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Given a plane domain D bounded by a curve C, it has long been known that the 
area A of D and the length L of C are related by the classical isoperimetric 
inequality 

4xA < L 2 

where equality holds if and only if C is a circle. Many mathematicians have also 
sought isoperimetric inequalities for a domain in a curved space. An interesting one 
for a domain in the sphere was obtained by Bernstein in 1905 [B]: 

4~A =< L 2 + A 2 . 

Then Schmidt IS] proved in 1940 the analogue for the hyperbolic plane: 

4gA =< L 2 - A 2 . 

In each case, equality holds if and only if the domain is a geodesic disk. In fact, 
these three isoperimetric inequalities can all be expressed in one inequality as 
follows: 

4~A < L z + K A  2 , 

where K is the Gauss curvature of the simply connected space form in which D lies. 
On the other hand, it has been a long-standing conjecture that the classical 

isoperimetric inequality 4xA < L 2 should hold for an arbitrary domain in a min- 
imal surface in R". Until now this inequality has been proved only for minimal 
surfaces with one or two boundary components, or more generally, with weakly or 
radially connected boundary I-C, OS, LSY, Ch]. In view of this conjecture and the 
work of Bernstein and Schmidt, one may ask whether their inequalities hold for 
domains on a minimal surface in S" or H". In this paper we show that any 
two-dimensional minimal surface 272 in H" such that •27 is radially connected from 
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some point p of E, i.e. such that {r = dist(p, q), q 6 0•} is a connected interval, 
satisfies the sharp isoperimetric inequality 

4~A _< L 2 - -  A 2 . 

But the isoperimetric inequality 4~A < L 2 + A 2 for a minimal surface in S" still 
remains open. 

In our companion paper [CG] we obtain two different types of isoperimetric 
inequalities: First, we introduce a modified area M ( D )  of a domain D, and show 
that 

47tm(D) < L(c~D) 2 , 

where D is a domain on a minimal surface in S"+ or H", whose boundary is radially 
connected or weakly connected in analogy with I-LSY]. Second, weaker 
isoperimetric inequalities 

27zA <_ L 2 + K A  2 

are obtained for any minimal surface 22 in S% or in H", where K = 1 or - 1 
depending on whether _r is in S%_ or in H n. Surprisingly, while the modified-area 
inequality is valid for S% or for R", the result of this paper is valid for H" or for Rn; 
compare Remark 1 below. 

1 Estimates for the volume and angle of a cone 

Every minimal surface considered in this paper is assumed to be differentiable up to 
its boundary. 

Blaschke, earlier than [Ch], pointed out the value of comparing a minimal 
surface Z in R" with the cone over its boundary [B1, p. 247]. Estimates for the 
volume of the cone p ~ t32: and for the angle of 0 f  viewed from an interior point of 
Z play crucial roles in the proof of the sharp isoperimetric inequality for 2; with 
radially connected boundary in [Ch]. In this section we obtain the analogous 
estimates for minimal surfaces in H". In fact, this will require a more exacting 
choice of test function: compare Proposition 1 and Proposition 2 of [Ch] with 
Proposition 2 and Proposition 1 below. 

Lemma 1 Suppose h ' ( r )=  rrp(r) fo r  some smooth ~o: [0, o o ) ~ R ,  and write 

h(q) = h(rp(q)) where r = rp(q) = dist(p, q) for  a f i xed  p ~ H".  I f  X k c H" is either 

minimal or a cone over p, then 

Ah = r(o' + qoQ + (1 - IVr [2 ) ( r tpco th r  - ~o - r~o') 

where Q(r) = 1 + ( k -  1)rcothr.  

P r o o f  One shows that the Hessian in H", 

~,2 cosh r = (cosh r)o , 

from which it follows that the Laplacian on Z k, 

d r  = c o t h r ( k -  I Vrl 2) 
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when S is either min imal  or a cone over p. See L e m m a  5(b) of [ C G ] .  Lemma 1 
follows by direct  computa t ion .  

The fol lowing lemma addresses  the case where h(r) is the solut ion of Ah --- 1 on 
the tota l ly  geodesic submani fo ld  S = H k c H". The conclusions may  also be found 
on p. 483 of [A].  

L e m m a  2 Let q~(r) = ~(r)/(r~'(r)), where ~(r) is the volume of  the geodesic ball o f  
radius r in k-dimensional hyperbolic space Hk; thus ~ ( 0 ) = 0  and r  
kCOksinh k-1 r. Define Q(r) as in Lemma 1. Then 

(a) f o r a l l r > 0 , ~ p ' ( r ) < 0  and O < qg(r) < tp(O) = l/k; 

and 

(b) r~o'(r) + p(r)Q(r) = 1. 

Proof. Differentiat ion of r~o(r) = a/c( yields 

rq~' + ~ = 1 + rq)~"/cx' = 1 - (k - 1)~orco thr ,  

f rom which (b) follows. E lementary  asympto t ic  analysis  shows that  q0(O) = 1/k and 
q)'(O) = O. Since s i n h r c o s h r  > r, we find Q'(r) > O, so that  Q(r) > (2(0) = k, for all 
r > O. The derivat ive of(b)  now yields rq0" + (1 + Q)q)' < O, or  (~o'(r)expP(r))' < 0 
where P'(r) = (1 + Q)/r. Since ~o'(0) = O, we conclude that  q0'(r) < 0 for posit ive r. 

Definition. Let C c H" be a (k - 1)-dimensional  rectifiable set and p a point  in H". 
The (k - 1)-dimensional angle A k- L (C, p) of C viewed from p is defined by setting 

A k- 1 (C, p) = sinh 1 - ~ t" Volume [(p x< C) c~ S (p, t)] , 

where S(p, t) is the geodesic sphere of radius  t < dist(p,  C) centered at p, and  the 
volume is measured  count ing multiplici ty.  Clearly,  the angle does not  depend  on t. 

No te  that  

Ak-  I (C, p) = kO)k Ok(p X~ C, p) , 

where Ok(p X< C, p) is the k-dimensional  densi ty  of p ~x C at p. 

Proposi t ion 1 Let  ,2 be a k-dimensional compact minimal submanifold with boundary 
in H", and let p be an interior point o f  s Then 

A k- 1 (OX, p) > kCOk . 

Equality holds if and only if X is a domain on a totally 9eodesic H k that is star-shaped 
with respect to p. 

Proof. We use the Green ' s  function G(r) of HR: G'(r) = sinh 1 -kr. Writ ing  G'(r) = 
r~o(r), we see that  r~o' + q~Q =- 0 and 

rqocothr  - ~o - rq0' = k s i n h - k r c o s h r  > 0 

for r > 0, where Q = 1 + (k - 1)r coth  r. Thus by Lemma 1, G is subha rmonic  on 2;, 
and  ha rmonic  on the cone p x~ 027. Let v be the exter ior  unit  no rma l  vector  to X and  
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t / the  exterior unit normal  vector to the cone along 0Z. Then 

implying 

0r 0r 

0v = 0~/' 

0r 
k~Ok < ka~k + lim S AG = ~ G ' ( r )~  v 

t~O Z - B ( p , t )  OS 

-k . Or = Ak_I(OS ,p)  < ~ sinh 1 r ~qq 

Equali ty holds if and only i fAG(r) = O, Ok(S, p) = 1, and v = q if and only i fZ  is 
a star-shaped minimal cone with density at the center equal to 1. Since S k- 1 is the 
only ( k - 1 ) - d i m e n s i o n a l  minimal submanifold in S "-1 with volume kCOk, we 
conclude that 2; lies in a totally geodesic H k. 

The next proposi t ion will allow us to replace a minimal submanifotd Z k in H" 
by the cone over its boundary,  relying on the mono tone  dependence of the 
isoperimetric inequality on the volume of Z. This proposi t ion and Lemma 2 are 
closely related to the monot0nici ty  formula of Anderson [A, p. 481]. 

Proposition 2 Let Z be a k-dimensional immersed compact minimal submanifold with 
boundary in hyperbolic space H", and let p be any point of Hn., Then 

Volume(Z)  < Volume(p x~ t3Z); 

if equality holds, then p ~ Z, and Z must be totally geodesic and star-shaped with 
respect to p. 

Proof Let h(q)= h(rp(q)), where h'(r)= c~(r)/c((r) as in Lemma 2. Let v be the 
outward  unit normal  vector to 0Z, which is tangent to 2;, and r / the  unit vector 
tangent to p x< 02;; as in the proof  of Proposi t ion 1, we have Or/Ov < c3r/~l. This 
implies 

Oh Oh 
z~ dh = ~ ~v < = ~s ~ = ~ dh, 

, pxx ~Z 

since h'(r) > 0 for all r > 0. But according to Lemmas 1 and 2, 

Ah = 1 + (1 - I Vr[Z)[(rcothr - 1)q~ - rq~'] 

either on 2; or  on p ~  0Z, where qg(r) > 0 and ~o'(r) < 0 for r > 0. In particular, 
Ah > 1; and further, Ah > 1 unless I Vr[ = 1 or r = 0. On  the cone px~ 0Z, we have 
[Vrl = 1. Therefore, 

Volume(Z)  < S 3h  < ~ 3h = V o l u m e ( p x ~ 0 Z ) .  
Z px~ OZ 

Equality would imply [V r[ = 1 a.e. on Z, which is to say that Z coincides with 
a subset of the cone p ~OZ.  Equality also requires Oh~Or = ~h/Oq, hence for every 
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q ~ t3X the entire geodesic segment from p to q lies in ,5. At p, each such segment is 
tangent to the tangent  plane to 2:. This implies that  ,5 is totally geodesic. 

R e m a r k  1 Proposi t ion  2 is false when H" is replaced by the hemisphere S~+, even 
for n = 3 and k = 2. For  example,  let 2: be half  of the Clifford torus: 

2: = {(X, y) ~ R 2 • R2:  Ixl = lYl = 1/,,/~, x l  > 0} ,  

and p = (1, 0, 0, 0). Then A r e a ( 2 : ) =  n 2, which is greater than Area(p x~ d S ) =  

2 x ~ n .  Nonetheless,  for domains  f2 c 2: we have an isoperimetric inequality 
L 2 > min {4hA,  8n 2 } which implies the sharp S2-isoperimetric inequality 

4hA  < L 2 4- A 2 . 

It  is an interesting question whether  this last inequality is valid for every two- 
dimensional  minimal surface in the hemisphere S~_. 

2 Approximation lemma 

In light of Proposi t ion  2 we would like to prove that  certain hyperbolic cones 
satisfy the isoperimetric inequality 4hA < L 2 - A 2. This inequality was proved in 
great generality by Bol, namely, for any smooth,  simply connected, two-dimen-  
sional manifold with Gauss  curvature  K < - 1. The following approximat ion  
l emma may  be interpreted as stating in a precise way that a hyperbol ic  cone has 
generalized Gauss  curvature < - 1 if the angle at its vertex is at least 2n. It is well 
known that  a two-dimensional  hyperbolic cone has Gauss  curvature  - - 1  away 
from its vertex. 

Lemma 3 L e t  So = (R 2, d s  2 ) be the singular Riemannian 2-manifold (a hyperbolic  
cone) with metr ic  given in geodesic polar coordinates (r, O) by 

ds 2 = dr 2 + (ao/2n) 2 sinh z r dO 2 . 

I f  ao >= 2n, then ds 2 may  be approx imated  in Clo~(R2\{0}) by smooth  metrics  ds 2 

having Gauss curvature K6 < - 1. 

P r o o f  I fao  = 2n, then ds 2 = ds 2 suffices. For  any angle ao > 2n, we shall construct  
ds g in the form 

ds 2 = d r  2 4- g~(r) 2 dO 2 

for an appropr ia te  function g~: [0, ~ ) ~ 1 - 0 ,  ~ ) .  Similarly, write g ( r ) - -  
(ao /2n ) s inhr .  The Gauss  curvature  K~ of (R 2, ds 2) is determined by the Jacobi  
equat ion 

(J) g'~'(r) + Ko(r)g~(r) = O . 

The C ~ function g~ will be smooth  approx imat ion  to a C 1' 1 function go defined by 

go (r) -- f l -  1 sinh fir, 0 < r < rl  ; 

g o ( r ) = g ( r - e ) ,  r > r l ;  
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where e > 0, r~ > e, and fl > 1 are appropr ia te ly  chosen parameters .  Cont inui ty  of 
g'o/go at r~ is equivalent  to 

(*) fl coth fir1 --- coth (r 1 - 5).  

This plus the continuity of  go at r~ imply that  

(ao/2n) 2 = 1 + (1 -- f l -2)sinhZflr l  , 

which determines rl  uniquely as a function of/3 e (1, co ) since ao > 2n. N o w  let 
5 = 5(/3) < r1(/3) be defined by Eq. (*). Then the C 1'1 metric 

ds20 = dr2 + go (r) 2 dO2 

has Gauss  curvature  Ko - - / 3 2  on the disk Brl(0) and Ko -- - 1 on R2\B,~(0). 
No te  also that  the mapp ing  given in polar  coordinates  by (r, 0) ~ (r - e, 0) is an 
isometry f rom R2\/~r~(0) with the metric ds 2 to So\/3~1_~(0 ). Since coth flrl > 1, it 
follows f rom (*) that  r l ( f l ) -  e ( f l ) ~  0 as/3 ~ ~ ,  so that  the complement  of  an 
arbi t rar i ly  small ne ighborhood  of the singularity in Zo is isometric  to a subset of 
(R E, ds2o). Further ,  it may  be seen f rom the definition of r1(/3) that  r1(/3)-~ 0 as 
/3 --* + ~ ,  and hence also 5(/3) ~ O. 

We may  now construct  the-smooth approx imat ion  go by smooth ing  the Gauss  
curvature  Ko of ds2: we choose Ko e Cff([0,  ~ )) with K~(r) = - f12(0 -< r -< 
rl - 6), Ka(r) - - 1 (r > rx + 6) and K'~(r) > 0 for all r. We then solve the Jacobi  
equat ion  (J) with g~(0)= 0, g~(0)=  1. Since - / 3 2 <  K~(r)< - 1 ,  this initial 
value p rob lem has a unique solution ga: [0, ~ ) ~  [0, ~ ) which is moreover  
positive on (0, oo ). For  any exponent  1 < p < oo, we have K~ ~ Ko in L~(I-0, ~ )). 
This implies that  g~ ~ go in W z'p on any bounded  interval, and hence also in C 1'~ 
for any ct < 1 on any bounded  interval. By choosing/3 sufficiently large, we make  
r~ (/3) and  5(/3) as small as desired; choosing also 6 sufficiently close to 0 results in 
a metric  ds 2 arbi trar i ly close to ds 2 in Cloc~(R 2 \{0}). 

3 The sharp isoperimetric inequality 

As was hinted in the preceding section, we shall prove the sharp  isoperimetric 
inequali ty for cones in H"  by combining  Bol's theorem and the approx ima t ion  
lemma.  The  analogous  result for cones in R" was proved in [Ch, L e m m a  1] by 
a substantial ly different me thod  of developing the cone into a p lanar  domain .  

Lemma 4 Choose p e H", and let C be a compact 1-dimensional submanifold o f  H" 
such that C is radially connected from p and A I(C, p) > 2n. Then the length L o f  
C and the area A o f  the cone p x< C satisfy the sharp isoperimetric inequality o f  
domains in Hz: 

4hA < L 2 - A 2 . 

Proof. Write r(q) = dist(p, q), as usual, for the distance in H". We shall first show 
that  on any radially connected 1-manifold C, there are a finite number  of points 
ql . . . . .  qm, Pl,  �9 �9 �9 P,. = Po such tha t  
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(i) r(ql) = r(pi) for all 1 < i _< m; 
(ii) Pl and qi+l lie in the same component  of  C for all 0 _< i _< m - 1; and 

(iii) C may be oriented so that the union of the m closed arcs of C from Pi to qi + 1 in 
the positive sense, 0 _< i <_ m - 1, covers C exactly once. 

The proof  is by induction on the number  J of connected components  of C. I f J  = t, 
the assertion is obvious with m = 1. N o w  suppose the assertion holds for 1- 
manifolds in H" with (J  - 1) connected components .  Write the connected compon-  
ents of C as F1 . . . . .  F j ,  where m i n { r ( q ) : q s C l } > m i n { r ( q ) : q s F ~ }  for all 
2 -_< j __< J. Then F2 w . . .  w F j  is radially connected from p. Applying the induc- 
tion hypothesis, we may write {Q, . . . . .  QM, Pa . . . . .  P~t = Po} for a set of points 
satisfying (i), (ii) and (iii) with F2 u . . .  w F j  in place of C. Since C is radially 
connected, there are points P e Ft  and Q e F2 ~ . . .  w F j  with r(P) = r(Q) (for 
example, r ( P ) = m i n { r ( q ) : q ~ F ~ } ) .  Let Pk and Qk+l be the endpoints of the 
interval in which Q falls, according to (iii). Define Pt = P~ and q~ = Q~ for 1 < I _< k; 
qk+l = Q = Pk+2; Pk+l = P = qk+2; and ql - -  O l - 2 ,  Pl = P i - 2  for k + 3 _< 1 < 
m = M + 2. Then {ql . . . . .  q,,, Pl . . . . .  P,, = Po } satisfy (i), (ii) and (iii) as claimed. 
(Incidentally, one may note that m + 1 = 2J.) 

Write ao = A~(C, p). We may now show that p >x C may be mapped discon- 
tinuously, but locally isometrically, into an abstract  hyperbolic cone So = (R 2, ds 2) 
with the singular Riemannian metric 

ds 2 = dr  2 + (ao/2n) 2 sinh 2 r dO 2 , 

so that r = dist(p, ") is preserved. Namely,  let {q~ . . . . .  q,,, Pl . . . . .  Pm = Po} be 
a set of points in C such that  properties (i), (ii) and (iii) are valid. For  0 < i < m - 1, 
write C(p~,qi+l) for the closed oriented arc of C from pi to q~+t. Then 
p ~x C(po, q~ ) may be mapped  isometrically into So so that  for all q ~ C(po, ql ) the 
H"-geodesic from p to q is mapped onto a geodesic segment 0 = const, starting at 
the vertex 0 ~ So. The next sector p x< C(pl ,  q2) o fp  x~ C is then mapped isometri- 
cally onto an adjacent sector of S o, so that the geodesics from p to qt and from p to 
p~ are mapped  to the same radial geodesic segment. This process continues until 
p >x C(p,,_~, q,~) is mapped  isometrically into So,  so that  the geodesics from p to 
q,,-1 and from p to Pro-~ are identified, and the geodesics from p to q,, and from 
p to Pm = Po are identified. This process closes up exactly since the angle at the 

m - - 1  
vertex of So is a0 = At(C,  p ) =  ~ i = o  A~(C(P~, q~+l), P). Observe that  p x~ C is 
mapped,  almost  everywhere one-to-one, onto a star-shaped domain  Q ~ -to of area 
A, such that c~O has length L. We may assume that  p r C, since Area(p x~ C) varies 
cont inuously with p, and since A~(C,p )  is lower semi-continuous. Then t? is 
a star-shaped ne ighborhood of 0 in So. Applying Lemma 3 we see that for each 
6 near 0 there is a smooth  Riemannian surface ( R  2, ds 2 ), with Gaussian curvature 
K~ < - 1, which converges locally uniformly to So, and which converges C ~'" to 
~o on compact  sets in R2\{0}. Then with respect to ds 2, ~0  has length L(b) --* L 
and O has area A(6)  ~ A as 6 ~ 0. By Bol's theorem [Bol, p. 230-] the isoperimetric 
inequality 

4hA(3)  < L(6) 2 - A(O) 2 

holds, and the conclusion of Lemma 4 follows. 
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Remark 2 Lemma 4 is false for submanifolds of dimension k > 3 in H" or even in R". 
In R", we may choose the reference point p near P0 = 0. Given R > 1, 0 < e ~ 1 and 
a point ql s R" with [ql [2 = R a _ 1, let the (k - 1)-submanifold C be formed from 
the two unit (k - 1)-spheres S~- ~ (0) c~ S]-  1 ( _+ ql ) c~ R k+ 1 plus a thin "bridge" of 
the form [ - R, R] x S~ -2 connecting points q2 and - q2 on the unit spheres, and 
smoothed. Then for sufficiently small ~, there is an immersed minimal k-submani- 
fold 27 with boundary C, which is uniformly close to the union of the two flat unit 
k-dimensional balls with a thin "bridge" of the form [ - R, R] x B~- ~, by a the- 
orem of Smale [Sm]. Choose p e 2; with dist (p, Po) < e. Then the angle 

A k- 1 (C, p) > ko~ 

1. Thus C satisfies conditions analogous to all hypotheses of by Proposition 
Lemma 4. But 

Volume(C) = 2ke3k + O(Rek-  2) , 

while a longer computation shows that 

Volume(p ~ C) -- 2Rmk + O ( R e k - 1 ) ,  

SO that for large R the k-dimensional Euclidean isoperimetric inequality 

(Volume (C))* > k k O~k (Volume (p ~ C)) k- 1 

is certainly false. Thus there is no hope of extending Lemma 4 to submanifolds of 
dimension greater than two. On the other hand, the minimal submanifold Z has 

Volume(E) _< 2C0k + 2 R ~ k - 1  e*-1 , 

as follows from the proof of Smale's theorem. For small e, Z itself therefore satisfies 
the k-dimensional Euclidean isoperimetric inequality 

(Volume (t?z))k > k k COg (Volume (Z)) k - 1 . 

That this inequality be valid for every k-dimensional minimal submanifold Z of R" 
remains a challenging conjecture; an eventual Proof cannot be found through the 
straightforward intermediation of a cone p ~ t?Z. 

Using Proposition 1, Proposition 2, and Lemma 4, and the monotonicity of the 
quadratic function 4~zA + A 2 for positive area A, we may now prove our main 
result. 

Theorem 1 Let  2;2 be an immersed compact minimal surface with boundary in 
hyperbolic space H". Assume there exists  p ~ 2; such that t~2; is radially connected 
f rom p. Then Area(Z) and Length(02;) satisfy the isoperimetric inequality 

4•A < L 2 - A 2 , 

with equality i f  and only i f  Z is a 9eodesic ball in a totally 9eodesic H 2 c H". 

Remark  3 If 02; has two components, choose two points Pl and P2, one from each 
component. Then there exists a point q on 2; with dist(q, p~ ) = dist(q, P2 ), which 
implies that 0Z is radially connected from q. Consequently 2; satisfies the above 
isoperimetric inequality. 
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