q), as usual, for the distance in H^n . We shall first show that on any radially connected 1-manifold C, there are a finite number of points $q_1, \ldots, q_m, p_1, \ldots, p_m = p_0$ such that

- (i) $r(q_i) = r(p_i)$ for all $1 \le i \le m$;
- (ii) p_i and q_{i+1} lie in the same component of C for all $0 \le i \le m-1$; and
- (iii) C may be oriented so that the union of the m closed arcs of C from p_i to q_{i+1} in the positive sense, $0 \le i \le m-1$, covers C exactly once.

The proof is by induction on the number J of connected components of C. If J=1, the assertion is obvious with m=1. Now suppose the assertion holds for 1-manifolds in H^n with (J-1) connected components. Write the connected components of C as $\Gamma_1, \ldots, \Gamma_J$, where $\min\{r(q): q \in \Gamma_1\} \ge \min\{r(q): q \in \Gamma_j\}$ for all $2 \le j \le J$. Then $\Gamma_2 \cup \ldots \cup \Gamma_J$ is radially connected from p. Applying the induction hypothesis, we may write $\{Q_1, \ldots, Q_M, P_1, \ldots, P_M = P_0\}$ for a set of points satisfying (i), (ii) and (iii) with $\Gamma_2 \cup \ldots \cup \Gamma_J$ in place of C. Since C is radially connected, there are points $P \in \Gamma_1$ and $Q \in \Gamma_2 \cup \ldots \cup \Gamma_J$ with r(P) = r(Q) (for example, $r(P) = \min\{r(q): q \in \Gamma_1\}$). Let P_k and Q_{k+1} be the endpoints of the interval in which Q falls, according to (iii). Define $p_l = P_l$ and $q_l = Q_l$ for $1 \le l \le k$; $q_{k+1} = Q = p_{k+2}$; $p_{k+1} = P = q_{k+2}$; and $q_l = Q_{l-2}$, $p_l = P_{l-2}$ for $k+3 \le l \le m = M+2$. Then $\{q_1, \ldots, q_m, p_1, \ldots, p_m = p_0\}$ satisfy (i), (ii) and (iii) as claimed. (Incidentally, one may note that m+1=2J.)

Write $a_0 = A^1(C, p)$. We may now show that $p \times C$ may be mapped discontinuously, but locally isometrically, into an abstract hyperbolic cone $\Sigma_0 = (\mathbf{R}^2, ds^2)$ with the singular Riemannian metric

$$ds^2 = dr^2 + (a_0/2\pi)^2 \sinh^2 r d\theta^2$$
,

so that $r = \text{dist}(p, \cdot)$ is preserved. Namely, let $\{q_1, \ldots, q_m, p_1, \ldots, p_m = p_0\}$ be a set of points in C such that properties (i), (ii) and (iii) are valid. For $0 \le i \le m-1$, write $C(p_i, q_{i+1})$ for the closed oriented arc of C from p_i to q_{i+1} . Then $p \times C(p_0, q_1)$ may be mapped isometrically into Σ_0 so that for all $q \in C(p_0, q_1)$ the H^n -geodesic from p to q is mapped onto a geodesic segment $\theta = \text{const.}$ starting at the vertex $0 \in \Sigma_0$. The next sector $p \times C(p_1, q_2)$ of $p \times C$ is then mapped isometrically onto an adjacent sector of Σ_0 , so that the geodesics from p to q_1 and from p to p_1 are mapped to the same radial geodesic segment. This process continues until $p \times C(p_{m-1}, q_m)$ is mapped isometrically into Σ_0 , so that the geodesics from p to q_{m-1} and from p to p_{m-1} are identified, and the geodesics from p to q_m and from p to $p_m = p_0$ are identified. This process closes up exactly since the angle at the vertex of Σ_0 is $a_0 = A^1(C, p) = \sum_{i=0}^{m-1} A^1(C(p_i, q_{i+1}), p)$. Observe that $p \gg C$ is mapped, almost everywhere one-to-one, onto a star-shaped domain $\Omega \subset \Sigma_0$ of area A, such that $\partial \Omega$ has length L. We may assume that $p \notin C$, since Area $(p \times C)$ varies continuously with p, and since $A^{1}(C, p)$ is lower semi-continuous. Then Ω is a star-shaped neighborhood of 0 in Σ_0 . Applying Lemma 3 we see that for each δ near 0 there is a smooth Riemannian surface (\mathbb{R}^2 , ds_{δ}^2), with Gaussian curvature $K_{\delta} \leq -1$, which converges locally uniformly to Σ_0 , and which converges $C^{1,\alpha}$ to Σ_0 on compact sets in $\mathbb{R}^2\setminus\{0\}$. Then with respect to ds_{δ}^2 , $\partial\Omega$ has length $L(\delta)\to L$ and Ω has area $A(\delta) \to A$ as $\delta \to 0$. By Bol's theorem [Bol, p. 230] the isoperimetric inequality

$$4\pi A(\delta) \le L(\delta)^2 - A(\delta)^2$$

holds, and the conclusion of Lemma 4 follows.

502 J. Choe and R. Gulliver

Remark 2 Lemma 4 is false for submanifolds of dimension $k \ge 3$ in H^n or even in \mathbb{R}^n . In \mathbb{R}^n , we may choose the reference point p near $p_0 = 0$. Given R > 1, $0 < \varepsilon \le 1$ and a point $q_1 \in \mathbb{R}^n$ with $|q_1|^2 = R^2 - 1$, let the (k-1)-submanifold C be formed from the two unit (k-1)-spheres $S_R^{n-1}(0) \cap S_1^{n-1}(\pm q_1) \cap \mathbb{R}^{k+1}$ plus a thin "bridge" of the form $[-R,R] \times S_\varepsilon^{k-2}$ connecting points q_2 and $-q_2$ on the unit spheres, and smoothed. Then for sufficiently small ε , there is an immersed minimal k-submanifold Σ with boundary C, which is uniformly close to the union of the two flat unit k-dimensional balls with a thin "bridge" of the form $[-R,R] \times B_\varepsilon^{k-1}$, by a theorem of Smale [Sm]. Choose $p \in \Sigma$ with $dist(p,p_0) < \varepsilon$. Then the angle

$$A^{k-1}(C, p) \ge k\omega_k$$

by Proposition 1. Thus C satisfies conditions analogous to all hypotheses of Lemma 4. But

$$Volume(C) = 2k\omega_k + O(R\varepsilon^{k-2}),$$

while a longer computation shows that

$$Volume(p \times C) = 2R\omega_k + O(R\varepsilon^{k-1}),$$

so that for large R the k-dimensional Euclidean isoperimetric inequality

$$(\text{Volume}(C))^k \ge k^k \omega_k (\text{Volume}(p \times C))^{k-1}$$

is certainly false. Thus there is no hope of extending Lemma 4 to submanifolds of dimension greater than two. On the other hand, the minimal submanifold Σ has

Volume(
$$\Sigma$$
) $\leq 2\omega_k + 2R\omega_{k-1}\varepsilon^{k-1}$,

as follows from the proof of Smale's theorem. For small ε , Σ itself therefore satisfies the k-dimensional Euclidean isoperimetric inequality

$$(\text{Volume}(\partial \Sigma))^k \ge k^k \omega_k (\text{Volume}(\Sigma))^{k-1}$$
.

That this inequality be valid for every k-dimensional minimal submanifold Σ of \mathbb{R}^n remains a challenging conjecture; an eventual proof cannot be found through the straightforward intermediation of a cone $p \times \partial \Sigma$.

Using Proposition 1, Proposition 2, and Lemma 4, and the monotonicity of the quadratic function $4\pi A + A^2$ for positive area A, we may now prove our main result.

Theorem 1 Let Σ^2 be an immersed compact minimal surface with boundary in hyperbolic space H^n . Assume there exists $p \in \Sigma$ such that $\partial \Sigma$ is radially connected from p. Then $Area(\Sigma)$ and $Length(\partial \Sigma)$ satisfy the isoperimetric inequality

$$4\pi A \le L^2 - A^2 \,,$$

with equality if and only if Σ is a geodesic ball in a totally geodesic $H^2 \subset H^n$.

Remark 3 If $\partial \Sigma$ has two components, choose two points p_1 and p_2 , one from each component. Then there exists a point q on Σ with $\operatorname{dist}(q, p_1) = \operatorname{dist}(q, p_2)$, which implies that $\partial \Sigma$ is radially connected from q. Consequently Σ satisfies the above isoperimetric inequality.

Acknowledgement. We would like to thank Henry Wente for suggesting a shorter proof of Lemma 3.

References

- [A] Anderson, M.: Complete minimal varieties in hyperbolic space. Invent. Math. 69 477-494 (1982)
- [B] Bernstein, F.: Über die isoperimetrische Eigenschaft des Kreises auf der Kugeloberfläche und in der Ebene. Math. Ann. 60 117-136, (1905)
- [Bl] Blaschke, W.: Differentialgeometrie, vol. I, 3rd ed. Berlin: Springer, 1930
- [Bol] Bol, G.: Isoperimetrische Ungleichungen für Bereiche auf Flächen. Jahres ber. Dtsch. Math.-Ver. 51 219–257 (1941)
- [C] Carleman, T.: Zur Theorie der Minimalflächen, Math. Z. 9 154-160 (1921)
- [Ch] Choe, J.: The isoperimetric inequality for a minimal surface with radially connected boundary. Ann. Sc. Norm. Super. Pisa Cl. Sci. IV. 17 583–593, (1990)
- [CG] Choe, J., Gulliver, R.: Isoperimetric inequalities on minimal submanifolds of space forms, Manus. math. (to appear)
- [GS] Gulliver, R., Scott, P.: Least area surfaces can have excess triple points. Topology **26** 345–359 (1987)
- [LSY] Li, P., Schoen, R., Yau, S.-T.: On the isoperimetric inequality for minimal surfaces. Ann. Sc. Norm. Super. Pisa, Cl. Sci. IV. 11 237–244 (1984)
- [OS] Osserman, R., Schiffer, M.: Doubly connected minimal surfaces. Arch. Ration. Mech. Anal. 58 285-307 (1975)
- [S] Schmidt, E.: Über die isoperimetrische Aufgabe im n-dimensionalen Raum konstanter negativer Krümmung. I. Die isoperimetrischen Ungleichungen in der hyperbolischen Ebene und für Rotationskörper im n-dimensionalen hyperbolischen Raum. Math. Z. 46 204-230, (1940)
- [Sm] Smale, N.: A bridge principle for minimal and constant mean curvature submanifolds of Rⁿ. Invent. Math. **90** 505-549 (1987).