
Comment. Math. Helvetici 71 (1996) 5 5 6 - 5 6 9  0010-2571/96/040556-1451.50 + 0.20/0 
�9 1996 Birkh~iuser Verlag, Basel 

On the existence of higher dimensional Enneper's surface 

JAIGYOUNG CHOE* 

Enneper's surface and the catenoid are the simplest minimal surfaces in R 3 that 
are complete, orientable and nonplanar. This is because a complete orientable 
minimal surface has the total curvature of - 4 k n  for some nonnegative integer k, 
while k = 1 for Enneper's surface and the catenoid. Enneper's surface has one end 
and is a minimal immersion of R 2 in R 3, whereas the catenoid has two ends and is 
a surface of  revolution. 

Not only is R 3 but also in R", n > 4, the catenoid has been known to exist. It is 
a minimal hypersurface which is rotationally symmetric. The higher dimensional 
catenoid has been the only example that is a higher dimensional analogue of a 
2-dimensional minimal surface. In this paper, however, we prove that there also 
exists an n-dimensional Enneper's surface Z" in R" § 1 for n = 3, 4, 5, 6, which is a 
minimal immersion of R" in R" +1 

For two-dimensional minimal surfaces in R 3 there is the Weierstrass representa- 
tion. This representation makes it easy to write down an enormous number of  
complete minimal surfaces in R 3. Moreover, one can construct arbitrarily many 
minimal submanifolds of  even codimension in R 2", as every complex submanifold of  
R 2" is minimal. But in higher dimension one does not even have a good way to 
construct examples of  complete immersed minimal hypersurfaces. Among a few 
known examples are the higher dimensional catenoids, area minimizing cones and 
graphs constructed by Bombieri-De Giorgi-Giusti [BDG], minimal hypersurfaces in 
R 4 and R 6 passing through the Clifford tori in S 3 and S 5 [B], minimal hypersurfaces 

as leaves of  a foliation arising from isoparametric hypersurfaces [FK], and F-invari- 
ant minimal hypersurfaces [W]. 

All the examples above have been found by solving ordinary differential 
equations which were induced from the partial differential equation of minimal 
hypersurfaces by exploiting certain symmetry conditions. Higher dimensional En- 
neper's surface S, by contrast, is constructed by solving the partial differential 
equation directly as follows. First construct a compact minimal hypersurface by 
finding Jenkins-Serrin's solution [.IS] to the Dirichlet problem for the minimal 
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surface equat ion with suitably prescribed boundary  data. Second obtain a compac t  
Enneper type surface by reflecting the minimal  hypersurface across the totally 
geodesic part  o f  its boundary.  Third blow up the compact  Enneper  type surface by 
an appropr ia te ly  chosen scale to obtain a complete minimal immersion o f  R ~ in 
R ,+  1. In this process we have used the curvature estimates of  [SSY] and [SS], and 
for this reason we have the dimension restriction that  n = 3, 4, 5, 6. 

Our  higher dimensional Enneper 's  surface Z" satisfies some properties which are 
analogous to those of  classical Enneper ' s  surface. Namely,  Z'" contains n mutual ly  
or thogonal  ( n -  1)-planes. Asymptotically,  i.e., viewed from infinity, s  looks like 
an n-plane with multiplicity 2" - 1. On the other hand, a high dimensional analogue 
of  the total  curvature for X" ~z [A [", A being the second fundamental  form, becomes 
infinite. Moreover ,  the Gauss  m a p  is not well defined at the point at infinity of  s  
Several interesting features of  higher dimensional Enneper 's  surface are remarked  in 

Section 6. 
We would like to thank Mike Anderson and Leon Simon for some useful 

discussions. 

1. Definitions and notations 

(1) Let O = ( 0  . . . . .  0), p ~ = ( 1 , 0  . . . . .  0), P 2 = ( 0 , 1 , 0  . . . . .  0) . . . . .  p , =  
( 0 , . . . ,  0, 1 , 0 ) e R  ' '+ ~. Define T to be the regular (n - 1)-simplex with p~ . . . . .  p ,  
as its vertices. Let p , : = ( - 1  . . . . .  - 1 ,  e ) ~ R  ~ +1, 0 < e < l ,  and define F ~ =  
(O ~ ~T) w (p,. ~ ~T) ~ R" + 1. Here p )~ S denotes the cone f rom p to S, the union 

of  all line segments from p to the points of  S. 
(2) Define C as the n-dimensional  catenoid which is rotationally symmetric  about  

2.1,2 where the x,,+ ~-axis. C satisfies the equation x . + l  = f ( r ) ,  r = (x~ + �9 �9 �9 + x . ) ,  , 

I 
r 

J(r) = [t2fn- t)__ 1] 1:2 dr. 

(3) For  each r > 0 we define 

p , . : R " + t ~ R  "+l ,  p,.(x)=rx, 

and for each q ~ R" + ~ define 

zq :  R " + t  ~ R  " + 1  , Zq(X)=x-q. 

(4) Let Ai, l _ < i < n + l ,  be the hyperplane {(x~ . . . . .  x n + l ) : x ~ = 0 }  and let 

A n + 2 =  {(xl . . . . .  x ,+l) :x~+. . .+x,=O},  A o =  {(x~ . . . . .  xn, O):xj '"x ,=O},  
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A_l = {(xl . . . . .  x., 0):171 <_~<j<_.(x 2 + x ~ ) =  0}, i.e., A_I  is the ( n -  2)-skeleton of  

Ao, A+ = {(xl . . . . .  x . + l ) : x l " " x . + l > O } ,  A* = {(xl . . . . .  X n + l ) : X i 2 0 ,  i =  
1 . . . . .  n + l } ,  A~.+1=A.+lc~A *, A.~+~=the  closure of  (A~+1~A*),  A,~+I=  

{(xl . . . . .  x .+l ) :O<x.+ 1 < e } ,  A.++I = {(xj . . . . .  x,,+l):x.+~ > 0 } .  Let Ai, o be the 
hyperplane which passes through the origin, is disjoint from the interior of  A*, is 

perpendicular to A.+1,  and makes an angle of  0 with A~ and an angle o f  
~o, (n - 1) cos 2 q~ + cos z 0 = 1, with every Aj, j  r i, n + 1, and let A.+ ~.o be the hyper- 

plane in R ~§ ~ which contains the (n - 1)-plane An+ 1 c~A.+2 and makes an angle o f  
0 < 0 < n with A.+I. Let ~ be the straight line {(x~ . . . . .  x. ,  0):xl . . . . .  x.} .  

(5) Define nl, n2 as the projections from R" +1 onto  A. +1, A~ + 2, respectively. 
Define Pi, 1 < i < n, as the rotat ion by 180 ~ about  the (n - 1)-plane A. + i c~ A t and 

Po, 1 < i r  n, as the rotat ion by 90 ~ about  the ( n -  1)-plane A~c~Aj taking the 
positive x~-axis to the positive xj-axis. r +1 is the reflection with respect to the 

hyperplane A.  + ~. 
(6) For  1 < i 4: j  < n, let q~q = ~ + 1 ~ P0 and let ~ be the reflection with respect 

to the hyperplane x~ = xj. Define G to be the subgroup of  O(n + 1) generated by 

{~0' ~0 "}l ~ ' v a J  <<-n" 

(7) Let B~(q) be the ball o f  radius r with center at q a n d / ~ ( q )  its interior. Z,. 
is the cylinder defined by Z,  = {(x, . . . . .  x .+  l ) : x ~ + '  �9 �9 + x  2 < r2}. 

2. Compact Enneper type surface 

The first step towards the p roo f  of  the existence of  higher dimensional En- 

neper 's  surface is to construct a compact  minimal hypersurface which resembles the 
fundamental  region of  2-dimensional Enneper 's  surface (Lemma 1). Then a com- 

pact Enneper type surface is obtained from this fundamental  piece by 180 ~ 
rotations (Lemma 2). 

L E M M A  1. For each e > 0 there exists a unique n-dimensional compact minimal 
hypersurface X~, in R" + 1 bounded by F.. X~. is area minimizing and stable. 

Proof The projection n2 maps F~, one-to-one onto n 2 ( / ' t )  which is the boundary  
of  a convex domain  in A,+ ~. By [GT, Theorem 16.8] the Dirichlet problem for the 
minimal surface equation is uniquely solvable. It is well known that a minimal 

graph over a convex domain  is area minimizing. Hence it is stable. 

L E M M A  2. 2" congruent copies of  s can be pieced together to form a compact 
smooth minimal hypersurface ~ which is invariant under the group G. 
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Proof. Assume that for c~, f le  G, 

ce(OS~c~A,,+ ,) = fl(c~X,:c~ A,, + ,). (1) 

Note that q~j(A +) ---A + and ~ii(A +) = A +. Hence 

f l - l ~ ( A + )  = A +. (2) 

It follows from (1) and (2) that 

fl-lc~(A*)= A* and ~(~S~)=fl(~s 

Hence fl ~ is the product of some Cgj's. From the invariance of F,: under ~:~/and 
the uniqueness of s spanning F,:, one obtains ~ij(S,:) = L',:. Therefore 

~(s~) =/~(z~) (3) 

Define 

z c ~ G  

Clearly S~ is invariant under G. That (1) implies (3) shows that ~',: consists of 2" 
(= the  number of the components of A +) copies of Z'~. Note now that 

pi (S~)=~o. (S~)  for every l <_ir  

Then a standard theory of the elliptic partial differential equations states that 
S,:u q~i(S,:) is an analytic extension of S~. across ~ Z f ~ A , + ~ n A ~ .  Furthermore it 
follows that -~ is an analytic extension of S~. across c3~v,:n A,+~. 

3. Curvature estimates 

Extending a compact Enneper type surface to a complete hypersurface requires 
detailed estimates on the curvature of the surface. A lower bound of the curvature 
is obtained by the maximum principle (Lemma 4) and an upper bound is derived 
from stability (Lemma 5). 

LEMMA 3. Let  7(s)= (x(s), y(s)), 0 < s < a, be a C 2 curve in R 2 parame- 

trized by the arctength s satisfying 7(0) = (0, 0), 7'(0) = (1, 0), ~'(a) = (13, 1) and 
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0 < x(s) <_ b. Then there exists 0 <_ So < a such that the curvature of  7 at ?~(So) is not 
less than 1/b. 

Proof Let (c be the quar ter  circle defined by (c(t) = (b sin t, c - b cos t), 0 _< 
t < zr/2. I f  ? = sup{c < b :( ,  c~ 7 = ~b }, then y lies on one side of  (~ touching ~'e at a 
point  ~(So), 0 < So < a. Hence the curvature  of  ~ at 7(so) is larger than or equal to 
that  o f  ~'e which is 1/b. 

L E M M A  4. For each e > 0 there exist q,e X-,: and a(e) > 0 such that 

dist(q~,, A0) _< a(e) + e, 
1 

- -  l i m  a ( e )  = 0 ,  ( 4 )  [A [(q~.) _> na(e) ' ~.~0 

where [A[ is the length of  the second fundamental form of ~.~. 

Proof. Let a (E )>  0 be the smallest number  such that  for any r > a ( E ) ,  the 
catenoid ~'q(r)/t~(C), q(r)= (r . . . . .  r, 0)EE, is disjoint f rom F~. ~ A ,+  i. Then one 
can easily see that  a(e) converges to 0 as e goes to 0. For  any q(r) with r > a(e), 
rq(r),Ua(e,)(C ) does not intersect F~. Also, for  sufficiently large b > 0, rqCh)P,~)(C) 
cannot  intersect Z',:. It follows f rom the m a x i m u m  principle that  

rq(r)fla(~:)(C ) o ,~'e = (~ for  a(e) < r <_ b. 

Hence 

rq(.~0)~oc~(C ) c~ ( _ r  ~ ~ _ r )  = q~. 

Let 

= {qeZ'E:Z~l(q)eE }. 

Since the plane curve { is invariant  under  the reflections ~ ,  7 is a principal curve 
in X~., that  is, every tangent  vector  o f  7 points  along a principal direction o f  X~. 
Therefore  

[A [(q)_> x(q),  the curvature  o f  ~ at q e 7. (5) 

The  tangent  cone of  Z'~. at the origin O is A , + ~ n A * .  Hence a tangent  vector  of  
at O points  along • c A,+~.  Moreover  7 is tangent  to p~, )O( T at p~. Hence 

the angle between two tangent  vectors of  E at O and at p~ is larger than  90 ~ Thus  
there exists q e ~ at which a tangent  vector  o f  ~ is perpendicular  to E. Since ~ ~ {p~. } 
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is disjoint from "Cq(a(e))Ita(e,)(C ) o n e  can apply Lemma 3 and conclude that there exists 
a point  q, ~ 7 at which 

1 
x(q~) > (x/~ _ 1)a(~) ' (6) 

Combining (5) and (6), we get (4b). Finally we can compute 

which gives (4a). 

D E F I N I T I O N .  Fix 0 < d < 1 in such a way that for any e 

dist(Zd, ~?-~.) > d. (7) 

Define Z-~..c = {q e Z-~ ~ Za:dist(q, Ao) < c }. 

L E M M A  5. I f  n < 6 and S~.., is stable, then there exists b > 0 depending only on 
the dimension n such that/'or any interior point q of  ,f=.~ 

b 
[A ](q) < dist(q, 0~..,,)" (8) 

Proof Let % + ~ be the volume of a unit ball in R" + i. By Lemma 1, ~(S~,) ~ S,.,. 
is area minimizing for any c~e G. So it is easy to show that if Br(q) is disjoint from 
c?f~..c then 

Vol(S~..,,c~(S=)c~Br(q))< Vol(dB~(q))=(n+ 1)~o=+lr", c ~ G .  

Summing up for all distinct ~(L'~.) gives 

r-"Vol(~.,, .~B~(q)) < 2"(n + 1)~o~+ t. 

Thus  (8) follows from [SSY, Theorem 3] for n < 5 and [SS, Theorem 3] for  
n = 6 .  
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4. Blowing up 

We are now in a position to blow up a compact Enneper type surface to obtain 
a higher dimensional Enneper's surface. But in this process correct scaling is needed 
(Lemma 6). Blowing up by correct scaling gives us a complete analytic hypersurface 
(Lemma 8). It may happen that this hypersurface becomes the hyperplane. How- 
ever, an eigenvalue estimate rules out this possibility (Lemma 7). 

LEMMA 6. Suppose  n <_ 6. For each e, let 

c(e)  = max{c:S,: ,c  is s table} .  

Then 

lim c(e) = 0. (9) 
,~:~0 

P r o o f  ~:,,, is stable if and only if 

f~,., { v ~ -  {A[ ~f~->0 

for any smooth function f with compact support in f,~,. Hence S,:,, is stable for 
sufficiently small c > 0. So c(E)> 0. Suppose there exist 6 > 0 and a sequence of 
positive numbers el, e2, e3 . . . .  converging to 0 such that c ( e i )>3  for all i =  
1, 2, 3 . . . . .  Then (4a) and (4c) of  Lemma 4 imply that q~., lies in L',:,.c~,:,) for 
sufficiently large i. And then from (4b), (4a), (8) we see that 

1 b 
< I A I(q,:,) < 

na(ei)  - - 6 - a(ei)  - ~i 

which contradicts (4c). Therefore we get (9). 

LEMMA 7. For i = 1  . . . . .  n, let Arni = {(X 1 . . . . .  x.)~R":lxil<_r} and A T =  

UI  <_i~, Ar",i. Then on a domain D c A'/ the f i r s t  nonzero eigenvalue 21(D) o f  the 

Laplaeian satisf ies 

I 
:.l(D) ~ 4n2r 2 . 
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Proof. Define the projections 7r7: R"--*R" by zrT(xl . . . . .  x , )=(x~ . . . . .  x~_~, 
0, X i + 1 . . . . .  X,,). Then for any D' c c D and any i we have 

Vol(~D') > 2 Vol(zr': (~D')). 

However, 

Vol(D') < ~ Vol(D' A" ) n ,., <_ 2r ~ VolOz'/(~D')). 
l < _ i < _ n  l < _ i < _ n  

Hence from Cheeger's estimate [C] we see that 

1 [  Vol(aD')~ 2 
2,(D)_>~ infD,~ =D Vol(D') J 

1 
> -  
- 4  infD'  = = D 

2 
- Y~ V o l ( ~ 7 ( a D ' ) )  
n 1 <_i_<n 

2r ~ Vol(<'(aD')) 
l < _ i < n  

2 

1 
4 n 2 r  2 �9 

LEMMA 8. As e~O, pl/c(~)(S',:) converges to a complete minimal hypersurface Z 
in R" + ~, n = 3, 4, 5, 6. X is distinct from the hyperplane. 

Proof. Since s is area minimizing, one can apply the same argument as in the 
proof of Lemma 5 to show that 

b 
..IAkq)<-dist(q, Oe(Z,)) , qe~(Z~.), ~eG.  (10) 

Take q e X~ c~ Za. Then 

dist(q, ~S-~.) > d, (l 1) 

and q must belong to ~(~'~) for some ~eG. Observe that 3~(Z '~)cAou0~ ~. If 
dist(q, Ao)_< c(e)/2, then by Lemma 5 

2b 
I A [(q) ~ c(e---) ' (12) 
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If dist(q, A0)> c(E)/2, then (10) and (11) imply that 

b 
[A [(q) < . (13) 

min{c(e,)/2, d} 

So it follows from (12) and (13) that for sufficiently small e 

sup[At < 2c(be) on X~c~Za. 

Hence on pl,,.~o(,f~:~Z,t) we have 

suPlml ~ 2b. 

Therefore p l/,.(o(S~c~ Za) converges as e--* 0 to an analytic minimal hypersurface X 
in the C 2 topology. By (7) we see that the boundary of pl/,oo(X,:c~ Z,~) lies in #Zd,,t,:> 
which disappears as e--, 0. Thus X is complete. 

We now show that S cannot be the hyperplane. Since S,:,~.o:~ is stable and any 
subset of  s properly containing L.,.~)is unstable, the Jacobi operator A + [A [2 on 
-~,,.(~,) has an eigenfunction f~ with the eigenvalue zero which is positive in the 
interior and zero on the boundary of -~,~,,.~,:). Consequently f : = f :  o/zl,,~,~,:~ is an 
eigenfunction of the Jacobi operator on ~ul/,.(,)(X,:,<.~o ). Let 

Xs = lim p~/,~)(X,:,,.o:)) = {q ~ X :dist(q, Ao) < 1}. 

Suppose that Z is the hyperplane. Z must then coincide with An + 1- Viewing A, + 
as R n, we see that Ss= A'~, as defined in the preceding lemma. /zL/,v:~(s is 
close to A(e)= A'~c~Za/,.(,:~ in the C 2 topology. Hence one can push f: forward to 
obtain a smooth function f~ on A(e) that vanishes on the boundary of A(e) and 
satisfies 

AJ~ + ~ = 0 on A (e) 

for a smooth function q with [q] < b(e), where b(e)~ 0 as e-~ 0. Then 

~,(A(e)) _<' < b(e), 
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which contradicts the preceding lemma. Therefore s is not the hyperplane. 
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5. Existence theorem 

In conclusion we prove the following theorem on the existence o f  higher 
dimensional Enneper's surface. 

THEOREM. In R n + 1, n = 3, 4, 5, 6, there exists a complete minimal hypersur- 
face X" called higher dimensional Enneper's surface with the following properties. 

(i) S is a minimal immersion of  R" into R" + 1. 
(ii) Asymptotically S is the hyperplane with multiplicity 2 " -  1. 

(iii) 2" contains Ao, the union of  n mutually orthogonal ( n -  1)-planes. 
(iv) 2" is invariant under G. 
(v) ~ [A I"= oo, IAI being the length of  the second fundamental form of •. 

(vi) The Gauss map for 2" is not well defined at the point at infinity of  X. 
(vii) S consists of 2 ~ congruent embedded pieces. The union of  two adj, aeent pieces 

is stable. More precisely, if  X is one of  the pieces with 3Z, c A*, then 

X w p i ( f )  is a stable subset of,Y,. 

Proof (i) From the construction of 2", in Lemma 1 it is clear that the interior 
of 2"~ is diffeomorphic to the interior of O )r T. Let f = lim~opl/r163 Then one 
can see that X ~ is embedded and diffeomorphic to A]+ ~(=lim~opl/~(~,)(O )0(T)). 

A,+~ onto 2". Note that Let r be a diffeomorphism of 

z = U 
~ G  

Def ine  ~ :  A~ + l ~ R" + l by  

~ ( x ) = ~ ( ~ ( y ) )  i f x = ~ ( y ) ,  xEA,+1,  yeA' ,+1.  

Then one easily verifies that ~ is an immersion of R" onto 2" = R" + 1. 
(ii) Since 2"~ is area minimizing, we have for r < d 

Vol(X~C~Br(O)) <_ Vol(s <_ Vol(A~ + 1 c~Zr) + Vol(~Zrc~A~ + 1). 

Hence 

1 2 " -  1 n~ 
- -  Vol(2"et~Br(O)) <_ ~ q- - - .  
(.On rn r 
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By the monotonic i ty  of  the volume ratio, 

1 2 " -  1 ne 
Vol(X~c~Br(O))< 2 - - - ~  + -~ ,  O < r < d .  

( j ) n r n  I __ 

Because of  the invariance o f  the volume rat io under scaling, we see that  as e ~  0 

2 n -  1 
1 . V o l ( X n B r ( O ) ) < - - ,  0 < r <  ~ .  (14) 

COn r n  2" 

Now define the tangent cone T~ of  Z at infinity by the current  limit 

T~ = l im/~, ( - f ) .  
e.~O 

Then (14) gives 

2 n -  1 
O " ( T ~ ,  O) <_ I (15) 

2" 

spt To~ lies in A . + I  + because _f c A . +  1 . +  Also 

sp t (0T~)  A ~ ~ n + l "  

A ~ I f  s p t T ~ n A ~ + ~ ~ 0  . + 1 r  then the m a x i m u m  principle implies that  
spt T~ = A~+~. It follows f rom (15) that  spt T ~ - A . + ~ . -  ~ So let us suppose that  
spt T~ 4: A~+ ~. Then either 

A ~ spt To~ n A ~ + ~ ~ ~ . + ~ = ~b and spt T~ ~ A. + 1 4: q~, (16) 

o r  

spt T~  = A~+ 1. (17) 

In case of  (16), there exists 0 < 0 < g such that  spt To~ is tangent  to A.+ 1,o and lies 
on one side o f  A .+  1,o. By the m a x i m u m  principle one gets A.+ 1.onA++, c spt T ~ ,  
and so spt T~ n A ~ + ,  = A . + I ~ A . + 2 ,  which is a contradiction.  In case of  (17), 
assume that  ~ n A . +  1.0 ~ {O} r ~b for  some 0 < 0 < zc. (17) requires Z n A . +  1,~to 
be compact .  Then one can find a hy.perplane A parallel to A. + 1.o such that  Z is 
tangent to A at  an interior point  o f  s and lies on one side o f  A. This is impossible 
by the m a x i m u m  principle. So . r =  A.~+ 1. But then E = A,,+ i, which contradicts  
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L e m m a  8. Therefore  spt T~ =A,~+t  and it follows that the tangent cone o f  L" at 
infinity is A,  + i with multiplicity 2 ~ - I. 

(iii), (iv) These are obvious by Lemma  1 and Lemma  2. 
(v) M. Anderson [A, Theorem 5.2] showed that  if a complete n-dimensional  

minimally immersed submanifold  S c R "  has one end and satisfies Ss [A [" < 0% then 
S is an n-plane. So our  claim follows. 

(vi) Since L" = Ao and the (n - l)-planes of  A0 intersect each other along A_ 1, 
one can see that  any vector v normal  to S at q e  A_~ must  be normal  to every 
(n - 1)-plane of  A0 passing through q. It follows that  v = (0 . . . . .  0, a),  a g: 0. Hence 
the Gauss  m a p  for 2" maps  A_~ to the north pole of  S ~. Now let -f be the 
embedded surface as defined in the p roof  of  part  (i) above and let ~ c ,f  be the 
plane curve which is invariant under the reflections ~u, 1 < i 4:j_< n. At the origin 

is tangent to the horizontal hyperplane A,, +1- But as E goes toward the point  at 
infinity, it is flipped over by 180 ~ and becomes parallel to An + 1. So the Gauss  m a p  

^ 

maps  E onto a great semicircle connecting the north pole to the south pole in S ~. 
Therefore  the Gauss  m a p  cannot  take on a single value at the point  at infinity. 

(vii) It  follows f rom Lemma  2 that  2 n congruent  copies of  -f comprise 2". Since 
0X~ can be projected one-to-one into A,, o for 0 < 0 < n/2, S~. is a graph over  A~.o. 
Therefore,  as a limiting case, the interior of  Z'~. is a graph over  A~.o = A~ al though 
_r itself is not. Similarly one can show that  the interior o f  p~(Z'~.) is a graph over  
Ai. Note  that  _r  and pe(-rD lie in the opposite sides of  A . + I  and that  
(X,:up~(S~))c~An+ l c Ao. Hence the interior of  2"~w p~(,r~.) is also a graph over A~. 
Therefore  X,~p~(X,,)  is stable by [Ch, Corollary 3] and so is ~,wpt ( s  

6. Concluding remarks 

(1) When n = 2, the same construction as described above gives rise to classical 
Enneper ' s  surface. This can be verified by observing that Z "2 has one end and has 

the total curvature of  -4 r e  [O]. 
(2) We have seen that  there exists n-dimensional  Enneper 's  surface in R n § 1 for 

2 _< n < 6. On the other hand, our  method of  construction breaks down for  n > 7 
because the curvature  estimates (8) and (10) are no longer valid. This is in sharp 
contrast  with the following famous results: J. Simons [Si] has proved that  there exists 
no n-dimensional  entire nonlinear minimal graph in R" § l when 2 < n < 7; Bombieri-  
De  Giorgi-Giust i  [BDG] have shown that  there exist n-dimensional  entire nonlinear 
minimal  graphs  in R" § 1 if n > 8. Let us explain in a naive and heuristic way why 
these dichotomies  occur: The curvature estimates imply that  low dimensional stable 
minimal  submanifolds are rigid; Invalidity of  the curvature estimates in high 
dimensions indicates that  high dimensional stable minimal submanifolds  are flexible. 
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Roughly speaking, one can obtain X ~ from A,~+~ = {(Xl . . . . .  x,,, O):xi >_ O, 
i = 1 . . . .  , n} by fixing the boundary of A~§ 1 and bending the interior of A~,+I by 
180 ~ When the dimension is low, the minimal submanifold Z is so rigid that 2? can 
withstand the extreme bending and thereby giving rise to the higher dimensional 
Enneper's surface. However, when the dimension is high, -f is so flexible that the 
180 ~ bending tears down and flattens _f and then -f becomes A,~ + 1. As for minimal 
graphs, one should note that graphs are obtained from the horizontal hyperplane 
by mild bendings of at most 90 ~ But low dimensional complete stable minimal 
submanifolds are too rigid to allow mild bendings and therefore hyperplanes are the 
only entire minimal graphs. Moreover, high dimensional stable minimal submani- 
folds are flexible enough to allow mild bendings to persist, thereby allowing 
nonlinear minimal graphs to exist. 

In view of these interpretations let us make a guess as to n-dimensional 
Enneper's surface in R"+1 for n > 7. I f  such Enneper's surface is to exist, its 
fundamental piece should be constructed by bending A~+I by less than 180 ~ and 
hence the support of its tangent cone at infinity should be distinct from A, +t. 

(3) L. Simon [S] proved that the curvature estimate of Lemma 5 also holds for 
n = 7 in the nonparametric case. However, with the assumption that -~,~., is a local 
graph instead of being a stable hypersurface, we had difficulty ruling out the 
possibility that S 7 becomes the hyperplane or X 6 • R 1 in the proof  of  Lemma 8. 

(4) As for part (v) of  the theorem, we recall that ~zK = - 4re for the two-dimen- 
sional Enneper's surface Z c R 3. In fact, the total curvature of Z is concentrated 
near the origin since IKI takes on the maximum at the origin. On the other hand, 
for higher dimensional Enneper's surface we can argue that S z ]A 1" is concentrated 
near A_I as follows. By part  (vii) of the theorem, fWpi( f  ) a n d  Z w p j ( , f ) ,  i # j ,  are 

A 

stable. Hence for q ~ L" one gets the curvature estimate 

]A ](q) _< min {b/dist(q, O(X w p, (2~))), b/dist(q, ~(,~ w pj(s 

< x/2b/dist(q, ~(-f w p~(f))  ~ ~(,S w pj(Z~))) 

= x/~b/dist(q, A 1). 

This estimate indicates that ]A I(q) becomes large as q approaches A 1, which also 
suggests that ~z t A I" becomes infinite since A_I has infinite ( n -  2)-dimensional 
volume unless n = 2. 

(5) From part (vii) of  the theorem we see that the higher dimensional Enneper's 
surface 2" consists of  2" - ~ disjoint stable subsets. In light of  [Ch, Theorem 1] it is 
tempting to conjecture regarding the Morse index of _r that 

index(X) = 2" - 1 _ 1. 
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(6) It is still interesting to show that index(Z) is finite. This together with part  

(v) of the theorem would surprisingly contrast  with Fischer-Colbrie 's theorem that 

a complete minimal  surface in R 3 has finite total curvature if and only if it has finite 

index [F]. 

(7) The higher dimensional  catenoid C lies between two parallel hyperplanes. In 

the proof  of Lemma 4, C was used as a barrier in applying the maximum principle 

to _r. For  this reason it seems quite probable that higher dimensional  Enneper ' s  

surface might also lie between two parallel hyperplanes. 

REFERENCES 

[A] M. ANDERSON, The compactification of a minimal submani[bld in Euclidean space by the Gauss 
map, preprint. 

[B] E. BOMBIERI, Recent progress in the theory o['minimal sur[aces, L'Enseignement Math. 25(1979), 
1-8. 

[BDG] E. BOMBIERI, E. DEGIORGI and E. GIUSTI, Minimal cones and the Bernstein problem, Invent. 
Math. 7 (1969), 243 268. 

[C] J. CHEEGER, A lower boundJor the smallest eigenvalue of the Laplaeian, "Problems in Analysis", 
Princeton Univ. Press, Princeton, New Jersey, 1970, 195-199. 

[Ch] J. CrtOE, Index, vision number and stability of complete minimal surJaces, Arch. Rat. Mech. Anal. 
109 (1990), 195-212. 

[FK] D, FERtJS and H. KARCHER, Non-rotational minimal spheres and minimizing cones, Comment. 
Math. Helv. 60 (1985), 247-269. 

[F] D. FISCHER-COLBRIE, On complete minimal surfiTces with finite Morse index in three maniJblds, 
Invent. Math. 82 (1985), 121-132. 

[GT] D. GILBARG and N. S. TRUDINGER, Elliptic partial dif['erential equations of second order, 2nd 
edn, Springer Verlag, Berlin, 1983. 

[JS] H. JENKINS and J. SERR1N, The Dirichlet problem/'or the minimal surfiTce equation in higher 
dimensions, J. Reine Angew. Math. 229 (1968), 170-187. 

[O] R. OSSERMAN, Global properties of minimal surJaces in E 3 and E ~, Ann. of Math. 80 (1964), 
340-364. 

[SS] R. SCHOEN and L. SIMON, Regularity of stable minimal hypersurJaces, Comm. Pure Appl. Math. 
34 (1981), 741-797. 

[SSY] R. SCHOEN, L. SIMON and S.-T. YAU, Curvature estimates Jot minimal hypersurJaces, Acta 
Math. 134 (1975), 275-288. 

[S] L. SIMON, Remarks on curvature estimates Jor minimal hypersurJaces, Duke Math. J. 43 (1976), 
545-553. 

[Si] J. SIMONS, Minimal varieties in Riemannian maniJblds, Ann. of Math. 88 (1968), 62-105. 
[W] Q.-M. WANG, On a class of minimal hypersurfaces in R ~, Math. Ann. 298 (1994), 207-251. 

Jaigyoung Choe 
Department of Mathematics 
Postech 
Pohang, 790-600 
South Korea 

Received August 24, 1995 


