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Given a plane domain D bounded by a curve C, it has long been known that the
area A of D and the length L of C are related by the classical isoperimetric
inequality

4nd < L?,

where equality holds if and only if C is a circle. Many mathematicians have also
sought isoperimetric inequalities for a domain in a curved space. An interesting one
for a domain in the sphere was obtained by Bernstein in 1905 [B]:

drA £ L* + A%,
Then Schmidt [S] proved in 1940 the analogue for the hyperbolic plane:
dnAd < L* — A%,

In each case, equality holds if and only if the domain is a geodesic disk. In fact,
these three isoperimetric inequalities can all be expressed in one inequality as
follows:

4nA < L? + KA?,

where K is the Gauss curvature of the simply connected space form in which D lies.

On the other hand, it has been a long-standing conjecture that the classical
isoperimetric inequality 4m4 < L? should hold for an arbitrary domain in a min-
imal surface in R”. Until now this inequality has been proved only for minimal
surfaces with one or two boundary components, or more generally, with weakly or
radially connected boundary [C, OS, LSY, Ch]. In view of this conjecture and the
work of Bernstein and Schmidt, one may ask whether their inequalities hold for
domains on a minimal surface in $™ or H”. In this paper we show that any
two-dimensional minimal surface X2 in H" such that 02 is radially connected from
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some point p of X, i.e. such that {r = dist(p, q), g€ 92} is a connected interval,
satisfies the sharp isoperimetric inequality

44 < L? — A%,

But the isoperimetric inequality 4nA £ L? + A* for a minimal surface in S" still
remains open.

In our companion paper [CG] we obtain two different types of isoperimetric
inequalities: First, we introduce a modified area M (D) of a domain D, and show
that

4nM (D) < L(éD)?,

where D is a domain on a minimal surface in S”. or H”, whose boundary is radially
connected or weakly connected in analogy with [LSY]. Second, weaker
isoperimetric inequalities

2mA < L* + KA2

are obtained for any minimal surface Z in S% or in H”, where K =1 or — 1
depending on whether X is in $% or in H". Surprisingly, while the modified-area
inequality is valid for " or for R", the result of this paper is valid for H” or for R";
compare Remark 1 below.

1 Estimates for the volume and angle of a cone

Every minimal surface considered in this paper is assumed to be differentiable up to
its boundary.

Blaschke, earlier than [Ch], pointed out the value of comparing a minimal
surface X in R" with the cone over its boundary [BI, p. 247]. Estimates for the
volume of the cone p x d% and for the angle of 02 viewed from an interior point of
Z play crucial roles in the proof of the sharp isoperimetric inequality for 2 with
radially connected boundary in [Ch]. In this section we obtain the analogous
estimates for minimal surfaces in H". In fact, this will require a more exacting
choice of test function: compare Proposition 1 and Proposition 2 of [Ch] with
Proposition 2 and Proposition 1 below.

Lemma 1 Suppose W (r) =ro(r) for some smooth ¢: [0, o)~ R, and write
h(q) = h(r,(q)) where r = r,(q) = dist(p, q) for a fixed pe H". If X% < H" is either
minimal or a cone over p, then

Adh=r@" + @Q + (1 — |Vr|*)(ro cothr — ¢ — r¢’)
where Q(r) =1 + (k — D)rcothr.
Proof. One shows that the Hessian in H",
V2coshr = (coshr)g ,
from which it follows that the Laplacian on Z*,

Ar = cothr(k — | Vr]?)
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when X is either minimal or a cone over p. See Lemma 5(b) of [CG]. Lemma 1
follows by direct computation.

The following lemma addresses the case where h(r) is the solution of Ah = [ on
the totally geodesic submanifold £ = H* = H™. The conclusions may also be found
on p. 483 of [A].

Lemma 2 Let @(r) = a(r)/(ro/(r)), where a(r) is the volume of the geodesic ball of
radius r in k-dimensional hyperbolic space H*; thus o{0) =0 and o'(r) =
ke, sinh* ! r. Define Q(r) as in Lemma 1. Then

@) forallr>0,¢0'(r)<0 and 0< o)< @) =1/
and
(b) ro’(r} + 0(NQ( = L
Proof. Differentiation of r¢(r) = o/a’ yields
re' +o=1+rea" /o’ =1 —(k—1)@rcothr,

from which (b) follows. Elementary asymptotic analysis shows that ¢(0) = 1/k and
@'(0) = 0. Since sinhrcoshr > r, we find Q'(r) > 0, so that Q(r) > Q(0) = k, for all
r > 0. The derivative of (b) now yields r¢” + (1 + Q)¢’ < 0, 0r (¢'(r)exp P(r))y <0
where P'(r) = (1 + Q)/r. Since ¢'(0) = 0, we conclude that ¢'(r) < 0 for positive r.

Definition. Let C =« H" be a (k — 1)-dimensional rectifiable set and p a point in H".
The (k — 1)-dimensional angle A*~'(C, p) of C viewed from p is defined by setting

A¥"Y(C, py = sinh? *¢-Volume [(p % C) n S(p, 1)] ,

where S(p, t) is the geodesic sphere of radius ¢t < dist(p, C) centered at p, and the
volume is measured counting multiplicity. Clearly, the angle does not depend on t.
Note that

A*"H(C, p) = ka0 (px C, p) ,
where @*(px C, p) is the k-dimensional density of p x C at p.

Proposition 1 Let X be a k-dimensional compact minimal submanifold with boundary
in H", and let p be an interior point of Z. Then

A*7102, p) 2 kox .

Equality holds if and only if Z is a domain on a totally geodesic H* that is star-shaped
with respect to p.

Proof. We use the Green’s function G(r) of H*: G'(r) = sinh' ~*r. Writing G'(r) =
ro(r), we see that r¢’ + ¢Q = 0 and

ro cothr — @ — ro’ = ksinh *rcoshr > 0

forr > 0, where Q@ = 1 + (k — D)rcothr. Thus by Lemma 1, G is subharmonic on Z,
and harmonic on the cone p % 0. Let v be the exterior unit normal vector to X and
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n the exterior unit normal vector to the cone along 0X. Then

or _or
- S —,
ov = On
implying
) or
koy ko +1im | 46 = | G'(N—
t=0 Z-B(p.1) ax ov

< sinhl‘kr-g = A1z, p).
)X on

Equality holds if and only if 4G(r) = 0, ®%(Z, p) = 1, and v = y if and only if Z is
a star-shaped minimal cone with density at the center equal to 1. Since S*~? is the
only (k — 1)-dimensional minimal submanifold in $"~! with volume kw,, we
conclude that X lies in a totally geodesic H*.

The next proposition will allow us to replace a minimal submanifold 2* in H"
by the cone over its boundary, relying on the monotone dependence of the
isoperimetric inequality on the volume of 2. This proposition and Lemma 2 are
closely related to the monotonicity formula of Anderson [A, p. 481].

Proposition 2 Let X be a k-dimensional immersed compact minimal submanifold with
boundary in hyperbolic space H", and let p be any point of H"., Then

Volume(Z) £ Volume(p xx 02);

if equality holds, then pe X, and X~ must be totally geodesic and star-shaped with
respect to p.

Proof. Let h(q) = hir,(q)), where h'(r) = afr)/«’(r) as in Lemma 2. Let v be the
outward unit normal vector to 0%, which is tangent to Z, and # the unit vector
tangent to p x 4Z; as in the proof of Proposition 1, we have dr/0v < dr/0n. This
implies

Gz 0v " gz on px 0L
since #'(r) > 0O for all r > 0. But according to Lemmas 1 and 2,
Ah =1+ (1 —|Vr®)[(rcothr — 1) —ro']

either on X or on p>x ¢X, where ¢(r) > 0 and ¢'(r) < 0 for r > 0. In particular,
Ah = 1; and further, A4h > 1 unless | Vr| = 1 or r = 0. On the cone px dX, we have
| Vr| = 1. Therefore,

Volume(2) < f4h < | Ah = Volume(pxdX).
z pxOZ

Equality would imply | Vr| =1 a.e. on Z, which is to say that X coincides with
a subset of the cone p » 6Z. Equality also requires dh/dv = 6h/dn, hence for every
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g € 0X the entire geodesic segment from p to ¢ lies in Z. At p, each such segment is
tangent to the tangent plane to Z. This implies that X is totally geodesic.

Remark 1 Proposition 2 is false when H" is replaced by the hemisphere S" , even
for n = 3 and k = 2. For example, let 2 be half of the Clifford torus:
2 ={(xy) e R2xR%:|x| = |y| = 1//2, x; >0},
and p =(1,0,0,0). Then Area(X) = n% which is greater than Area(px 0X) =
2./2xn. Nonetheless, for domains Q < X we have an isoperimetric inequality
L? = min{4n A4, 8n*} which implies the sharp S?-isoperimetric inequality
dnA < L* + A2,

It is an interesting question whether this last inequality is valid for every two-
dimensional minimal surface in the hemisphere S .

2 Approximation lemma

In light of Proposition 2 we would like to prove that certain hyperbolic cones
satisfy the isoperimetric inequality 474 < L? — A2, This inequality was proved in
great generality by Bol, namely, for any smooth, simply connected, two-dimen-
sional manifold with Gauss curvature K £ — 1. The following approximation
lemma may be interpreted as stating in a precise way that a hyperbolic cone has
generalized Gauss curvature < — 1 if the angle at its vertex is at least 27. It is well
known that a two-dimensional hyperbolic cone has Gauss curvature = —1 away
from its vertex.

Lemma 3 Let X, = (R?, ds?) be the singular Riemannian 2-manifold (a hyperbolic
cone) with metric given in geodesic polar coordinates (r, 8) by

ds? = dr? + (ap/2r)? sinh?r d6? .

If ag 2 2n, then ds* may be approximated in Cl,.(R*\{0}) by smooth metrics ds}
having Gauss curvature Ks < — 1.

Proof. If aqg = 2m, then ds? = ds? suffices. For any angle a, > 2=, we shall construct
ds? in the form

ds? = dr? + g,(r)? d6?

for an appropriate function g;: [0, c0)— [0, c0). Similarly, write g(r) =
(ao/2m)sinhr. The Gauss curvature K; of (R?, ds?) is determined by the Jacobi
equation

) gs(r) + K;(r)gs(r) =0 .
The C* function g; will be smooth approximation to a C''* function g, defined by
go(r)y= B 'sinhfr, 0sr=ry;

Go(r)=glr—¢), rzry;
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where ¢ > 0,7, > ¢, and § > 1 are appropriately chosen parameters. Continuity of
go/go at ry is equivalent to

(*) fcoth fry = coth(r; —¢).
This plus the continuity of g, at r, imply that
(ao/2m)? = 1 4+ (1 — B~?)sinh? fr, ,

which determines r, uniquely as a function of § (1, oo ) since a, > 2n. Now let
¢ = &(B) < r1(B) be defined by Eq. (*). Then the C!*! metric

ds3 = dr* + go(r)* d6?

has Gauss curvature Ko = — 2 on the disk B,,(0) and K, = —~ 1 on R?\B, (0).
Note also that the mapping given in polar coordinates by (7, §) —~ (r — ¢, 8) is an
isometry from R?\ B,, (0) with the metric ds? to Z,\ B,, _,(0). Since coth fr; > 1, it
follows from () that r,(f) — &(f) — 0 as f — o0, so that the complement of an
arbitrarily small neighborhood of the singularity in X is isometric to a subset of
(R?, ds3). Further, it may be seen from the definition of r;(f) that r,(8)— 0 as
B — + oo, and hence also &(8) — 0.

We may now construct the-smooth approximation gs by smoothing the Gauss
curvature K, of ds3: we choose K;e CT([0, «v)) with Ks()= — p2(0sr <
ry—96), Ks(r)= — 1(r =2 ry +6)and Kj(r) = 0 for all r. We then solve the Jacobi
equation (J) with g4(0) =0, ¢3(0) = 1. Since — B2 < K4(r) £ — 1, this initial
value problem has a unique solution g;: [0, c0)— [0, co) which is moreover
positive on (0, o0 ). For any exponent 1 < p < oo, we have K; —» Kqin L#({0, oo )).
This implies that g; — go in W?'? on any bounded interval, and hence also in C!-*
for any o < 1 on any bounded interval. By choosing f§ sufficiently large, we make
r1(B) and &(B) as small as desired; choosing also J sufficiently close to O results in
a metric ds? arbitrarily close to ds? in Cs&(R*\{0}).

3 The sharp isoperimetric inequality

As was hinted in the preceding section, we shall prove the sharp isoperimetric
inequality for cones in H" by combining Bol’s theorem and the approximation
lemma. The analogous result for cones in R” was proved in [Ch, Lemma 1] by
a substantially different method of developing the cone into a planar domain.

Lemma 4 Choose pe H", and let C be a compact 1-dimensional submanifold of H"
such that C is radially connected from p and A'(C, p) = 2n. Then the length L of
C and the area A of the cone px C satisfy the sharp isoperimetric inequality of
domains in H?:

dnA < L* — A*.

Proof. Write r(q) = dist(p, q), as usual, for the distance in H". We shall first show
that on any radially connected 1-manifold C, there are a finite number of points

qis- - s9ms> Pts - - - s Pm = Po such that
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(1) r(g)=r(p)) forall 1 Si<m
(ii} p; and ¢;., lie in the same component of C for all 0 < i < m — 1; and
(iii) C may be oriented so that the union of the m closed arcs of C from p; to ¢;,, in
the positive sense, 0 < i < m — 1, covers C exactly once.

The proof is by induction on the number J of connected components of C. If J = 1,
the assertion is obvious with m = 1. Now suppose the assertion holds for 1-
manifolds in H" with (J — 1) connected components. Write the connected compon-

ents of C as I'y,..., [y, where min{r(¢q):gel';} Z min{r(q):qeI';} for all
2<j<J. Then I, v ... v I,is radially connected from p. Applying the induc-
tion hypothesis, we may write {Q;, ..., Qpy, Py, ..., Py = Py} for a set of points

satisfying (1), (i) and (iii) with I'; v ... u I'; in place of C. Since C is radially
connected, there are points Pe 'y and Qe ', u ... v I'; with r(P) = r(Q) (for
example, r(P) =min{r(q):qeI'y}). Let P, and Q,., be the endpoints of the
interval in which Q falls, according to (iti). Define p, = P;and ¢, = Q,for 1 £ 1< k;
Gur1=Q =DPe+2; kr1=P=qu+2; and q=0Q, 5, pp=P, for k+3 <1<
m=M+2Then{q,,...,qm,P1.-- > Pm= Poy satisfy (i), (il) and (iii) as claimed.
(Incidentally, one may note that m + 1 = 2J.)

Write ao = A'(C, p). We may now show that p » C may be mapped discon-
tinuously, but locally isometrically, into an abstract hyperbolic cone X, = (R?, ds?)
with the singular Riemannian metric

ds? = dr? + (ay/2m)? sinh? rdo? ,

so that r = dist(p, -) is preserved. Namely, let {qy, ..., qm> P1> - - - > Pm = Po} bE
a set of points in C such that properties (i), (ii) and (iii) are valid. For0 £ i s m — 1,
write C(p;, q;+1) for the closed oriented arc of C from p; to g;.,. Then
px C(po, q;) may be mapped isometrically into X, so that for all g € C(py, ¢, ) the
H"-geodesic from p to q is mapped onto a geodesic segment § = const. starting at
the vertex 0 € 2. The next sector p > C(py, q;) of p x C is then mapped isometri-
cally onto an adjacent sector of X, so that the geodesics from p to ¢, and from p to
p1 are mapped to the same radial geodesic segment. This process continues until
P C(Pm—1, q,.) 18 mapped isometrically into Xy, so that the geodesics from p to
qm—1 and from p to p, -, are identified, and the geodesics from p to g,, and from
p to p,, = po are identified. This process closes up exactly since the angle at the
vertex of Zo is ag = A'(C, p) = Y7, A1(C(pi, gi+1), p). Observe that px C is
mapped, almost everywhere one-to-one, onto a star-shaped domain Q « Z; of area
A, such that 0Q has length L. We may assume that p ¢ C, since Area(p x C) varies
continuously with p, and since 4'(C, p) is lower semi-continuous. Then Q is
a star-shaped neighborhood of 0 in X;. Applying Lemma 3 we see that for each
d near 0 there is a smooth Riemannian surface (R?, ds?), with Gaussian curvature
K; < — 1, which converges locally uniformly to 2, and which converges C** to
X, on compact sets in R?\{0}. Then with respect to dsj, 82 has length L(d) > L
and Q has area A(8) — 4 as 6 — 0. By Bol’s theorem [Bol, p. 230] the isoperimetric
inequality

4mA(S) £ L(8)* — A(8)

holds, and the conclusion of Lemma 4 follows.
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Remark 2 Lemma 4 is false for submanifolds of dimension k = 3 in H" or even in R",
In R”, we may choose the reference point p near p, = 0. GivenR > 1,0 < ¢ < 1 and
a point q, € R" with |q;|?> = R* — 1, let the (k — 1)-submanifold C be formed from
the two unit (k — 1)-spheres S *(0) N S5 ( + g,) n R¥*! plus a thin “bridge” of
the form [ — R, R] x $¥~2 connecting points g, and — g, on the unit spheres, and
smoothed. Then for sufficiently small ¢, there is an immersed minimal k-submani-
fold X with boundary C, which is uniformly close to the union of the two flat unit
k-dimensional balls with a thin “bridge” of the form [ — R, R]x B¥~!, by a the-
orem of Smale [Sm]. Choose p e X with dist(p, py) < & Then the angle

A*THC, p) Z ko,
by Proposition 1. Thus C satisfies conditions analogous to all hypotheses of
Lemma 4. But
Volume(C) = 2kw;, + O(Re*™2),
while a longer computation shows that
Volume(p x C) = 2Rw, + O(Re* 1),
so that for large R the k-dimensional Euclidean isoperimetric inequality
(Volumé(C))" = ko (Volume (p x C))F !

is certainly false. Thus there is no hope of extending Lemma 4 to submanifolds of
dimension greater than two. On the other hand, the minimal submanifold X has

Volume(X) £ 2w, + 2Rwy_ 671,

as follows from the proof of Smale’s theorem. For small ¢, X itself therefore satisfies
the k-dimensional Euclidean isoperimetric inequality

(Volume (8Z))F = k¥, (Volume (Z)F~1 .

That this inequality be valid for every k-dimensional minimal submanifold 2~ of R"
remains a challenging conjecture; an eventual proof cannot be found through the
straightforward intermediation of a cone p » 8X.

Using Proposition 1, Proposition 2, and Lemma 4, and the monotonicity of the
quadratic function 474 + A? for positive area 4, we may now prove our main
result.

Theorem 1 Let X% be an immersed compact minimal surface with boundary in
hyperbolic space H". Assume there exists p € Z such that 0% is radially connected
from p. Then Area(ZX) and Length(0X) satisfy the isoperimetric inequality

4nA < L?— A%,
with equality if and only if Z is a geodesic ball in a totally geodesic H*> < H".

Remark 3 If 82 has two components, choose two points p; and p,, one from each
component. Then there exists a point g on 2 with dist(q, p,) = dist(g, p,), which
implies that 0 is radially connected from gq. Consequently X satisfies the above
isoperimetric inequality.
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